SCHENGENDB: A Data Protection Database
Proposal

Tim Kraska, Michael Stonebraker, Michael Brodie, Sacha Servan-Schreiber,
and Daniel Weitzner

MIT CSAIL

Abstract. GDPR in Europe and similar regulations, such as the Cali-
fornia CCPA, require new levels of privacy support for consumers. Most
challenging to IT departments is the “right to be forgotten”. Hence, an
enterprise must ensure that ALL information about a specific consumer
be deleted from enterprise storage, when requested. Since enterprises are
internally heavily “siloed”, sharing of information is usually accomplished
by copying data between systems. This makes finding and deleting all
copies of data on a particular consumer difficult.

GDPR also requires the notion of purposes, which is an access control
model orthogonal to the one customarily in SQL. Herein, we sketch an
implementation of purposes and show how it fits within a conventional
access control framework.

We then propose two solutions to supporting GDPR in a DBMS. When a
“green field” environment is present, we propose a solution which directly
supports the process of ensuring GDPR compliance at enterprise-scale.
Specifically, it is designed to store every fact about a consumer exactly
once. Therefore, the right to be forgotten is readily supported by delet-
ing that fact. On the other hand, when dealing with legacy systems in
the enterprise, we propose a second solution which tracks all copies of
personal information, so they can be deleted on request. Of course, this
solution entails additional overhead in the DBMS.

Once data leaves the DBMS, it is in some application. We propose “sand-
boxing” applications in a novel way that will prevent them from leaking
data to the outside world when inappropriate. Lastly, we discuss the chal-
lenges associated with auditing and logging of data. This paper sketches
the design of the above GDPR compliant facilities, which we collectively
term SCHENGENDB.

1 Introduction

The General Data Protection Regulation (GDPR) took effect on May 25, 2018,
affecting all enterprises operating within the European Union (EU) and the
European Economic Area (EEA) [1]. The GDPR is the leading example of a
new generation of privacy laws around the world that impose a strict and more
comprehensive set of requirements on all systems that “process” personal data. In
particular, the GDPR now mandates that no personal data may be “processed”
at all without an adequate “legal basis.” This legal attitude with respect to

2 T. Kraska et al.

personal data stands in sharp contrast to other legal systems, including that
in force in the United States, in which companies can do whatever they choose
with personal data unless there is a specific legal prohibition against a specific
type of processing. Nevertheless, today the United States, and a number of other
countries, are actively debating new privacy laws, many of which would entail
similar requirements as imposed by the EU GDPR.

The requirement to keep personal data “under control” at all times imposes
several important new conditions on enterprises processing personal data. We
do not describe all of those here but rather concentrate on the new technol-
ogy necessary to enable fundamental parts of GDPR compliance. We define two
broad requirements for database implementation of GDPR rules. First, enter-
prises must now keep track of the legal basis under which data is allowed to be
processed, and assure that applications, services, and analysis driven by enter-
prise data bases systems adhere to those legal restrictions. Second, enterprises
also must keep data “under control” such that when an individual (aka. a “data
subject” in GDPR parlance) requests that their data be “erased” or “forgotten”,
that such request is honored throughout the enterprise’s own systems.

The GDPR mandates that a “legal basis” is required in order to permit any
processing of personal data. That means that whenever a company collects,
stores, analyzes, shares, publishes, or takes any other action on personal data it
must point to a specific legal authority defined by the GDPR as the “legal basis”
for such processing. Personal data must be kept under control by database sys-
tems so that enterprises can verify that when data is processed, that processing
is permitted based on the relevant legal basis, effectively a permission (GDPR
Art. 6). Contrary to popular misunderstanding of the GDPR, however, consent
of the data subject is only one of several specific legal bases for processing. For
clarity, we summarize the several legal bases for processing available under the
GDPR. Data may be processed based on one of the following six legal conditions:

— Consent: An individual agrees to have their personal data processed for
some specific purpose.

— Contract: The individual and the enterprise have entered into a contract
providing the enterprise with the right to process personal data.

— Legal obligation: The enterprise can process data to comply with a legal
obligation binding on that enterprise.

— Vital interests: The enterprise can process personal data to protect vital
interests of the user or another person.

— Public interest: The enterprise can process, including disclose, personal
data when it is in the public interest, generally as directed by a government
authority.

— Legitimate interest: The enterprise can process data for purposes that are
necessary to the legitimate interest of the enterprise, provided such interest
is not overridden by the fundamental rights of the individual.

Every step taken to process personal data must conform to one of these
legal conditions. So while there are circumstances in which personal data can

ScHENGENDB: A Data Protection Database Proposal 3

be processed without consent, it must always be processed under the control of
some legal authority. Consider two motivating scenarios to understand how the
GDPR operates and what requirements are placed on database systems:

Scenario 1: A company collects phone numbers for user authentication pur-
poses (two factor authentication) but data subjects agree to provide their phone
number only for that purpose. The company now has a database containing
phone numbers but no explicit purpose associated with them. The company’s
marketing department decides to use the phone numbers for product promotion
purposes without the knowledge that the phone numbers were collected only for
the purpose of authentication, thus violating GDPR requirements.

Scenario 2: A company is running a study and would like to obtain a list
of users that opted-in while excluding those that opted-out of participation in
analytics. Users of the data must have tools to respect the preferences and pur-
poses agreed to by the data subjects. To achieve this today, the company must
redesign the database schema to incorporate all possible GDPR-related data us-
age purposes for every user which hinders the company’s ability to gain insight
from their data.

The above circumstances give rise to the following three requirements of
systems that store personal data inside the EU (see also [9]):

— Controlled storage and access: The storage system must store the legal
basis on which access is allowed, including specific purpose limitations.

— Queries: All queries of personal data must be associated with a purpose,
which defines the data allowed to be accessed.

— System wide erasure: A data subject has the right to request that ALL
of their personal data be erased, in which case the request will be hon-
ored throughout the enterprise. We adopt a modification of this requirement
which states that personal data must be deleted to the extent technically
practical or “placed beyond use” if full erasure is not possible.

Besides increasing interest in GDPR from database and cloud providers [7,
8,4,5], as of June 2019, we are unaware of any end-to-end system solution to
manage personal data within the confines of GDPR. Hence, we present a data
management system, SCHENGENDB, that can implement these restrictions effi-
ciently. Our solution focuses on managing compliance within an enterprise, not
between enterprises. Furthermore, we do not attempt to protect against mali-
cious employees but rather protect and limit misuse through direct support for
privacy requirements. Our solution has multiple parts. In Section 2, we describe
a system that supports the definition of purposes and ensures that only personal
data authorized for a given purpose is released to applications with that purpose.

Then Sections 3 deals with supporting GDPR within the DBMS. Primarily,
we show how to support the right to be forgotten. First, we present a solution
appropriate for new applications being constructed. In this case, we can force a
logical data base design that stores each fact exactly once. Deleting this fact will
thereby perform the appropriate “right to be forgotten”. The second solution is
appropriate for existing DBMS schemas, which often employ data redundancy.
In this case, we need to track all personal data as the DBMS updates multiple

4 T. Kraska et al.

copies and constructs derived information through new tables and materialized
views.

Once personal data leaves the DBMS, it resides in an application. In Section
4, we outline how “sandboxing”, the use of virtual containers, can be used to
disallow leaks. If that is too onerous, then we propose a second solution that
trusts the owner of the sandbox to “do the right thing” when data leaks. Lastly,
in Section 5 we discuss implementation issues dealing with audit and logging.

In summary, we make the following contributions:

— We propose SCHENGENDB, a database management system that helps en-
terprises comply with GDPR, through two different implementations of the
right to be forgotten.

— SCHENGENDB'’s novel data purpose protection ensures that personal data
can be used only for specific purposes for which the user gave explicit per-
mission.

— SCHENGENDB'’s novel sandboxing helps ensure that applications do not leak
personal data.

— SCHENGENDB provides efficient auditing procedures which facilitate the
burden of proving enterprise-wide GDPR compliance and guaranteed data
deletion.

2 Purpose-Based Access Control

One of the biggest changes brought by GDPR and related regulations is that
personal data cannot be used within an enterprise for an arbitrary purpose.
For example, as outlined in the introduction, a phone number might be usable
only for authentication and not for direct marketing (e.g., by calling the phone
number) or even indirect marketing (e.g., to infer the person’s location). Thus,
we propose a “purpose” based access control model. Unlike the existing database
security model [2], purposes are associated with personal data in a fine-grained
manner (e.g., different attributes of a record in a table can have different allowed
purposes), and are “carried along” when the personal data is processed. In this
section, we formalize the notion of purposes and describe our solution.

2.1 Data & Access Model

In our model, database users can define arbitrary purposes describing how they
intend to use personal data. For example, a member of the marketing team
can associate his team with the purpose “marketing” which will restrict their
access to personal data that has the associated “marketing” purpose. Who is
authorized to define purposes and how they get the consent of data subjects are
administrative tasks beyond the scope of this paper. However, we assume that
each data subject can opt-out or opt-in for each purpose.

It is important to note that purposes restrict system users to a logical sub-
set of personal data in the DBMS. SQL access control has a similar function,

ScHENGENDB: A Data Protection Database Proposal 5

O (m Purpose O
Cpurpose) Purpose . .
@ Filter —
Database
data
results
User (Cpurpose)

Fig. 1. Example of purpose usage of personal data in queries. The client has two
associated purposes and issues a query with a third purpose. SCHENGENDB queries
the database and returns the filtered results to the client.

but there are important differences between purposes and SQL access control.
First, SQL deals with system users not with applications. Second, SQL protects
relational views, so all rows of data are treated uniformly. Purposes may define
so-called “ragged” tables. Lastly, each data subject must be able to opt-in or
opt-out of each purpose. Hence, access is defined individual-by-individual. On
the other hand, SQL protects logical subsets of the data (so called views). Hence,
the definition facility is totally different. It is certainly possible to modify SQL
access control to deal with these differences. However, in the following we present
a direct implementation.

Tables and columns that contain personal data must be declared and are
designated with a schema-level notation. A purpose is defined by a documented
use and by the queries and applications that are used to implement that purpose.
From this information, tables and columns that contain personal data can be
deduced. This activates personal data checking for all accesses to that table and
column.

Each cell in a personal data column can indicate if the user agreed to, or
opted-out of, any of the purposes. GDPR requires that the default value be
“opt-out”. In principle, the query processor simply skips “opt-out” cells.

Purposes are designed, developed, documented, and maintained by an indi-
vidual who is responsible for that purpose. Each query and application that ac-
cesses personal data must be associated with at least one purpose. To add, delete,
or modify a purpose, the responsible individual works with trusted database ad-
ministrators (DBAs) who authenticate, verify, and implement the purpose. Legal
verification may be required.

For management purposes, and to reassure data subjects of authorized con-
trol, the use of purposes can be restricted to specific users or roles. Hence,
processing a database access to personal data involves mutually applying the
purposes of the database access, the user, and the user’s role, as illustrated in
Figure 1.

This system does not replace the current SQL access control system. Instead,
it is implemented in addition to the current system. Specifically, a system user
must have SQL access to a datum in addition to purpose access. In the following,
we focus on purpose access, as SQL access is well understood.

6 T. Kraska et al.

2.2 Execution Model

Given a query with a purpose, SCHENGENDB checks if the system user is allowed
to access the specified tables and columns given the indicated purpose. Assuming
the system user is allowed to proceed with the query, the execution engine returns
all personal data that matches the query except for the records which do not
permit the purpose specified in the query. As a result, a query may give different
answers based on the purpose associated with the query. In addition to the result,
the database indicates how many items were omitted due to a purpose violation.
This latter feature is useful for debugging and for endowing the system with
operational transparency.

2.3 Implementation and Optimization

Macro-level purposes (database, table, column purposes) involve minimal storage
overhead and can be safely ignored in the present discussion. Hence, we focus
on row and cell level purposes.

Our first (naive) solution stores row and cell purposes as a bit vector. Given
N rows and C columns, we require N bit vectors for the rows and N * C bit
vectors for the cells. We focus herein only on the cell-level overhead. Given a set
of purposes T that require cell level specification, and given the assumption that
a fraction « of cells have a non-default purpose then the overhead is:

O(a* NxCxT) (1)

To illustrate the overhead, consider a table of 1 Billion rows with 100 columns
and 50 purpose bits where 5% of the cells have cell-specific bits. The overhead
is (0.05 * 10% % 100 % 50) bits which is more than 30GB of storage. If 10% of the
cells have cell-specific bit vectors then the overhead jumps to almost 70GB. This
could represent as much as 20% of the size of the table. There are both benefits
and drawbacks to the naive solution.

Pros: such a purpose storage solution would allow very efficient query pro-
cessing (simply check the correct bit in the bit vector).

Cons: storage overhead is linear in the number of purposes. This may be
acceptable when the number of purposes is small or when a very small percentage
of cells require cell-specific purposes. In general, we need a more efficient solution.

Consider the worst case for which a set of purposes is defined for every cell in
a table. This requires O(N x C' x T') storage. Suppose purposes are not randomly
assigned to cells but follow some distribution (e.g., exponential). In this case,
we can efficiently compress purposes using a variant of Huffman encoding [3].
Such an encoding can be used in conjunction with a bit vector representations
to minimize storage for frequent combination of purposes found in the database
while leaving infrequent combinations as-is.

A second mechanism for cell purpose encoding assumes that the number of
purpose combinations follows some distribution. Hence, most cells in the table
have some combination A; of tags, for example:

ScHENGENDB: A Data Protection Database Proposal 7

A1 = (marketing, analytics, support)
and a less frequent combination,
A = (marketing, support)

and so on, for some combination A,,, which is the nth most frequent combination
of purposes in the database.

Arrange these combinations in sorted order A;, As, Az, ..., A,,. Purpose bit
vectors can then be stored with O(logn) overhead by intelligently encoding them
using a compression scheme. However, such encoding can introduce bottlenecks
at query time because combinations must be decoded and matched against query
specified purposes. Additionally, such encodings do not easily support updates
to the database.

It is conceivable that the compression is efficient enough (i.e., a large enough
fraction of cells in the database have the same combinations of purposes) that
querying with purposes can be achieved by first scanning the purpose combi-
nations to determine which compressed representations must be included. The
remaining elements can be matched using bit vectors as in the naive solution.
It is likewise reasonable to assume that changes to the database will follow a
similar purpose distribution. However, in the case that a certain percentage of
the database has purposes that are no longer “optimally” encoded, a re-encoding
procedure may be necessary. Moreover, adding a new purpose can be done using
the compressed representation and does not require re-encoding.

3 DBMS Support for GDPR

In the previous section, we explained how to ensure that personal data will be
returned only for personal data with an opt-in value for the purpose associated
with a query. In this section, we turn to the “right to be forgotten”. To address
this issue in SCHENGENDB, we need a reliable way to identify all personal data
for a single user and to delete it efficiently. In this section, we propose two
solutions, one for a “Green Field” application and another which deals with an
existing schema. First we explore support within a single database and then we
show how to support this requirement across systems.

3.1 Green Field Within a Single System

The key idea is to disallow duplicate or derived data to be stored. To do so, we
propose to enforce an entity-relationship (E-R) model on the data. This data
model requires data to be stored as:

Entities: these are features that have independent existence. Hence, they
have a unique identifier and can only be inserted and deleted. Entities can have
attributes that describe the entity. For example, an entity might be an employee
with e-id as its identifier and attributes birthday, home address, etc.

8 T. Kraska et al.

Customer Hobby

managed

friendsof \37 + Department

Fig. 2. Customer contains data about each customer, for example, address, birth _date
and date of first service. Department is an entity showing departments in the enter-
prise. The Hobby entity has hobby-specific data. The enterprise collects information
that links customers to other entities. The three relationships indicate what department
manages the customer, what hobbies they has, and who their friends are.

Relationships: entities can participate in relationships. For example, the
entities employee and department may have a relationship, works-in, that in-
dicates that an employee works in a specified department. Entities are often
represented graphically as boxes with relationships indicated as arcs between
the boxes. Relationships are usually further specified as 1-N or M-N to indicate
allowed participation, but that feature is not needed in our discussion. Hence, we
require a DBA to construct an E-R model for the data using standard E-R mod-
elling techniques, which are discussed in any undergraduate text on database
concepts.

Standard E-R practice requires that each entity have a primary key, which
uniquely identifies the entity. In addition, we require every entity to have an
additional “surrogate key”. For example, although Customer name may be a
unique identifier, we require that the Customer entity also have a surrogate key,
which we require to be a random set of bits. Hence, the relational schema for
the data of Figure 2 is shown in Listing 1.

Customer (cname, c-surrogate-key, other-fields)
Department (dname, d-surrogate key, other-fields)
Hobby (hname, h-surrogate-key, other-fields)

friendsof (cl-surrogate-key, c2-surrogate-key, other-fields)
managedby (c-surrogate-key, d-surrogate-key, other-fields)
has (h-surrogate-key, c-surrogate-key, other-fields)

Listing 1. The Relational Schema for Figure 2

There is a table for each entity type and one for each relationship that con-
tains the surrogate keys for the pairs of records in that relationship. Although

ScHENGENDB: A Data Protection Database Proposal 9

1-N relationships can be optimized as additional fields in one of the entity tables,
we do not pursue this improvement herein.

Hence, the information base for an enterprise is an E-R diagram, which is a
graph of entities interconnected by relationship edges, together with a relational
implementation of this structure, with surrogate keys defining the relationships.

There are a few constraints we impose on accessing and updating this struc-
ture. Since all the relationship data uses surrogate keys, SCHENGENDB can lazily
delete “dead” relationship data as circumstances permit, through a background
process the finds “dead” surrogates. To support lazy deletion, the following re-
strictions must be put in place:

Materialized views must be prohibited. Otherwise, there are data copies else-
where in the database, which would have to be discovered and an appropriate
additional delete performed. To avoid this error-prone and costly operation, we
disallow materialized views.

Second, surrogate keys must be hidden from users. Hence, every query to
the database must be expressed in E-R form and must begin by referencing an
entity. Therefore, queries which directly access a relationship such as:

SELECT . . . FROM . . . WHERE surrogate_key = value

must be disallowed. This restriction is required to ensure that surrogate keys are
not seen by a user. Were that true, then users could query (and store in user
code) surrogate keys. In this case, lazy deletion of surrogate keys would leak
information.

With these restrictions, the implementation of deletes is straightforward. To
delete an entity, the appropriate record in the appropriate entity table is found
and removed. This makes all surrogate keys “dangling” and unusable for gener-
ating query results. Over time, a background process can find and delete “dead”
relationship data. Of course, one could also implement an “eager delete” sys-
tem which would not need surrogate keys, but would require all references to
an entity to be found and removed, which would increase the response time for
deletes.

3.2 Existing Schema Within a Single System

While the “Green Field” solution has compelling advantages, in most cases it
requires a complete redesign of the schema and the application, which can be
a huge cost factor. As such, it is appropriate for new applications, but we need
another solution for existing schemas.

To handle this case, we propose fine-grained tracking of changes. Every insert
into SCHENGENDB has to be done on behalf of a specific data subject, i.e., owner
of the personal data (as before). Thus, every inserted record belongs to one (or
conceivably more) person. Furthermore, every derived record (think materialized
view) automatically inherits the owners of the records from which it was derived.
If the enterprise is concerned about the aggregation of information, then many
owners will have to be recorded. This information can be stored using standard

10 T. Kraska et al.

lineage techniques [6, 3, 11]. Although this may result in onerous overhead, there
is no other way to track all the personal data as it is spread around the database.

This allows SCHENGENDB to track all records related to a specific data
subject and delete them when asked. We now turn to the copying of personal
data information between systems.

3.3 Across Systems in the Enterprise

In a large enterprise there may be hundreds to thousands of separate databases.
When a system user needs information from multiple databases, a prevalent
practice is to copy needed information from the primary copy to a secondary
one. Otherwise, a federated query must be performed, which is much slower
than the same query to a single database.

To achieve this functionally in a Green Field schema, an application will
request some entities from one database and then copy them into a second
database. To support this operation in a GDPR-compliant way, we require that
entity identifiers be global to the enterprise. For example, there must be single
global notions of Customer, Hobby, and Department. If there is not a single
notion of Customer, then GDPR will be impossible to implement because it
is impossible to tell if, for example, Mike Stonebraker, M.R. Stonebraker, and
Michael Stonebraker are 1, 2, or 3 entities. Hence, the enterprise must engage in
a data integration project for GDPR compliant entities to ensure global unique-
ness of these entities.

All the purposes attached to an entity record must be carried over from the
first system to the second system. This requires purposes to be unique across
the enterprise. In addition, we need to record in a global entity catalog that an
entity has been copied into system 2 from system 1. We call this catalog the
Data Management Server (DMS), which will also be used in the next section.
Notice that DMS records information that happens outside the DBMS. In this
case, when a GDPR compliant entity is deleted from either system, a trigger
must be run to delete all copies of the entity.

In an existing schema, there may be no E-R schema associated with the data.
In that case, a data copy to a second system must preserve the owners of records
from the first system. Obviously, owners (i.e., data subjects) must be global to
the enterprise. Hence, the DMS must record and manage all data subjects. With
this caveat, the same trigger processing will work for existing schemas.

4 Application Support for Purposes

In decision support environments it is common practice (and often essential) to
copy data from the database in order to analyze it using separate tools such
as Python, R, or Tableau. Moreover, such analysis often involves a pipeline
of operations. In this case, personal data is outside the confines of the DBMS.
Some might argue that application users are trustworthy, and therefore we do not
need to worry about applications leaking. However, it seems clear that stringing

ScHENGENDB: A Data Protection Database Proposal 11

together application systems can yield inadvertent leakage. This section describes
a mechanism of protecting such pipelines from inadvertently leaking.

We propose a “sandboxing” approach, which monitors copies of personal data
at a higher level which will prevent misuse. A sandbox is a virtual machine which
allows unrestricted access and movement of data inside the sandbox, but controls
interaction with other VMs. We propose a sandbox for every purpose. That
sandbox contains all the applications that use that purpose in a query. If there
are N purposes, then there are N VMs. The DBMS allows access only from this
collection of VMs, so DBMS requests can come only from one of these sandboxes.
Hence, pipelines of programs with the same purpose can freely exchange data.
Otherwise, sandboxes cannot be allowed to communicate with each other, since
if data is moved from a sandbox with a less restrictive purpose to one that is
more restrictive, then a leak has occurred.

These restrictions can be enforced easily at the networking level without any
changes to the applications. For example, in modern virtualized environments, it
is possible to configure the environment so that certain VMs get special [P-ranges
and that only those ip-ranges are allowed to access the database system, or one
can restrict the privilege of opening a connection to the outside to a certain set
of VMs. Furthermore, thanks to dockers and similar light-weight virtualization
mechanisms, even hosting a large number of virtual machines no longer pose a
technical challenge.

However, if an application has queries with multiple purposes, then it is
placed in multiple sandboxes, wherein each sandbox can read a portion of the
overall data. It is then likely that these VMs will have to communicate to get
the overall task accomplished. To support such applications, we now propose a
“loosey goosey” version. In this world, we point out potential violations instead
of completely forbidding interaction between sandboxes. Since every communi-
cation between sandboxes is a potential violation, when a communication occurs
we alert the owner of the sandbox, who is the owner of the purpose associated
with the sandbox. Their VM is assumed to be non-compliant. It is up to them
to figure out how to bring the VM into compliance. This will likely mean delet-
ing offending personal data. To ensure compliance, we use a timeout mechanism
for the communication operation. At the end of the timeout the VM owner has
either brought the VM into compliance or we terminate the VM. Of course,
this requires us to trust the owner of the purpose to “do the right thing”. The
strategy of reply on ex ante compliance checking, as opposed to a priori com-
pliance guarantees is recognzied as a necessary strategy involving privacy rules
for complex information systems, as it is often simply impossible to detect all
violations with certainty in advance of processing [10]. As noted in Section 5, we
can rely on the auditing system to discover violations after the fact, and to hold
employees accountable.

We turn now to the last matter dealing with applications. When a delete
of personal data is requested by a data subject, the DBMS will perform the
actions specified in the previous section. However, personal data may be present
at the application level. In this case, we assume that the DMS logs, at the

12 T. Kraska et al.

application level, every query to the DBMS for every sandbox. Every permitted
communication between sandboxes is similarly logged. When a person requests to
be forgotten, we can determine which sandboxes may have the relevant personal
data (or data derived from that personal data) by reading the log. We alert the
owner of the sandbox to this potential violation who can then take action, as
described above.

So far, the tracking and the deactivation are pessimistic and might cause
false positives, i.e., unjustified warnings to sandbox owners and terminations
of VMs that are, in fact, compliant. For example, a sandbox might read data
from SCHENGENDB but then does not store the data within the sandbox or
a sandbox does an aggregate query such as SELECT COUNT(*) FROM Customer
which requires a scan of all data but does not extract any user-specific data.
Both cases will cause warnings for non-existing violations after a request from a
person to delete their personal data.

Fortunately, a wide variety of optimizations are possible to reduce the num-
ber of false positives. For example, privacy-preserving analysis could be used
to determine that data derived from SELECT COUNT (*) FROM Customer do not
contain GDPR violations. Furthermore, we could provide annotations to indicate
that a sandbox is stateless, transient, or has a specific time-to-live. Similarly, a
data warehouse dashboard might be in violation, but if the data warehouse is
refreshed every day, the violation will resolve itself after a time-to-live.

We could provide additional annotations to provide sandbox owners more
fine-grained control. For example, if a sandbox is used to build a machine-
learning model and the model is then deployed in a service, according to the
previous section the entire model might be in violation. However, if the devel-
oper considers the model to be GDPR compliant, they could annotate that the
model does not contain GDPR violations and mark the data transfer between
the sandboxes as safe.

5 The Audit Process

The audit process consists of two components, one within SCHENGENDB and
one at the application level.

5.1 Audit within SCHENGENDB

The fundamental auditing technology in SCHENGENDB is the DBMS log. Log
processing is well understood by the DBMS community and is implemented in
all commercial DBMSs. Specifically, all operations which alter the database are
logged, typically on a record-by-record basis, with the before image of the record
(so the change can be backed out if the application running the transaction fails
to commit) and the after image (to restore the change if there is a crash or other
unforeseen event). To support GDPR compliance, we must also log all reads,
together with the query invoked and its purposes. A similar statement applies
to updates. Obviously, this will slow down log processing; however, in current

ScHENGENDB: A Data Protection Database Proposal 13

systems the log is highly optimized and does not consume excessive resources.
Hence, an audit merely entails inspecting the log to ensure that the purposes
allowed by the enterprise are enforced. If SCHENGENDB is operating correctly,
there should be no violations. In the unlikely event of a violation, the offending
user and request can be quickly discovered and dealt with accordingly.

As stated in the introduction, we assume that enterprise employees are not
malicious. Hence, users with a legitimate access to data are assumed not to
share it outside the SCHENGENDB system, for example by copying a result
into an e-mail message and sending it to an unauthorized user. Dealing with
such inadvertent or purposeful leaks is outside the scope of this paper. A similar
comment applies to the DBA of a SCHENGENDB database, which has unfettered
access to everything.

However, the presence of the log raises the following question. If person X
asserts their right to erasure, then a sequence of updates will occur in SCHEN-
GENDB. Such updates are logged and contain the before images of deleted
records.

Hence, the information about X has been deleted from the database, but not
from the log. In the case of the GDPR, we understand that it is still an open
question whether respect for the right to erasure requires deleting personal data
from DBMS logs along with the accessible instance of the database. For reasons
explained below, from a technical perspective, there are reasons to exclude the
log from the scope of the right to erasure. In theory, log files can be purged after
a sufficient delay, thereby deleting records for X. However, we would caution
against this strategy. To deal with application errors, for example a buggy app
inadvertently gives a raise to Y, the database is typically “rewound” to a time
before the errant app, and then the log is replayed forward. Hence, the log must
be retained for a period of time. In addition, legal requirements often require the
log to be retained much longer. Removing log files is therefore not recommended.
Also, logs are write-once and are never updated. Hence, updating the log to
remove X's log records is not recommended. This would allow an errant log
updater to wreck real havoc.

The net-net is to trust DBAs (who are the only people with access to the
log) to do their job and not be malicious. After all, they can easily leak tax
returns and/or financial records of important individuals, which will be far more
damaging than the issues we are discussing in this section.

5.2 Application Audit

In contrast to the audit of SCHENGENDB itself, the audit process between sand-
boxes is more involved and less automatic. The data rights sandboxing approach
relies on the trustworthiness of its sandbox owners. For example, the system
user needs to be trusted if they declares that a GDPR violation was manually
resolved. Similar, they needs to be trusted to provide the correct annotations or
correct implementations of delete functions. Obviously, this can lead to violations
if users make (un-)intentional mistakes.

14 T. Kraska et al.

While we do not believe it is possible to entirely avoid such violations, the
SCHENGENDB framework can provide tools to make it easier to detect poten-
tial violations and allow an internal audit to detect potential problems, before
an external audit might discover any problems. For example, the DMS could
simulate a worst-case scenario for which it ignores all user-provided annotations
and mistrusts all manually-resolved GDPR violations. This simulation could now
be used to create a list of sandboxes and tables within SCHENGENDB that are
potentially in violation of GDPR or in which owners made mistakes. It is also
reasonable to assume, that the same simulation could be used to rank the risk
of violation or mistakes. An internal auditor could then manually check some of
the reported sandboxes.

Furthermore, it might be possible (with limitations of course) to scan the
sandboxes for potential GDPR violations based on finger prints. For example,
let’s assume that we associate a random 256bit key to every GDPR-related
record. If the bit sequence is found for a deleted GDPR record within a sandbox
it is a strong indication that the sandbox is in violation.

Finally, any communication with the outside (e.g., between an application
running in a sandbox and the web) is impossible to audit. While it might be
possible to log all such communication, it will be very hard to provide a full
audit as these logs are not trivial to analyze, as they are usually much less
structured than DBMS logs.

6 Conclusion

In this paper, we have presented SCHENGENDB, which provides the infrastruc-
ture to support GDPR and other possible future privacy regulations. It does
so with modest overhead for purpose processing and expanded log processing.
In addition, it suggests doing “clean” database design, which will benefit an or-
ganization in multiple downstream ways (easier application maintenance, easier
security control, etc.). When this is not possible, then additional lineage infor-
mation must be preserved. At the application level, we suggest “sandboxing”
such modules that access personal data to ensure the security of this data.

References

1. Regulation (eu) 2016/679 of the european parliament and of the council of 27
april 2016 on the protection of natural persons with regard to the processing of
personal data and on the free movement of such data, and repealing directive
95/46 /ec (general data protection regulation). https://eur-lex.europa.eu/eli/
reg/2016/679/0j. Accessed: 2010-05-25.

2. R. Chandramouli and R. Sandhu. Role-based access control features in commercial
database management systems. In Proceedings of the 21st National Information
Systems Security Conference (NISSC ’98), 1998.

3. B. Glavic and G. Alonso. Perm: Processing provenance and data on the same data
model through query rewriting. In 2009 IEEE 25th International Conference on
Data Engineering, pages 174-185, March 2009.

10.

11.

ScHENGENDB: A Data Protection Database Proposal 15

Google. Google cloud and the gdpr. technical report. https://cloud.google.
com/security/gdpr/.

Oracle. 5 perspectives on gdpr. https://www.oracle.com/applications/gdpr/.
F. Psallidas and E. Wu. Smoke: Fine-grained lineage at interactive speed. PVLDB,
11(6):719-732, 2018.

A. Rayani. Safeguard individual privacy rights un-
der gdpr with the microsoft intelligent cloud. https:
//www.microsoft.com/en-us/microsoft-365/blog/2018/05/25/
safeguard-individual-privacy-rights-under-gdpr-with-the-microsoft-intelligent-cloud/.
A. Shah, V. Banakar, S. Shastri, M. Wasserman, and V. Chidambaram. Analyzing
the impact of GDPR on storage systems. CoRR, abs/1903.04880, 2019.

S. Shastri, M. Wasserman, and V. Chidambaram. The seven sins of personal-data
processing systems under GDPR. In 11th USENIX Workshop on Hot Topics in
Cloud Computing (HotCloud 19), Renton, WA, 2019. USENIX Association.

D. J. Weitzner, H. Abelson, T. Berners-Lee, J. Feigenbaum, J. Hendler, and G. J.
Sussman. Information accountability. Communications of the ACM, 51(6):82,
2008.

J. Widom. Trio: A system for integrated management of data, accuracy, and
lineage. pages 262-276, 01 2005.

