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ABSTRACT

Secure computation allows two or more parties, each with a private input, to learn the output
of a function computed over their inputs without learning anything else—a fundamental tool
with applications to both theoretical cryptography and real-world Internet protocols.

In this thesis, we focus on secure computation protocols where, in a single round of
interaction, the parties obtain additive shares that sum to the output. We call this on-the-fly
secure computation, because such a protocol requires no special setup assumptions and
minimizes interaction between parties—two vital properties for real-world deployments.

Unfortunately, the only way to build on-the-fly secure computation for general functions
currently requires using spooky encryption—a powerful primitive with few prospects for
efficient implementations. This reliance on spooky encryption represents a void in our
theoretical understanding and creates a barrier for real-world deployments.

This thesis focuses on advancing the theory and practice of secure computation by asking:

Can we realize on-the-fly secure computation without spooky encryption?

In positively resolving this question, we obtain a series of new results that span from
novel tools with concretely-efficient, open-source implementations to theoretical paradigms
with new implications in several important areas of cryptography. As primary contributions:

• We provide the first concretely-efficient non-interactive oblivious transfer extension with
plausible post-quantum security, which can be seen as a restricted form of on-the-fly secure
computation. Previously, such a result was only known using spooky encryption.

• We initiate the study of multi-key homomorphic secret sharing, which allows two parties to
compute secret shares of a function over their private inputs in one round, giving the first
construction of general on-the-fly secure computation without spooky encryption. Our
construction resolves the long-standing open question of obtaining sublinear, two-round
secure computation in the common reference string model from weaker assumptions.

• We initiate the study of simultaneous-message and succinct secure computation, which
generalizes on-the-fly secure computation to have input succinctness. Such a result was not
known even assuming spooky encryption. As a direct corollary, we get the first trapdoor
hash function supporting general predicates from the learning with errors assumption.

Beyond these main contributions, we introduce new approaches for communication-efficient
multi-party computation, new constructions of constrained pseudorandom functions and
attribute-based non-interactive key exchange, generic compilers for correlation-intractable
hashing and rate-1 fully homomorphic encryption, and output-succinct secure computation.
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Reflections. Before embarking on the PhD, I walked the Appalachian Trail—spanning from
Georgia to Maine—to climb Mt. Katahdin, where I reached the terminus of the trail 2,200
miles from where I started. After four months of walking, putting one foot in front of the
other, I finally reached the end. That moment was bittersweet. If I’d had the time, I would
have kept walking into Canada and beyond. Now, reaching the terminus of the PhD, the
same feeling embraces me, and I remember enjoying my last trail lunch dangling my feet
from a scenic overlook. Back then, a young hiker just beginning his southbound journey
asked me about the 1,950 miles ahead. In that same spirit, I’d like to leave the following
breadcrumbs for my past self, and potentially anyone else who cares to read it:

(1) Read (or watch) the lecture by Richard Hamming titled “You and Your Research.”
Looking back, I wish I had incorporated more of his advice earlier on. My own experience
has taught me that his candid take on the meaning of “work” shines a bright light on
many truths that few wish to admit, including myself.

(2) Focus on quality (and maybe read “Zen and the Art of Motorcycle Maintenance” by
Robert M. Pirsig, which happens to be Srini’s favorite book). Quality takes a long
time—a very long time. Finding quality requires fighting one’s own demons and instincts
that want us to settle for less (admittedly, I still struggle with this fight myself). However,
it’s important not to let others deter you from your own definition of quality, only you
can know what it means, and only you can find it (albeit I often find it elusive).

(3) Find and refine your aesthetic, in research, in ideas, in your presentations. It helps to
have it be something you believe is elegant, something you believe is “distilled” to its
very essence. In doing so, it helps to understand (possibly at an intuitive level) why you
believe it is elegant and why you believe it is pure. This took me years to start honing
and I wish I had started the practice sooner. Once you’ve understood your aesthetic, it’s
important to find the people that share it.

(4) Be passionate about sharing your ideas, even if they appear half-baked and stupid. In
the beginning especially, your ideas are typically not worth safeguarding, as they are not
good ideas. The sooner you put them out, the sooner you start iterating on them, the
faster you’ll get to a place where you can start building something interesting. This is
advice you hear over and over again if you listen carefully, whether it’s from established
researchers or startup founders, yet is often hard to apply in daily life.

(5) Don’t be afraid to ask for help and feedback. I’ve found that most people will be happy to
share their thoughts if you ask. Learn to ask, be ready to listen, and always say thanks.

(6) Try not to look back on mistakes and accept that each embarrassing moment was necessary
in making who you are today. The learning process, for better or for worse, is messy and
filled with mistakes, dejection, and embarrassment. I personally still struggle to accept
this fact, but it’s echoed by many people pursuing creative tasks—the act of creation
necessitates cringing at what you used to think was good and constantly raising the bar.

(7) Teach what you know to understand what you don’t know. Few things have been
more valuable to me than working with high school students through MIT PRIMES to
appreciate the extent of how little I knew myself, and how much there is to discover.
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There are these two young fish swimming along and they happen
to meet an older fish swimming the other way, who nods at
them and says “Morning, boys. How’s the water?” And the two
young fish swim on for a bit, and then eventually one of them
looks over at the other and goes “What the hell is water?”

DAVID FOSTER WALLACE
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Chapter 1

Introduction

One of the foundational pillars of modern cryptography is the study of secure computation.
It enables the magical goal of allowing two or more parties to compute a function over their
private inputs and only learn the result of the computation—nothing more.

Since the initial feasibility results in the 1980s, secure computation has become central to
many different areas of cryptography and has far-reaching connections and implications. The
seminal works of Yao [Yao86] and Goldreich, Micali, and Wigderson [GMW87] proved that
any efficiently-computable function could be securely evaluated by two (or more) parties;
specifically ensuring that each party learns nothing beyond the intended output. This
breakthrough has led to nearly four decades of research dedicated to improving both the
concrete and asymptotic overheads of secure computation, as well as understanding its
fundamental limits, often motivated by the goal of solving real-world challenges.

The practical importance of secure computation has grown dramatically as data breaches
and widespread tracking has become increasingly pervasive on the Internet. Secure computa-
tion offers solutions that guarantee both functionality and privacy, and its potential to affect
real-world protocols is reflected in several ongoing standardization efforts in industry as well
as academic systems research (e.g., [IKNP03,DPSZ12,KSS13,WYG+17,CGB17,SSLD22,
MW22,HDCGZ23,HHC+23,BBC+24,ZPZS24]). For example, the MPC Alliance works with
industry to deploy secure computation protocols, the Internet Engineering Task Force (IETF)
is developing a proposal for private analytics systems [GPP+24] using specialized secure
computation techniques, the National Institute of Standards and Technology is standardizing
post-quantum digital signatures [ABC+24] based on the theoretical underpinnings of secure
computation, and the World Wide Web Consortium (W3C) is working on an online advertising
attribution proposal that uses general secure computation as a building block [W3C21].

Indeed, the impact of secure computation protocols extends far beyond building privacy-
preserving Internet systems. It has proven to be a fundamental building block for constructing
zero-knowledge proofs [IKOS07], digital signatures [Fen23], and even protecting against side-
channel attacks in hardware [ISW03]. These theoretical advances have produced practical
applications in blockchains [BCG+14,CM19], digital identities [SLC+24], and more.
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1.1 The Real-World Challenges of Secure Computation

Despite the promising potential of secure computation, real-world adoption remains limited
to a small set of specific tasks (e.g., simple analytics) and wider deployments face barriers.

The work of Halevi, Lindell, and Pinkas [HLP11] identifies an important gap between
secure computation protocols and how most other protocols function on the Internet. This gap
takes the form of interaction. Secure computation protocols require more rounds of interaction
between parties to compute the function—which translates to needing to make additional
availability assumptions on parties. In real-world deployments, where parties might be in
different geographic regions and where network conditions can vary significantly, requiring
multiple rounds of communication introduces latency and imposes often unrealistic availability
assumptions on the computing parties. Moreover, while computation and communication
costs can be mitigated with better infrastructure (larger Internet cables, more compute
power), round complexity is inherently tied to the speed of light, making it a hard lower
bound on the total time it takes to execute the protocol. An overarching goal of this thesis is
to address this limitation and mitigate the barriers inhibiting practical deployments.

In the remainder of this chapter, we expand on the key metrics that determine the practical
feasibility of secure computation by providing a comparison to the way in which regular (i.e.,
non-secure computation) protocols are deployed on the Internet today. This then leads us to
an ideal goal—“on-the-fly” secure computation—and we will examine how existing approaches
to secure computation compare against it. Understanding these elements will set the stage
for the contributions of this thesis, which span from novel theoretical approaches to new
practical implementations.

1.2 The Complexity of Secure Computation

To understand the state-of-the-art—both in theory and in practice—when it comes to secure
computation, and the remaining challenges inhibiting real-world deployments, we examine
three key complexity measures that dictate practical feasibility. These measures help to
bridge the gap between theoretical possibilities and practical implementations.

Since the initial feasibility result [Yao86,GMW87], researchers have focused on reducing
three complexity metrics in secure computation: (1) computational overhead, (2) communi-
cation complexity, and (3) round complexity. In more detail:

The computational complexity captures how much resources each party needs to expend in
order to run the protocol.

The communication complexity captures how many bits of information the computing
parties need to exchange in order to run the protocol. The notion of communication
complexity is especially interesting when described in terms of the size of the circuit
description of the function being computed, since only a handful of techniques achieve
sublinear communication in the circuit size [Mey23].

The round complexity measures how many sequential messages the parties need to exchange,
one after the other, in order to securely evaluate the function. It is known that two rounds are
necessary and sufficient to evaluate functions securely between two parties [Yao86,HLP11].
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Remark 1 (Counting rounds). A round consists of messages being sent simultaneously by any
subset of parties to any other subset of parties. Importantly, this differs from a “round-trip,”
which requires messages to go back and forth: a round-trip counts as two rounds since it
involves two sequential message transmissions and cannot be parallelized. For example, if
Alice sends a message to Bob (round 1), Bob responds to Alice (round 2) based on the first
message, and Alice sends another message back (round 3) based on the previous message, this
counts as three rounds, even though it only completes one and a half round-trips.

1.2.1 The importance of minimizing round complexity

Of the aforementioned complexity measures, round complexity often places the greatest
limits on the real-world adoption of secure computation protocols [HLP11,BCPW15]. More
rounds implies more inter-dependent messages between parties, which imposes cumbersome
availability assumptions (the parties need to be online and communication channels must
remain open) that are often unrealistic to expect on the Internet where churn is high, faults
are frequent, and coordination is difficult. Moreover, reducing round complexity is known to
have far-reaching theoretical implications (making it an extensively studied complexity metric
in the secure computation literature [KO04,HLP11,BCPW15,GMPP16]). From a purely
practical perspective, however, lower round complexity often leads to simpler protocol designs
and implementations, makes it easier to reason about protocol security and results in more
maintainable deployments. Anecdotally, both the W3C and the IETF workshops dedicated
to the standardization of various secure computation protocols disproportionately favor
simpler protocols that involve fewer rounds of interactions. This is because implementations
involving multiple rounds require intermediate state management and significantly more
complex standardization documents, hindering the ability for a broader audience to reason
about them and increasing the likelihood of implementation bugs.

Properties of Internet protocols. To better understand why round complexity is so
important to practical deployments and real-world adoption of secure computation—despite
being a purely “theoretical” notion—it is helpful to consider how existing client-server protocols
function on the Internet today. Specifically, consider the following protocol template between
two parties—Alice (e.g., a client) and Bob (e.g., a server)—for computing some function f :

Round 1: Alice sends her input x to Bob over an encrypted channel.

Round 2: Bob computes the function f over his input y and the received input x, and
sends back f(x, y) to Alice (or publishes it to a bulletin board).

While the above protocol is “insecure,” given that it reveals Alice’s input to Bob, it has
several very appealing features—and models how many Internet protocols operate today. First,
it achieves optimal efficiency across all complexity measures: two rounds of communication
(each sequential transmission is counted as a round; cf. Remark 1) and no bandwidth or
computational overhead for the parties. Second, and more importantly, it has three other
“implicit” features, which help to explain its practical appeal:

(1) The protocol can be initiated “on the fly,” as there is no need for prior coordination
between the parties and no special setup assumptions imposed on the parties. (For now,
we gloss over the need for public key infrastructure to establish encrypted channels.)
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(2) The protocol offers a non-interactive disclosure of the output: Bob can directly post the
computed result to a public bulletin board without having to coordinate with Alice.

(3) The protocol is asynchronous: Alice can go offline immediately after sending her
message—there is no need for subsequent interaction with Bob assuming that the result
is to be made public (Alice can also get the result at a later point in time).

All three of the above properties remove availability assumptions from the parties, making
it easy to run such a protocol over unreliable channels with unreliable parties. Unfortunately,
these properties are largely absent in existing secure computation protocols, especially
protocols involving many parties, as discussed in depth by Halevi et al. [HLP11].

In particular, with the exception of spooky encryption [DHRW16] (which we will cover in
more detail later), all existing approaches to secure computation fail to have some or all of
these features, making them of limited practical interest—even if we ignore the communication
and computational overheads they incur. Given this state of affairs, we describe an ideal
goal for secure computation protocols: remove coordination and availability requirements on
participants, matching, to the extent possible, the insecure model outlined above. We call
this ideal model, “on-the-fly” secure computation. In particular, we note that lower bounds
in secure computation prevent us from completely removing interaction [HLP11].

1.3 The Dream: On-the-Fly Secure Computation

Partially inspired by López-Alt, Tromer and, Vaikuntanathan [LTV12], in this thesis, we
will call a secure computation protocol that imposes minimal availability assumptions on the
parties an on-the-fly secure computation protocol. A little more formally, we will say that a
secure computation protocol supports on-the-fly computation if it is a one-round protocol
where parties obtain secret shares of the computation result.

We will focus primarily on the case where parties get additive shares (summing the share
obtained by each party, over some algebraic group, gives the result of the computation).
Additive reconstruction has several nice properties, such as optimal share size and public
reconstruction—the parties can publicly disclose result in a second round (e.g., by posting
their shares to a public bulletin board).

As we will explain next, a two-round protocol with non-interactive public disclosure
suffices to reach the efficiency properties of the “insecure” protocol outlined in the previous
section, and achieves the two-round lower-bound for secure computation [HLP11]. Moreover,
two-round protocols often enable treating the first-round messages as public encodings of
each party’s input, which then gives the following reusability of the first-round message in a
context where p distinct parties engage in pairwise secure computations:

Round 1: All parties post their first-round messages of the two-round protocol to the
public bulletin board, where this message is seen as a public encoding of their input.

Round 2: Any distinct pair of parties in the set of p parties can use the published
first-round messages to locally compute shares of a function evaluation, and use the
non-interactive disclosure property to publish the result to the bulletin board.

Notice that, from the perspective of any given party, the identity of the second party in

20



the second round can change without affecting the first round, thanks to the reusability of
the first message. This makes the protocol “on-the-fly” in the sense that, after the first round
(which is independent of all other parties), the parties never need to interact directly over a
secure channel, while still having the ability to engage in a secure computation.

1.3.1 Perspective: Internet protocols and multi-party computation

We emphasize that on-the-fly secure computation mirrors existing deployments of client-
server protocols on the Internet, where (1) parties do not need to engage in a prior setup
phase and (2) where the result can be made public without further interaction. When it
comes to secure computation, these features have many practical benefits. For example, an
on-the-fly communication pattern enables efficient pairwise computation in a multi-party
context by reducing the communication in the total number of parties, thanks to reusability
of the first message. Specifically, some multi-party computation protocols require pairwise
secure two-party computation between all parties, resulting in a quadratic communication
complexity Ω(p2) in the number of parties p. However, on-the-fly secure computation gives
the parties the ability to reuse the first-round message with all other parties, as outlined at
the beginning of this section. Using these properties, it becomes possible to instantiate multi-
party computation protocols with only O(p) communication, reducing the communication by
a quadratic factor (cf. Chapters 3 and 5). Indeed, in some cases, this enables multi-party
protocols with asymptotically optimal communication complexity.

1.3.2 Perspective: Generalization of Diffie–Hellman key exchange

An on-the-fly secure computation protocol can be seen as a generalization of the Diffie–
Hellman key exchange protocol [DH76], which has defined the modern era of cryptography
and has become one of the most widely deployed protocols on the Internet [KPW13,KRA+18].
And so, it is perhaps no coincidence that it can be viewed as on-the-fly secure computation.

In the Diffie–Hellman protocol, each party generates a public key that it posts to a
public bulletin board, which is directly captured by the first round of the on-the-fly secure
computation protocol (with a reusable first round). Then, using the public key of another
party, along with its own secret state, each party can locally (i.e., non-interactively) derive a
pseudorandom key k ∈ {0, 1}λ. We can equivalently view k as being an additive secret share
of 0λ, held by each party.

A little more concretely, by viewing k as an XOR-additive secret share of the degenerate all-
zeros function, because we have k⊕ k = 0λ, it becomes clear that the Diffie–Hellman protocol
is an on-the-fly secure computation protocol for computing f(x, y) = 0, for all x and y. While,
on the surface, this connection may appear contrived, it uncovers an important implication
that sets on-the-fly secure computation apart from standard two-round secure computation
protocols. Using the theorem of Gilboa, Ishai, Lin, and Tessaro [BGI+18, Proposition 4.7],
any on-the-fly secure computation protocol for computing any non-linear function (e.g., even
an AND of two bits) already implies the ability to perform non-interactive key exchange à la
Diffie–Hellman. In particular, this connection implies that on-the-fly secure computation is
black-box-separable from simpler primitives such as oblivious transfer.
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1.3.3 Perspective: Cryptographic primitive vs. protocol

On-the-fly secure computation can be seen as a primitive rather than a protocol since it can
be described by two polynomial-time algorithms Encode and Decode, rather than interactive
Turing machines. In particular, Encode is used by parties to encode their inputs in the
first round and Decode is used by parties to decode secret shares of the result. This is
illustrated in Figure 1.1. This syntactic simplicity of on-the-fly secure computation makes
it align more with cryptographic primitives (e.g., such as non-interactive key exchange,
digital signatures, and encryption schemes) rather than protocols. In particular, the above
description highlights why on-the-fly secure computation avoids the availability assumptions
on parties and, moreover, why spooky encryption [DHRW16] is cast as an encryption scheme
rather than a protocol, even though it directly enables many secure computation protocols,
as discussed in Section 1.4.

Alice
x

Bob
y

⟨f(x, y)⟩A ← DecodeA(x,mB) ⟨f(x, y)⟩B ← DecodeB(y,mA)

mA := EncodeA(x) mB := EncodeB(y)

Figure 1.1: On-the-fly secure computation described as a cryptographic primitive. The secret share
of party σ ∈ {A,B} is denoted as ⟨f(x, y)⟩σ, such that ⟨f(x, y)⟩A + ⟨f(x, y)⟩B = f(x, y).

1.4 A Taxonomy of Secure Computation Protocols

In this section, we overview existing approaches to secure two-party computation and explain
why most of them fail to be on-the-fly secure computation protocols. To date, when considering
general classes of functions, there are essentially only four tools for secure computation in the
two-party setting: (1) garbled circuits [Yao86], (2) fully homomorphic encryption [Gen09],
(3) homomorphic secret sharing [BGI16], and (4) spooky encryption [DHRW16]. We ignore
approaches such as the GMW protocol [GMW87] (which is tailored to multi-party computation
and requires many rounds of interaction) and protocols tailored to specific computations.
The above four approaches differ in their core mechanism:

• Garbled circuit schemes transform the computation itself into an encrypted (i.e.,
“garbled”) form that another party can evaluate to get the result.

• Fully homomorphic encryption (FHE) enables computing any function directly on
encrypted inputs to obtain an encryption of the result.

• Homomorphic secret sharing (HSS) splits the inputs between parties using secret shares
that a function can be evaluated over.

• Spooky encryption enables computing on independently encrypted inputs with parties
obtaining secret shares of the output after the first round of interaction.

Each approach represents a distinct paradigm for achieving secure computation, with
its own set of tradeoffs in terms of complexity measures, cryptographic assumptions, and
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practical considerations. Understanding these differences is crucial for appreciating both the
evolution of secure computation and the motivation for developing new techniques.

Of the four existing approaches, only spooky encryption can be classified as enabling
on-the-fly secure computation. To better understand the power of spooky encryption, the
type of secure computation it enables, and how the results presented in this thesis improve
on the state-of-the-art, we describe how each of these respective approaches can be used to
securely compute a function between two parties (e.g., a client and a server). We focus our
attention on the round complexity of each approach in a setting where the output is made
publicly available (i.e., posted to a bulletin board).

Remark 2 (On multi-party computation). The focus of this thesis is on secure two-party
computation and we will primarily provide background techniques in this setting. However,
our results have direct applications to multi-party computation as well.

1.4.1 Secure computation from garbled circuits

The original feasibility result of Yao showing that it is possible to compute any efficiently-
computable function securely over inputs provided by two parties, was constructed from
a simple building block: oblivious transfer (OT) [Rab81]. In a nutshell, OT is a two-
party protocol allowing a sender to obliviously transmit one of two messages to a receiver.
The appealing features of the garbled circuit approach are its simplicity and the minimal
assumptions (OT is known to be necessary and sufficient for secure computation [Kil88]).
Assuming the existence of two-round OT [BM90,NP01], it becomes possible to instantiate the
following high-level secure computation protocol, where the output is made publicly available:

Round 1: Alice initiates the protocol by sending an encoding of her input x to Bob
and keeps the randomness used to generate the encoding of x as her secret state.

Round 2: Bob responds by sending an encoding of f(x, y), which consists of a “garbled”
circuit computing f , generated using the encoded input x and his input y.

Round 3: Alice locally decodes the result f(x, y) by evaluating the garbled circuit
using her secret state, and posts the result to a public bulletin board.

Alice
x

Bob
y

Bulletin Board

Round 1

Round 2

Round 3
f(x, y)

Figure 1.2: Communication pattern of secure computation protocols instantiated using garbled
circuits with two-round OT or using FHE. In particular, both approaches require a minimum of
three rounds to disclose the output publicly (e.g., to a public bulletin board) since Alice needs to
“decode” the result received from Bob using her secret state (e.g., secret key).

At a very high level, Alice’s encoding consists of OT messages for obliviously retrieving a
circuit evaluation key from Bob that corresponds to her input x. The communication pattern
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of this protocol is illustrated in Figure 1.2. In particular, any two-party secure computation
protocol making use of garbled circuits requires a minimum of three rounds to make the
result public, and therefore fails to achieve the notion of non-interactive disclosure. This is
because Alice, who received the “garbled” circuit, needs to use her secret state to evaluate
it and obtain the result. Moreover, secure computation from garbled circuits has a total
communication proportional to the size of the circuit description, as it places no restrictions
on the size of the encodings. While we do not state it as an explicit goal for on-the-fly secure
computation, reducing communication complexity is often desirable.

1.4.2 Secure computation from fully homomorphic encryption

Since the breakthrough work of Gentry [Gen09] building FHE, it became possible to securely
compute a function between two parties with sublinear communication in the circuit descrip-
tion. Indeed, FHE minimizes the communication complexity by not having the communication
grow with the size of the circuit description (in contrast to the garbled circuit approach
described above). With FHE, it becomes possible to instantiate the following high-level
secure computation protocol:

Round 1: Alice generates an FHE secret key, and sends her encrypted input x to Bob.

Round 2: Bob locally evaluates the function over Alice’s ciphertext and his own input
y to obtain an encryption of the result f(x, y), which he sends to Alice.

Round 3: Alice uses her secret key to decrypt the result received from Bob, and posts
the output to a public bulletin board.

In particular, because the input is encrypted and only Alice has the secret key, Bob learns
nothing about x. Moreover, with (circuit-private [Gen09,vDGHV10]) FHE, the evaluated
ciphertext reveals only f(x, y) to Alice.

Notice that the third round is necessary because only Alice has knowledge of the secret
key, making it impossible to non-interactively disclose the output: she needs to decrypt it first
using her key. Therefore, any secure computation protocol from FHE requires a minimum of
three rounds to make the result public (similarly to the garbled circuit approach), and follows
the same communication pattern illustrated in Figure 1.2. However, unlike with the garbled
circuit approach, the total communication between parties is sublinear with respect to the
size of the circuit description because the evaluated ciphertext size is independent of the
function being computed. In contrast, using garbled circuits, Bob sends an “encoded” circuit
to Alice who then acts as the evaluator, necessitating linear communication in the circuit
description. This succinctness property of FHE is important for many real-world applications,
where one party might have a large input (e.g., a database) or where the function being
computed does not admit a small circuit description. Indeed, all the protocols considered
in this thesis will achieve different flavors of succinctness, either with respect to the circuit
description or even with respect to the inputs of the parties, as we explain later. We note
in passing that a protocol that achieves input succinctness also achieves succinctness with
respect to the size of the circuit description, since the circuit must be at least as large as the
length of its inputs (cf. Chapter 6).
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1.4.3 Secure computation from homomorphic secret sharing

The seminal work of Boyle, Gilboa, and Ishai [BGI16] introduced the notion of homomorphic
secret sharing (HSS) as an alternative to FHE for secure computation, motivated by finding
new approaches for breaking the “circuit size barrier” associated with classical garbled-circuit-
based secure computation. Using HSS, two parties can compute all polynomial-size branching
programs (which are sufficiently powerful to evaluate all circuits in the computational
complexity class NC1) sublinearly in the size of the circuit description, which was previously
only known using FHE.

Interestingly, HSS schemes offer an appealing property which is not available with the
FHE-based approach: the output of each party consist of additive secret shares of the function
evaluation (rather than a ciphertext), which enables recovering the output publicly—without
needing to use secret state. This automatically makes it possible to publicly disclose the
output in the last round, since additive secret shares just need to be added together to reveal
the result. Unfortunately, however, all existing HSS constructions require a minimum of three
rounds to securely compute a function. In particular, HSS gives rise to the following secure
computation protocol (the communication pattern is illustrated in Figure 1.3):

Round 1: Both parties agree on an HSS public key and derive shares of the secret key
using a suitable simultaneous-message (i.e., one round) protocol [OSY21,ADOS22].

Round 2: The parties swap their private inputs encrypted using the public key.

Round 3: Each party locally evaluates the function over both encrypted inputs to
obtain secret shares of the result, which it posts to a public bulletin board.

Alice
x

Bob
y

Bulletin Board

Round 1

Round 2
Round 3⟨f(x, y)⟩A

Round 3 ⟨f(x, y)⟩B

Figure 1.3: Communication pattern of secure computation instantiated using HSS. Similarly to
the garbled circuit or FHE-based approach, HSS requires a minimum of three rounds to disclose
the output publicly. Note that f(x, y) = ⟨f(x, y)⟩A + ⟨f(x, y)⟩B, making it possible for anyone to
reconstruct the output by adding together the shares posted to the public bulletin board.

The main advantage of HSS over FHE is the non-interactive public disclosure property
implied by the fact that no secret state is needed in order to reconstruct the result of the
evaluation. In particular, because the parties obtain additive shares of the output f(x, y) at
the end of the second round, where the secret share held by party σ ∈ {A,B} is denoted by
⟨f(x, y)⟩σ, the parties can post their shares to the bulletin board where anyone can reconstruct
the output f(x, y) by computing ⟨f(x, y)⟩A+⟨f(x, y)⟩B. This additive reconstruction property
has many other benefits too, one of them being compactness—additive shares are the same
size as the message they encode. Unfortunately, however, HSS does not enable on-the-fly
secure computation, due to the three-round requirement. We show how to resolve this in
Chapter 5 by introducing multi-key HSS which eliminates the need for the first round.
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1.4.4 Secure computation from spooky encryption

Spooky encryption, introduced in the seminal work of Dodis, Halevi, Rothblum, and Wichs
[DHRW16], is the only known approach for building on-the-fly secure computation. Specifically,
spooky encryption generalizes the FHE-based approach and the HSS-based approach by
needing only two rounds of interaction and supporting additive reconstruction.

With spooky encryption, parties can perform the following two-round protocol:

Round 1: Parties exchange their private inputs encrypted under independent keys.

Round 2: Each party locally runs a special evaluation algorithm over the encrypted
inputs and obtains an additive share of the result,1 which it posts to the bulletin board.

Notice that after the first round, parties can complete the second round asynchronously
(without having to interact with one another) by just posting the second-round messages—the
secret shares of the output—to the public bulletin board. This model of communication is
depicted in Figure 1.4, and captures to our notion of on-the-fly secure computation.

Alice
x

Bob
y

Bulletin Board

Round 1

Round 2⟨f(x, y)⟩A
Round 2 ⟨f(x, y)⟩B

Figure 1.4: Communication pattern of on-the-fly secure computation protocols. After a single,
simultaneous round of interaction, the parties can locally derive additive shares of f(x, y)—the
function f computed over their joint inputs x and y. Note that f(x, y) = ⟨f(x, y)⟩A + ⟨f(x, y)⟩B,
making it possible for anyone to reconstruct the output by adding together the secret shares posted
on the public bulletin board.

We stress that spooky encryption gives us on-the-fly secure computation as it enables
a protocol with the best possible communication pattern: (1) it requires only a single,
simultaneous exchange between parties for them to be able to locally obtain additive secret
shares of the result and (2) the shares computed by both parties can be disclosed publicly in
a second round. In particular, (1) one round is information-theoretically necessary and (2)
is optimal due to the two-round lower bound for secure computation. As a bonus, spooky
encryption guarantees succinctness with respect to the circuit description, similarly to the
FHE and HSS-based approaches.

1.5 Motivation for Finding New Techniques

Given the existence of spooky encryption, which meets our dream goal of on-the-fly secure
computation described in Section 1.3, it is natural to ask why pursuing alternative approaches
is necessary, let alone of interest to the cryptographic community. Indeed, spooky encryption

1This is the “spooky” part of spooky encryption: it converts uncorrelated encrypted inputs generated
entirely independently of one another into correlated additive shares of the evaluation result.
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achieves strictly more than the goals outlined in Section 1.3 by additionally offering sub-
linear communication in the circuit description. However, despite this beautiful feasibility
result, there remain many unsatisfactory aspects associated with using spooky encryption to
instantiate on-the-fly secure computation, which motivates finding alternative approaches.

The first motivation is that spooky encryption is only known from powerful assumptions—
namely from a strong form of the learning with errors (LWE) assumption or the existence of
sub-exponentially-secure indistinguishability obfuscation (iO)—which limits the available
avenues we have for instantiating on-the-fly secure computation.

The second motivation is that spooky encryption makes use of “heavy hammer” build-
ing blocks—specific constructions of multi-key FHE—which do not currently have known
implementations, making it difficult to envision practical deployments.

The exploration of alternative approaches to secure computation serves several fundamental
goals. First, discovering new theoretical foundations often reveals unexpected connections
between primitives and leads to more efficient constructions—as exemplified by how different
approaches to public-key encryption ultimately enabled diverse post-quantum candidates to
many cryptographic primitives [BL17,ABC+24].

Second, different constructions often have complementary advantages: while some maxi-
mize asymptotic efficiency, others might offer better concrete performance for specific use
cases. The ability of constructing the same primitives from a diverse set of cryptographic
assumptions typically improves the available options for obtaining practical constructions
(Chapters 2 and 3 of this thesis are a direct testimony to this claim).

Third, understanding the minimal assumptions necessary for secure computation helps
identify the true boundaries between feasible and infeasible protocols, and what makes certain
primitives or assumptions especially powerful and worthwhile of further study. While spooky
encryption provides an elegant solution to on-the-fly secure computation, the history of
cryptography shows that initial feasibility results often lead to a rich tapestry of alternative
approaches, with the alternatives uncovering surprising implications and applications.

For instance, Gentry’s original feasibility result for building FHE [Gen09] was based
on specific ideal lattice assumptions and not practical. It was only the followup work
of Brakerski and Vaikuntanathan [BV11] that constructed FHE from the standard LWE
assumption and eventually paved the way for concretely-efficient schemes. In turn, these
alternative approaches led to an explosion of lattice-based cryptography [Pei15], enriched our
theoretical understanding of the LWE assumption, and resulted in many practical schemes
(e.g., [CLP17,HS20,BBB+22]). Similarly, finding new approaches for constructing on-the-fly
secure computation promises to unlock both theoretical and practical advances.

1.6 Thesis Overview

This thesis explores new theoretical and practical frontiers in secure computation. Our
investigation serves to achieve two main goals: (1) advancing the foundations of secure
computation and its broader connections to theoretical cryptography, and (2) developing
more practical protocols for real-world deployment.

Part I. In the first part of this thesis, we demonstrate that certain restricted, yet still impor-
tant, forms of on-the-fly computation can be achieved using lightweight primitives offering

27



concretely-efficient implementations. These results serve to advance both our theoretical
understanding and practical implementations, and have immediate applications to large-scale
secure computation involving many parties. Moreover, our constructions and open-source
implementations significantly advance the state-of-the-art in terms of performance.

Part II. In the second part of this thesis, we show that spooky encryption is not necessary to
build on-the-fly secure computation for general function classes through new approaches from
a variety of standard assumptions. Our constructions significantly advance our theoretical
understanding of on-the-fly secure computation for complex functions and resolve several
open problems along the way. These contributions lay the groundwork for future advances in
both theory and practice.

Part III. In the third part of this thesis, we explore the frontier of what was known to be
possible, even when assuming powerful building blocks like spooky encryption. We show that
we can construct input succinct on-the-fly secure computation, which introduces an important
succinctness requirement (and thus is a stronger primitive than spooky encryption) and which
implies other powerful primitives in cryptography, such as trapdoor hash functions [DGI+19],
rate-1 FHE [BDGM19,GH19], correlation-intractable hash function [CGH98], and more. Our
formalizations and constructions push the round and communication efficiency of secure
computation to the limit, and pave the way for new research directions.

Overall, this thesis opens many promising new directions for future research. On the
theoretical side, our results raise intriguing questions about the minimal assumptions necessary
for various forms of secure computation and other important cryptographic objects. On the
practical side, our results provide new approaches for building efficient protocols tailored to
specific real-world scenarios. More broadly, our results demonstrate how theoretical advances
in cryptography can directly enable practical improvements in privacy-preserving computation.
In sum, this thesis chips away at the current barriers limiting widespread deployment of
secure computation by aligning more closely with the availability assumptions on the Internet.

1.7 Thesis Results

The thesis is divided into three parts, covering primitives on the “low-end” of cryptographic
primitives, which come with efficient implementations, to the “high-end” of cryptographic
primitives that push the frontier of what was previously known to be possible—even from
powerful primitives like spooky encryption.

In the following sections, we overview the main results in this thesis and how they pertain
to on-the-fly secure computation. A technical overview providing in-depth details on each of
these results can be found in the corresponding chapter.

1.7.1 Results in Part I

The first part of this thesis consists of two chapters (Chapters 2 and 3) and covers new tools
with applications to practical (i.e., concretely efficient) secure computation. Chapter 2 builds
constrained pseudorandom functions—an important cryptographic primitive with applications
to secure computation [Ria24]—from a variety of assumptions that enable concretely-efficient
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implementations. In Chapter 3, we directly build upon the results from Chapter 2 to realize
on-the-fly secure computation for oblivious transfer extension, an important building block
in computation protocols.

Results in Chapter 2

Pseudorandom functions (PRFs) are a foundational tool in cryptography and allow a party
with a short key K to produce strings that are computationally indistinguishable from
random. A useful extension to standard PRFs is the notion of a constrained PRF (CPRF)
[BW13,KPTZ13,BGI14]. At a high level, CPRFs are PRFs that allow generating a constrained
key K ′ from the master key K, determined with respect to a predicate. The constrained key
K ′ can be used to evaluate the PRF on all inputs that satisfy the predicate. However, for
all other inputs (i.e., that do not satisfy the predicate) the PRF evaluation under K must
appear pseudorandom, even conditioned on the constrained key.

In the last decade, CPRFs have seen diverse applications in secure computation [BGI17,
BCG+19a, BGIK22, BCM+24] and cryptography more broadly. To date, existing CPRF
constructions can be classified into two groups: efficient constructions for very simple
constraint predicates and purely theoretical constructions for general predicates. In Chapter 2,
we make progress on bridging this gap by building concretely-efficient constrained PRFs for
inner-product constraint predicates from a variety of assumptions under a unified framework.

Contributions. The focus of Chapter 2 is building a framework for constructing CPRFs
from the well-studied notion of related-key-attack (RKA) secure PRFs [BK03]. This gives
us a diverse set of assumptions from which we can instantiate CPRFs for inner-product
constraint predicates. Using this framework, we show constructions of CPRFs for inner-
product predicates either unconditionally in the random oracle model or from several standard
assumptions. In particular, we show instantiations from the decisional Diffie–Hellman (DDH)
assumption, the variable-density learning parity with noise (VDLPN) assumption [BCG+20a],
and under the minimal assumption that one-way functions exist. The results push both
our theoretical understanding on CPRFs, as well as the state-of-the-art when it comes to
concrete efficiency. Overall, Chapter 2 helps to shed light on the core building blocks and
assumptions that can be used to construct CPRFs and provides several avenues for future
work. We summarize the main results in the following informal theorem:

Theorem 1.7.1 (Informal). There exist CPRFs supporting inner-product constraint predicates
under either (1) the random oracle model, (2) the DDH assumption, or (3) the VDLPN
assumption. Furthermore, if restricted to a polynomial domain, there exist CPRFs supporting
inner-product constraint predicates assuming that one-way functions exist.

Our constructions in Chapter 2 result in the first practical CPRFs for inner-product predi-
cates. All prior approaches for constructing CPRFs for inner-product predicates either required
powerful assumptions [DKN+20] (which were known to be sufficient to instantiate CPRFs
for general constraint predicates), or used computationally-inefficient primitives [CMPR23].2
We provide an open-source implementation for two of our constructions and demonstrate
concrete efficiency on a range of parameters.

2In a concurrent and independent work, Bui et al. [BCM+24] constructed a CPRF for a slightly more
general predicate class they call “inner-product membership,” using a non-standard variant of power-DDH.
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Theorem 1.7.2 (Informal). There exists a concretely-efficient CPRF supporting inner-product
constraint predicates either in the random oracle model or under the DDH assumption.

We believe that our techniques may help to understand the minimal ingredients necessary
for building CPRFs and will be useful in real-world applications.

Open questions. The results in Chapter 2 raise the following open questions:

Question 1. Is it possible to construct CPRFs for general predicates from RKA-secure PRFs?

The results from Chapter 2 focus exclusively on inner-product predicates, capture all
linear functions of the constraint as well as predicates described by constant-degree polyno-
mials. A very intriguing open problem is extending this class to inner-product membership
predicates [BCM+24], which capture a slightly more powerful predicate class. Similarly, it
is conceivable that techniques from Couteau, Meyer, Passelègue, and Riahinia [CMPR23],
which realizes constrained PRFs from homomorphic secret sharing, can be combined with
the ideas from Chapter 2 to build concretely-efficient CPRFs supporting NC1 predicates.

Question 2. Is it possible to construct suitable RKA-secure PRFs from more assumptions to
instantiate our framework with?

A related question is whether there exist other constructions of RKA-secure PRFs that
are suitable to instantiate our current framework. While we have shown a diverse set of
instantiations, new constructions of RKA-secure PRFs will yield new instantiations of CPRFs.

Question 3. Do CPRFs for inner-product predicates have other practical applications, aside
from those described in Chapter 3?

In Chapter 3, we heavily exploit the concrete efficiency of the CPRFs constructed from
Chapter 2 to realize oblivious transfer extension. A natural question is whether other practical
applications of CPRFs with inner-product constraint predicates exist. While inner-product
predicates are relatively weak, the lack of concretely-efficient constructions is arguably a factor
in the dearth of existing applications. In particular, CPRFs for puncturing constraints—which
are one of the few constraint predicates with efficient implementations—have found numerous
practical applications (e.g., [BMO17,SYL+18,SGRR19,BBMHS22,MZRA22,BBD+23,LP23,
Fen23]). Given that we already have one practical application in Chapter 3, we believe that
more concrete applications for CPRFs will follow.

Question 4. Is it possible to construct CPRFs for inner-product predicates from the minimal
assumption that one-way functions exist?

This last question is partially resolved in Chapter 2, where we show that a CPRF for inner-
product predicates can be constructed from one-way functions by (1) restricting the domain
to be polynomial in size with respect to the security parameter and (2) sacrificing concrete
efficiency (the parameters of the scheme become unwieldy making it purely of theoretical
interest). A very interesting open question is whether it is possible to resolve one or both of
these limitations associated with our construction. Indeed, since minimal assumptions often
also translate to practical efficiency (by supporting a wider range of instantiations), resolving
this question may also help to realize more efficient constructions.
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Connection to on-the-fly secure computation. The results in Chapter 2 do not directly
pertain to on-the-fly secure computation, however, they become a key building block in
Chapter 3 where we construct oblivious transfer extension supporting an on-the-fly setup.

Results in Chapter 3

Secure computation protocols require a large number of oblivious transfers (OTs) [Rab81].
For example, when using garbled circuits [Yao86], the parties need to perform one OT
per input bit in the garbled circuit. Even worse, in the GMW multi-party computation
protocol [GMW87], each pair of parties need to perform an OT for each AND gate in the
circuit, leading to a significant number of OTs per circuit evaluation.

Since OT is closely related to public-key encryption [GKM+00], the computational cost
of performing each OT is high and, moreover, requires two or more rounds of interaction to
complete. These computation and round complexity costs then directly impact the secure
computation protocol.

To address the practical limitations of having to perform a large number of OTs to realize
secure computation, the work of Beaver [Bea96] (and the efficient construction of Ishai,
Kilian, Nissim, and Petrank [IKNP03]), introduced the notion of OT extension. With an OT
extension, it becomes possible for two parties to cheaply “extend” a small number of OTs
into many (e.g., millions of) OTs using only lightweight symmetric-key operations. These
OTs can then be used to instantiate secure computation as before, but with much lower
computational complexity; in particular, the communication and round complexity now only
depends on the OT extension protocol.

While remarkably computationally-efficient constructions of OT extension exist today
[RR20,Roy22] (capable of extending many millions of OTs per second), these protocols require
interaction, both in the setup phase and in the “extension” phase, which have downstream
effects on the secure computation protocols in terms of the number of rounds and the
communication costs.

Recent work has explored an alternative approach to build non-interactive OT extension
by replacing the interactive setup with a public-key setup [OSY21,BCM+24], where two
parties can compute OT extensions locally, using only each other’s public keys. This allows
any two parties to generate OT extensions on the fly—without interaction—by just using their
public keys, which mirrors the Diffie–Hellman key-exchange. The state-of-the-art protocols
offering such a public-key setup achieve approximately 20, 000 OTs per second [BCM+24],
which is still orders of magnitude slower than traditional (interactive) OT extensions. In
particular, this performance gap comes from the use of public-key operations per extended
OT, which deviates from the classical OT extension [Bea96, IKNP03] protocols where only
symmetric-key operations are used. Moreover, all existing approaches offering a public-key
setup (barring the trivial approach from spooky encryption) require group-based assumptions,
which make them insecure in a post-quantum world.

Contributions. In Chapter 3, we provide a new framework we call QuietOT that results in
the first concretely-efficient OT extension protocols with a public-key setup and plausible
post-quantum security, resolving the open question of Riahinia [Ria24, Question 4]. In fact,
the only prior approach for realizing a plausibly post-quantum-secure construction of OT
extension with a public-key setup was the folklore construction from spooky encryption.
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In QuietOT, after the initial public-key setup (which can be seen as replacing the
“base” OTs with a non-interactive, public-key setup), two parties can perform a practically
unbounded number of OTs using only cheap, symmetric-key primitives and only 7 to 33
bits of communication per transferred bit. In contrast, all other approaches require public-
key operations for each OT [OSY21,BCM+24] (including the folklore approach via spooky
encryption). With QuietOT, we can perform over one million OTs per second on commodity
hardware—30 to 100× faster than the state-of-the-art. However, in contrast to communication-
efficient approaches—which only incur 3 bits of communication per bit OT—QuietOT incurs
slightly more communication: 7 to 33 bits per bit OT. We note that fast OT extension
protocols, which do not offer a public-key setup, incur 32 bits or more per bit OT [Roy22],
making QuietOT competitive.

Theorem 1.7.3 (Informal). Assuming the existence of a suitable weak PRF candidate, there
exists a concretely-efficient OT extension with a public-key setup and plausible post-quantum
security in the random oracle model.

We realize the public-key setup for QuietOT from the ring learning with errors (RLWE)
assumption, which gives us plausible post-quantum security. The public-key setup generalizes
to on-the-fly secure computation supporting linear functions (e.g., inner products) [OSY21,
CZ22,BCM+24], which we believe may be of independent interest.

Lemma 1.7.1 (Informal). Under the RLWE assumption, there is a public-key setup protocol
for the OT extension protocol from Theorem 1.7.3.

As an immediate application of QuietOT, we show that it can be used to reduce the
communication overhead in multi-party computation protocols where parties engage in
pairwise secure computations by allowing parties to reuse their public keys across computations
(cf. the discussion in Section 1.3.1). As an independent contribution, we formalize the notion
of multi-instance security for OT extension with a public-key setup—a crucial property that
was overlooked in prior work and essential for secure composition within larger protocols.

Theorem 1.7.4 (Informal). QuietOT enables communication-efficient pairwise secure com-
putation with a large number of parties.

QuietOT also yields the first two-round OT extension protocol from a nearly-black-box
use of symmetric-key primitives. In particular, QuietOT makes black-box use of an inner-
product membership PRF [BCM+24], a variant of a standard PRF which is not implied by
a black-box use of a one-way function (in contrast to standard PRFs), but is nonetheless
a “Minicrypt”-style [Imp95] assumption with many candidates fitting the criteria. As such,
QuietOT partially circumvents the impossibility result of Garg, Mahmoody, Masny, and
Meckler [GMMM18] for black-box two-round OT extension from black-box use of one-way
functions.

Theorem 1.7.5 (Informal). Assuming the existence of an inner-product membership PRF,
there exists a two-round OT extension protocol in the random oracle model.

Connection to on-the-fly secure computation. The results in Chapter 3 directly pertain
to on-the-fly secure computation by allowing two parties to generate OT instances non-
interactively using only each other’s public keys; à la Diffie–Hellman. Indeed, this model
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is captured by an on-the-fly secure computation restricted to computing OT instances and
features the same useful properties discussed in Section 1.3.

Open questions. The results in Chapter 3 raise the following open questions:

Question 5. Is it possible to construct an OT extension protocol with a public-key setup,
plausible post-quantum security, and optimal communication overhead?

The main limitation of the results in Chapter 3 is that we pay a small amount of extra
communication per OT (e.g., 7 bits per OT instead of the optimal 3 bits per OT). Silent
OT extension protocols (“silent” refers to optimal communication [BCG+19b]) that also
offer a public-key setup (e.g., [OSY21,BCM+24]) currently require public-key operations
per OT and are not post-quantum secure. Therefore, managing to find a way to reduce the
communication overhead in QuietOT is an interesting open problem.

Question 6. Is it possible to construct a maliciously-secure OT extension protocol with a
public-key setup?

The QuietOT framework is realized in the semi-honest model, which is also the model of
prior work for OT extension protocols with a public-key setup. An important open problem
is constructing a maliciously-secure protocol while still keeping the public-key setup and
efficiency features.

Question 7. Is it possible to construct an OT extension protocol with a public-key setup that
is as concretely-efficient as traditional OT extension protocols?

Even though QuietOT can generate a million OT extensions per second, it is still roughly
30× slower compared to traditional OT extension protocols (which have no public-key setup).
Closing this gap, by either further optimizing QuietOT or finding alternative approaches, is
an interesting open problem.

Bibliographic notes

The results in Part I are based on the following works:

• The results in Chapter 2 are based on “Constrained Pseudorandom Functions for Inner-
Product Predicates from Weaker Assumptions” [SS24a], a single-author paper that
appeared at Asiacrypt 2024.

• The results in Chapter 3 are based on “QuietOT: Lightweight Oblivious Transfer with
a Public-Key Setup” [CDD+24], a joint work with Geoffroy Couteau, Lalita Devadas,
Srinivas Devadas, and Alexander Koch that appeared at Asiacrypt 2024.

Artifact evaluations. The open-source implementations [SS24b,SS24c] associated with the
results from Chapters 2 and 3 underwent artifact evaluations at Asiacrypt 2024 to receive
“Artifact Available,” “Artifact Functional,” and “Artifact Reproducible” badges.

1.7.2 Results in Part II

The second part of this thesis consists of two chapters (Chapters 4 and 5) and covers new tools
with theoretical applications by introducing new approaches to on-the-fly secure computation
without using spooky encryption.
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Chapter 4 introduces the notion of a distributed point function with a non-interactive
setup, which has important applications in secure computation, and which we realize from a
variety of standard assumptions.

Chapter 5 formalizes the notion of multi-key homomorphic secret sharing and presents
the first construction of such a primitive from a group-based assumption, opening a new
approach for on-the-fly secure computation for a large class of functions.

Results in Chapter 4

Distributed point functions (DPFs) [GI14, BGI15] have become a fundamental building
block in modern secure computation, enabling efficient protocols for private information
retrieval [WYG+17,SSLD22], secure database queries [DFL+20,DRPS22], and private ana-
lytics [BBC+21,MPD+24,MST24,RZCGP24]. Their significance is particularly evident in
multi-party computation protocols, where they enable communication-efficient generation
of correlated randomness [BCGI18, SGRR19, BCG+19b] and serve as key components in
applications ranging from distributed oblivious RAM [Ds17, VHG23] to private machine
learning [RTPB22,YJG+23,JGB+24], making them essential for both theoretical advances
and practical implementations in cryptography.

However, classical DPFs are designed to operated in a “trusted dealer” regime where a
trusted party generates the shares of the DPF and distributes them to the evaluating parties.
In many applications of DPFs, there is no trusted dealer entity, and two parties need to
generate the shares themselves by emulating the dealer using a secure computation protocol.
Using state-of-the-art protocols for this task requires multiple rounds [Ds17,BGIK22], and
the only alternative approach is to use spooky encryption.

Contributions. In Chapter 4, we initiate the study of non-interactive distributed point
functions (NIDPFs), which replace the trusted dealer entity with a non-interactive setup.
This follows a similar paradigm to how we replaced the interactive oblivious transfers with
a public-key setup in Chapter 3. Two immediate applications of NIDPFs are to enable
on-the-fly secure computation for a variety of functions, including the equality function and
pseudorandom correlation functions. Both of these applications are important to building
communication-efficient secure computation protocols.

In addition to formalizing the notion of NIDPFs, we give constructions from a variety of
standard cryptographic assumptions including the decisional composite residuosity (DCR)
assumption, the symmetric external Diffie–Hellman (SXDH) assumption in pairing groups,
the quadratic residuosity (QR) assumption, the enhanced DDH (EDDH) assumption in class
groups, and a strong variant of the LWE assumption. These constructions achieve a total
communication of O(N2/3) for domain size N , which results in sublinear communication in
the domain size (a necessary feature for DPFs).

Theorem 1.7.6 (Informal). There exists an NIDPF scheme achieving O(N2/3) communica-
tion for domain size N , ignoring polynomial factors in the security parameter, under either
(1) the DCR assumption, (2) the QR assumption, (3) the EDDH assumption in class groups,
or (4) the SXDH assumption in pairing groups.

As an independent contribution, we show that our techniques for building NIDPFs
generalize to succinct on-the-fly secure computation for a restricted class of functions, which
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is of independent interest. In particular, we show that a generalization of our NIDPF
construction yields the following theorem:

Theorem 1.7.7 (Informal). Let P be the set of constant-degree polynomials. There exists an
on-the-fly secure computation protocol, with input-succinct communication in the first round,
for computing functions of the form P (x, f(y)), where P ∈ P and f ∈ NC1, one party has a
(large) input x, and the other party has a (short) input y. The communication in the first
round is o(|x|) +O(|y|), ignoring polynomial factors in the security parameter.

Indeed, Theorem 1.7.7 captures flavors of on-the-fly secure computation that becomes
the topic of study in both Chapter 5 and in Chapter 6, and were not previously known
from any assumption—not even using spooky encryption. Elaborating, in Chapter 5, we
show how to build on-the-fly secure computation for functions in the class NC1 but without
succinctness in one of the parties’ inputs. And in Chapter 6, we show how to build on-the-fly
secure computation for all functions (from stronger assumptions compared to Chapter 5)
with full succinctness in one of the parties’ inputs. As such, the generalized construction
from Chapter 4 lies somewhere in between the two results and, interestingly, can be realized
from a wider range of assumptions.

Open questions. The results in Chapter 4 raise the following open questions:

Question 8. Is it possible to construct concretely-efficient NIDPFs?

The constructions of NIDPFs in Chapter 4 are currently only of theoretical interest since
they require a large number of public-key operations. This is in contrast to standard DPFs
which can be realized from cheap, symmetric-key primitives. Finding new constructions of
NIDPFs that are concretely efficient is a fascinating open problem with important real-world
applications. However, resolving this open problem will likely necessitate new techniques.

Question 9. Can the O(N2/3) communication cost be brought down to O(logN)?

Existing interactive protocols for setting up a DPF between two parties require optimal
O(logN) communication (ignoring factors in the security parameter). This makes the O(N2/3)
communication overhead of our NIDPF constructions suboptimal and rather unnatural, which
suggests it should be possible to improve succinctness with new techniques.

Question 10. Can the generalization to succinct on-the-fly computation be extended to support
a larger class of functions under the same group-based assumptions?

The generalization in Theorem 1.7.7 is restricted to an “unbalanced” class of functions
supporting any function in NC1 for one party’s input but only constant-degree polynomials for
the other party’s input. Finding ways to balance the class of functions that can be computed
on each input, or otherwise extend the class of functions supported by this generalization,
are interesting open questions. We note that this question is resolved in Chapter 6 under
stronger assumptions, namely the learning with errors assumption or assuming the existence
of indistinguishability obfuscation.

Results in Chapter 5

Homomorphic secret sharing (HSS) [BGI16] enables parties to locally evaluate functions
over secret-shared inputs, serving as a distributed analogue of fully homomorphic encryption
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(FHE) [Gen09] (cf. Section 1.4). While HSS schemes have found numerous applications
in cryptography, including secure computation with sublinear communication and private
information retrieval (see Pierre Meyer’s PhD thesis [Mey23] and Mahshid Riahinia’s PhD
thesis [Ria24] for detailed discussions on many applications of HSS), existing constructions
require a correlated setup between the parties. This setup requirement impacts the practical
utility of HSS, particularly in downstream applications.

Contributions. In Chapter 5, we formalize the notion of multi-key homomorphic secret
sharing (MKHSS), which eliminates the need for any correlated setup. In particular, given only
a common reference string (CRS), any two parties can directly secret share their inputs with
one another and perform local computations, similar to how multi-key FHE [LTV12,MW16]
extends standard FHE to the multi-party setting without requiring a prior setup. While
MKHSS is readily implied by spooky encryption [DHRW16], constructing it from non-lattice
assumptions presents significant technical challenges and was an open problem prior to our
work work described in this thesis.

Our approach results in the first MKHSS constructions from a group-based assump-
tion supporting NC1 computation, specifically the decisional composite residuosity (DCR)
assumption, which we capture in the following informal theorem:

Theorem 1.7.8 (Informal). Under the DCR assumption, there exists a two-party, MKHSS
scheme for computing functions in the class NC1.

Our construction of MKHSS has several immediate applications to secure computation
and beyond. Most notably, it immediately implies a sublinear, two-round, two-party secure
computation protocol for NC1 circuits from non-lattice assumptions, resolving a long-standing
(folklore) open problem of realizing secure computation in two rounds and sublinear commu-
nication without resorting to multi-key FHE.

Theorem 1.7.9 (Informal). Under the DCR assumption, there exists a sublinear, two-round,
two-party secure computation protocol for NC1 computations.

We also show that our MKHSS construction can be used to build the first attribute-
based non-interactive key exchange supporting NC1 predicates in the standard model. This
significantly generalizes password-based non-interactive key exchange, allowing parties to
derive a shared key if their secret attributes satisfy a public predicate. Unlike many interactive
constructions of key exchange, that often suffer from subtle security flaws [JRX24], our non-
interactive approach yields a conceptually simple construction with a straightforward argument
for security.

Theorem 1.7.10 (Informal). Under the DCR assumption, there exists an attribute-based
non-interactive key exchange protocol supporting predicates in NC1.

Finally, we show how MKHSS enables the first public-key pseudorandom correlation
functions (PCFs) for any NC1 correlation from non-lattice assumptions. This leads to
significant improvements in silent multi-party computation, achieving O(p) communication
complexity in the preprocessing phase for p-party computation. This improves upon all
previous protocols not based on spooky encryption, which required Ω(p2) communication.
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Theorem 1.7.11 (Informal). Let C be an arithmetic circuit with n inputs, s multiplication
gates, and m outputs, instantiated over a ring R. Under the DCR assumption, for any
number of parties p, there exists a p-party secure computation protocol for computing C in
the preprocessing model, with the following communication complexity:

• In the preprocessing phase: O(p) bits in a single broadcast round.

• In the online phase: p · (2s+m) ring elements.

The protocol is secure against a passive adversary corrupting any strict subset of parties.

Open questions. The results in Chapter 5 raise a number of open questions:

Question 11. Are there practical applications for MKHSS restricted to low-depth circuits?

In Chapter 5, we show that the construction is potentially implementable and perhaps
concretely practical for low-depth computations (requiring roughly 100ms per multiplication
gate in the circuit). An interesting question, therefore, is finding concrete applications
where a low-depth circuit is sufficient. We believe that implementing the attribute-based
non-interactive key exchange to support fuzzy password-based key exchange (e.g., where the
“password” is a biometric) could be one such application.

Question 12. Is it possible to construct a multi-party MKHSS scheme?

The recent work of Dao, Ishai, Jain and Lin [DIJL23] provides an elegant construction
of multi-party (not multi-key) HSS from the sparse learning parity with noise assumption.
All prior HSS schemes, barring spooky encryption, were only suitable for a small number of
parties (typically only supporting two parties). As such, finding ways of potentially extending
their approach to also be multi-key is an interesting open question. In particular, such a
result would immediately imply a sublinear, two-round multi-party computation, which we
still do not know how to achieve without using multi-key FHE [MW16].

Bibliographic notes

The results in Part II are based on the following works:

• The results in Chapter 4 are based on “Non-Interactive Distributed Point Functions”
[BDSS25], a joint work with Elette Boyle and Lalita Devadas, which is to appear at
PKC 2025.

• The results in Chapter 5 are based on “Multi-key Homomorphic Secret Sharing”
[CDH+25], a joint work with Geoffroy Couteau, Lalita Devadas, Aditya Hegde, and
Abhishek Jain, which is to appear at Eurocrypt 2025.

1.7.3 Results in Part III

The third part of this thesis consists of Chapter 6 and explores the limits of secure computation
by showing that it is possible to approach the optimal insecure solution in terms of rounds
and communication complexity, even when one party has a very large input.
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Results in Chapter 6

In a two-party secure computation setting where one party has a large input, constructing
protocols with minimal communication and rounds is challenging. The natural insecure
protocol—where the party with small input sends it to the party with the large input, who
then computes the function and broadcasts the result—achieves optimal communication, but
clearly fails to achieve privacy for the senders input. This raises a fundamental question: can
we design secure protocols that preserve the communication efficiency, round complexity, and
non-interactive disclosure properties of this insecure protocol? The answer to this question is
not even known from powerful primitives like spooky encryption.

Contributions. In Chapter 6, we introduce simultaneous-message and succinct (SMS)
secure computation. In an SMS scheme, two parties, where one party has a large input,
simultaneously exchange encoded values in the first round. Following this exchange, they can
locally decode secret shares of the result. The key requirements are: simultaneity, succinctness,
and additive reconstruction.

Simultaneity requires the parties to exchange messages simultaneously, where the only
prior setup allowed is a common reference string. Succinctness requires the communication
to be sublinear in the large party’s input length (which also implies succinctness in the
circuit description). And additive reconstruction ensures that parties can publicly disclose
the output in the second round.

Even with a primitive as powerful as spooky encryption, it was not known how to construct
a protocol satisfying all three of these requirements. In particular, while spooky encryption
gives succinctness in the circuit description, the total communication still grows with the size
of the inputs, which SMS does not allow. As such, the formalization of SMS captures the
frontier of secure computation.

In Chapter 6, we show that we can construct SMS from standard assumptions and uncover
several interesting connections to a number of powerful cryptographic primitives. Our main
results on building SMS are captured in the following informal theorem:

Theorem 1.7.12 (Informal). Let Alice be the party with the large input X, and Bob be the
party with the small input y, and let f be a function in the family supported by the SMS
scheme. There exist the following constructions of SMS schemes:

• Under the LWE assumption (with superpolynomial modulus-to-noise ratio) there exists
an SMS scheme for all efficiently-computable functions, where:

– Alice’s encoding is of size |f(X, y)|2/3 · poly(λ).
– Bob’s encoding is of size (|y|+ |f(X, y)|2/3) · poly(λ).

I.e., the encodings are fully independent of |X|.
• Assuming sub-exponentially-secure indistinguishability obfuscation, somewhere statis-

tically binding hash functions, and other standard assumptions, there exists an SMS
scheme for all efficiently-computable batch functions, where for any batch size L,

– Alice’s encoding is of size poly(λ).

– Bob’s encoding is of size poly(λ, |f |, logL).
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I.e., the encodings are at most logarithmically dependent on the batch size but can be
linear in the function description.

Applications of SMS. We show that SMS schemes have several immediate applications.
We give:

(1) The first trapdoor hash functions (TDH) [DGI+19] for all circuits from LWE, significantly
extending prior constructions of TDH which were limited to linear functions.

(2) A generic compiler from any FHE scheme to a rate-1 FHE scheme.

(3) A generic compiler from an SMS scheme to correlation-intractable (CI) hash functions
for efficiently-searchable relations. CI hash functions, in turn, have applications to
zero-knowledge proofs and more (see Alex Lombardi’s PhD thesis [Lom22]).

Finally, we also show that our iO-based construction of SMS for batch functions can be
used to realize a two-round secure computation protocol that is succinct in the output length,
giving an alternative approach to the construction of Hubáček–Wichs protocol [HW15].

Theorem 1.7.13 (Informal). Under the LWE assumption (with a superpolynomial modulus-
to-noise ratio) there exists (1) a trapdoor hash scheme for all circuits, (2) any FHE scheme
can be generically transformed into a rate-1 FHE scheme using SMS, and (3) there exists
a generic transformation from SMS to correlation-intractable hash functions for efficiently-
searchable relations. Moreover, under sub-exponentially-secure iO, there exists a two-round
secure computation protocol with communication sublinear in the output length.

Open questions. The results in Chapter 6 raise the following open questions:

Question 13. Is it possible to improve the dependence on the output length in Theorem 1.7.12
from ϵ = 2/3 to arbitrary ϵ?

Our construction of SMS from LWE achieves succinctness (in the first round) in both the
input and output length. However, the dependence on the output length is only modestly
sublinear; improving the succinctness in the output length is an interesting open problem.
We note that Question 13 is related to Question 9, since the underlying tools, limiting
succinctness to ϵ = 2/3, are the same in both cases.

Question 14. Is it possible to construct an SMS scheme for all functions from iO?

Our construction of SMS from iO only supports batch functions, where the same function
is applied over a (large) batch of inputs. An important open question is whether it is possible
to construct SMS for all functions, similarly to the LWE-based approach. In particular, one
of the differences between the LWE-based construction and the iO-based construction of
SMS, is that the function is fixed at encoding time in the former but not the latter. This
would make an iO-based construction supporting all functions potentially more powerful
compared to our LWE-based scheme. Therefore, the dual question is asking whether there
are there barriers to achieving a “function-adaptive” SMS scheme for all functions.

Question 15. What other connections exist between SMS schemes and existing cryptographic
primitives?
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In Chapter 6, we already uncover some powerful applications and connections (cf. Theo-
rem 1.7.13). An intriguing open problem is finding more connections between the SMS
abstraction and other cryptographic primitives. In particular, TDH supporting linear
predicates has seen numerous applications across cryptography (e.g., [JK20,JJ21,HJKS22,
DGKV22,BDSZ24]); understanding what power is gained from TDH supporting all efficiently-
computable functions is an exciting open question.

Question 16. Can our constructions of SMS schemes be extended to a multi-party setting?

Our constructions are focused on the two-party setting. This is the natural scenario to
consider when there is one party with a large input. In particular, it is information-theoretically
impossible to construct an on-the-fly secure computation protocol with succinctness in two
or more inputs simultaneously. However, it is conceivable to imagine a scenario where many
parties have small inputs and only one party has a large input. In this case, it is possible
that our techniques can be extended to a multi-party setting via a similar approach to the
one used to extend spooky encryption from two parties to multiple parties [DHRW16].

Bibliographic notes

The results in Chapter 6 are based on “Simultaneous-Message and Succinct Secure Computa-
tion” [BJSSS25], a joint work with Elette Boyle, Abhishek Jain, and Akshayaram Srinivasan,
which is to appear at Eurocrypt 2025.
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Part I

New Tools with Practical Applications
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Chapter 2

Constrained Pseudorandom Functions for
Inner-Product Predicates

Summary

In this chapter, we provide a novel framework for constructing constrained pseudorandom
functions (CPRFs) with inner-product constraint predicates, using ideas from subtractive
secret sharing and related-key-attack security.

Our framework can be instantiated using a random oracle or any suitable related-key-attack
(RKA) secure pseudorandom function. This results in three new CPRF constructions:

(1) An adaptively-secure construction in the random oracle model.

(2) A selectively-secure construction under the decisional Diffie–Hellman (DDH) assumption.

(3) A selectively-secure construction with a polynomial domain under the assumption that
one-way functions exist.

All three instantiations are constraint-hiding and support inner-product predicates, leading
to the first constructions of such expressive CPRFs under each corresponding assumption.
Moreover, while the OWF-based construction is primarily of theoretical interest, the random
oracle and DDH-based constructions are concretely efficient, which we show via an open-source
implementation.
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2.1 Introduction

Constrained pseudorandom functions (CPRFs) [BW13,KPTZ13,BGI14] are pseudorandom
functions (PRFs) with a “default mode” associated with a master key msk, and a “constrained
mode” associated with a constrained key csk defined over a predicate C. The constrained
key csk can be used to compute the same “default mode” value of the PRF for all inputs x
where C(x) = 0. However, for all inputs x where C(x) ̸= 0, the constrained key csk can only
be used to compute a pseudorandom value that is computationally independent of the PRF
value under msk.

In the basic definition of CPRFs, the constrained key csk can reveal the predicate C (i.e.,
all inputs x where C(x) = 0). For example, the GGM PRF [GGM86], admits puncturing
constraints [BW13,KPTZ13,BGI14], where the constraint C is a point function that outputs 0
on all-but-one input. In the GGM PRF, csk reveals the punctured point to the constraint key
holder. An enhanced definition of CPRFs, first formalized by Boneh, Lewi, and Wu [BLW17]
(PKC 2017), requires csk to hide C, and is much more challenging to achieve, even for simple
constraints [BLW17,CC17,DKN+20].

Constructing CPRFs for expressive constraint classes under standard assumptions has
proven to be a challenging task. Several constructions exist for simple constraint classes, such
as prefix-matching, bit-fixing, and constraints expressible by t-CNF formulas (with constant
t) under various assumptions, including the minimal assumption that one-way functions exist
(see the excellent survey of related works in [DKN+20, Appendix A]). However, even slightly
more expressive constraints, such as constraints represented by inner products, constant-
degree polynomials, or circuits in NC1 (the class of functions computable by logarithmic-depth
circuits), appear to be much more challenging to construct from standard assumptions [CC17,
AMN+18,CVW18,CMPR23].

In a recent work, Couteau, Meyer, Passelègue, and Riahinia [CMPR23] (Eurocrypt
2023) were able to realize CPRFs for NC1 (but without the constraint-hiding property)
from the Decision Composite Residuosity (DCR) assumption, as well as constraint-hiding
CPRFs with inner-product constraint predicates, through an elegant connection to homo-
morphic secret sharing [BGI16, BCG+17, BKS19, OSY21]. In contrast, constraint-hiding
CPRFs for NC1 are only known under LWE [CC17,CVW18,PS18] (or indistinguishability
obfuscation [CRV16,BLW17]) and can even imply indistinguishability obfuscation in certain
cases [CC17]. Therefore, the result of Couteau et al. [CMPR23] significantly pushes the con-
straint expressivity of CPRFs under the Decisional Composite Residuosity (DCR) assumption.
Prior to their result, the only known constructions for constraint-hiding CPRFs with suffi-
ciently powerful constraint predicates to evaluate inner-product constraints required either the
learning with errors (LWE) assumption or non-standard assumptions [BLW17,CC17,PS18].
However, in contrast to other constraint predicates that can be realized from one-way func-
tions [BW13,KPTZ13,BGI14,DKN+20], there is still a significant gap in our understanding
of which assumptions are necessary for realizing CPRFs for more expressive constraint classes,
such as inner-product and NC1 predicates.

Motivation. In this chapter, we revisit the assumptions required to construct constraint-
hiding CPRFs for inner-product constraint classes. This is motivated by the existence of
CPRFs for NC1 from Diffie–Hellman-style assumptions [AMN+18], as well as constraint-hiding
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CPRFs for bit-fixing and (constant sized) t-CNF formulas from the minimal assumption
that one-way functions exist [DKN+20]. Understanding what assumptions are required
to realize sufficiently expressive CPRFs can shed light on realizing closely related “high-
end” cryptographic primitives such as functional encryption [CC17], searchable symmetric
encryption [BLW17], attribute-based encryption [AMN+18], and even obfuscation [CC17].
Specifically, in this chapter, we ask the following question.

Under what assumptions do constrained PRFs with inner-product predicates exist?

The motivation for studying inner-product constraints is that they can be used to construct
CPRFs with constraint predicates represented by constant-degree polynomials and extensions
thereof (see Section 2.8 for details), and are of interest both as a theoretical object and as a
practical tool (see Chapter 3).

From a theoretical lens, the fact that inner-product predicates lie somewhere in between
t-CNF and NC1 predicates in terms of expressivity, motivates the study of CPRFs for inner-
product predicates under weaker assumptions, with the goal of potentially finding new
techniques that could lead to more expressive constraints under weaker assumptions. This
was also the motivation behind Attrapadung et al. [AMN+18] and other works examining the
assumptions required to build CPRFs. Indeed, Davidson et al. [DKN+20] prove that CPRFs
for inner-product predicates imply CPRFs for constant t-CNFs predicates (see [DKN+20,
Appendix C] and Section 2.8), which in turn imply CPRFs for bit-fixing predicates.

From a practical perspective, the current lack of any concretely efficient CPRF con-
structions for inner-product predicates,1 motivates the quest of finding assumptions under
which efficient constructions can be realized. This is especially motivated by the hope that
concretely efficient constructions of CPRFs for inner-product predicates will lead to interesting
real-world applications, as has been the case for the concretely efficient constructions of
CPRFs admitting puncturing constraints (e.g., [RW14,BMO17,SYL+18,SGRR19,BCG+20a,
HK21,BBMHS22,MZRA22,BBD+23,LP23,Fen23]).

Contributions. In this chapter, we make the following three contributions:

A simple framework. We provide a simple framework that exploits the properties of subtractive
secret sharing to construct CPRFs for inner-product predicates. Our framework makes
explicit several ideas that have been used implicitly in many prior works on CPRFs (e.g.,
[BV15,BTVW17,AMN+18,PS18]), and may prove useful in obtaining more results in the
future.

New constructions from new assumptions. We construct the first CPRFs for inner-product
predicates with (1) adaptive security in the random oracle model, (2) selective security under
the decisional Diffie–Hellman (DDH) assumption, and (3) selective security with a polynomial
input domain under the minimal assumption that one-way functions (OWFs) exist. All
three of our results push the frontier of what was previously known theoretically on CPRFs.
Moreover, our constructions are all constraint-hiding by default.

An implementation. Due to the simplicity of our building blocks, we show that our con-
structions result in the first practical constraint-hiding CPRFs under standard assumptions.

1To the best of our knowledge, no constraint-hiding CPRF constructions have been implemented to date.
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We implement and benchmark our constructions, proving that they are concretely efficient.
(All prior constructions of CPRFs for inner-product predicates, including the DCR-based
construction of Couteau et al. [CMPR23], require computationally-expensive machinery,
making them impractical.)

Applications and extensions. Our framework has the following applications and extensions:

(1) More complex predicates. From inner-product constraints, we can build CPRFs for more
complex predicates via generic transformations, including constraints represented by
constant degree polynomials and for the “AND” of d distinct inner-product predicates.
In particular, the latter allows us to construct matrix-product constraint predicates,
where the constraint is satisfied if and only if Ax = 0, for a constraint matrix A and
input vector x.

(2) Lower bounds in learning theory. In learning theory, Membership Query (MQ) learning
provides a model for quantifying the “learnability” or complexity of a certain class of
functions [Val84]. Informally, in the MQ learning framework, a learner gets oracle access
to a function and must approximate the function after making a sufficient number of
queries. Cohen et al. [CGV15] introduce a model they call MQ with Restriction Access
(MQRA), where in addition to black-box membership queries, the learner obtains non-
black-box access to a restricted subset of the function. Obtaining (negative) results on
the learnability of a particular class in the MQRA model can be done using a connection
to constrained PRFs.

We discuss these applications further in Section 2.8.

2.1.1 Related work

In Table 2.1, we summarize known constructions of CPRFs for inner-product predicates
(including existing constructions for more general predicates such as NC1 and P/poly) and
highlight our results.

CPRFs for inner-product predicates. Attrapadung et al. [AMN+18] construct constrained
PRFs for NC1 (which includes inner-product predicates) from the L-decisional Diffie–Hellman
inversion (L-DDHI) in combination with DDH over the quadratic residue subgroup QRp (they
can make their construction adaptively-secure by using a random oracle instead of DDH in
QRp), but their construction is not constraint-hiding. Similarly, Couteau et al. [CMPR23]
shows how to construct CPRFs for NC1 predicates from the DCR assumption through
homomorphic secret sharing (but also fail to achieve constraint privacy). Couteau et al.
additionally show that their techniques can be used to construct a CPRF from DDH with
a polynomially-bounded input domain. CPRFs for more general predicates are known from
multi-linear maps [BW13,BKM17], indistinguishability obfuscation [BZ14,HKW15,BLW17,
HKKW19,AMN+19,DKN+20], and LWE [BV15,CC17,BTVW17,CVW18,PS18], and can be
used to instantiate CPRFs with inner-product constraints under those assumptions.

Constraint-hiding CPRFs for inner-product predicates. Davidson et al. [DKN+20]
(Crypto 2020) construct (weakly) constraint hiding CPRFs for inner-product predicates from
the LWE assumption. Specifically, their construction satisfies a weaker privacy definition, in
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Assumption Security Hiding Predicate Practical Comments
LWE Selective ✓/ ✗ ⊇ NC1 ✗

[AMN+18] L-DDHI Selective ✗ NC1 ✗ L-DDHI in QRp ∧ DDH in G

[AMN+18] L-DDHI Adaptive ✗ NC1 ✗ L-DDHI in QRp ∧ ROM

[DKN+20] LWE Adaptive ✗ IP ✗ Is weakly constraint hiding

[CMPR23] DCR Selective ✓ IP ✗

[CMPR23] DDH Selective ✓ IP ✗ Polynomial input domain

Theorem 2.4.1 ROM Adaptive ✓ IP ✓

Theorem 2.5.2 DDH Selective ✓ IP ✓

Theorem 2.5.4 VDLPN Selective ✓ IP ✗ Only for weak CPRFs

Theorem 2.6.3 OWF Selective ✓ IP ✗ Polynomial input domain

Table 2.1: Related work on CPRFs for Inner-Product (IP) predicates from standard assumptions.
ROM = Random Oracle Model.
DDH = Decisional Diffie–Hellman assumption.
DCR = Decisional Composite Residuosity assumption.
L-DDHI = L-decisional Diffie–Hellman Inversion assumption.
VDLPN = Variable-density Learning Parity with Noise assumption [BCG+20a].

which the adversary does not get access to an evaluation oracle. Constraint-hiding CPRFs
for more general predicates (that include inner-product predicates) are known from the LWE
assumption [BTVW17,CC17,CVW18,PS18] and indistinguishability obfuscation [BLW17].
To the best of our knowledge, Couteau et al. [CMPR23] are the first realize constraint-hiding
CPRFs for inner-product predicates from a non-lattice assumption, specifically from DCR.

One-one CPRFs. Our framework (as well as some prior constructions of CPRFs [AMN+18,
DKN+20, CMPR23]) shares some conceptual similarities to the construction of one-one
constrained PRFs [PTW20]—an information-theoretic primitive that can be viewed as a
CPRF in the “no-evaluation security” model [AMN+18], with applications to conditional
disclosure of secrets. However, their constructions cannot be used to realize the standard
notion of CPRFs from standard assumptions.

2.1.2 Organization

In Section 2.2, we provide a technical overview highlighting the main ideas behind our
framework and constructions. In Section 2.3, we cover the necessary preliminaries on CPRFs
and RKA-secure PRFs. In Section 2.4, we present an adaptively-secure CPRF construction in
the random oracle model. In Section 2.5, we give a general framework for building selectively-
secure CPRFs that we instantiate from RKA-secure PRFs, without the need for a random
oracle. In Section 2.6, we show how to instantiate our framework from one-way functions. In
Section 2.7, we discuss some generic extensions to our framework. In Section 2.8, we provide
some applications. In Section 2.9, we discuss the practical efficiency of our constructions and
benchmark our implementation.
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2.2 Technical Overview

In this section, we provide an overview of our framework and constructions.

Background on CPRFs. Following prior works [BTVW17,CMPR23], for PRF domain X
and a constraint C : X → {0, 1}, we write C(x) = 0 for “true” (authorized), and C(x) ̸= 0
for “false” (unauthorized). CPRFs consist of a master secret key msk, which can be used
to evaluate the PRF on all inputs in the domain. From msk, it must then be possible to
efficiently sample a constrained key csk for a given constraint C, which can be used to evaluate
the PRF on all inputs x in the domain where C(x) = 0. Constraint hiding CPRFs have the
added property that C remains hidden given csk. See Section 2.3 for formal definitions.

2.2.1 Our approach

We now explain the main technical ideas that underpin our framework for constructing CPRFs
for inner-product predicates. We start by explaining how we can use the idea of subtractive
secret sharing to construct a constraint predicate C for inner-product predicates, inspired by
Couteau et al. [CMPR23].

The power of subtractive secret sharing. Subtractive secret shares of a value s, which
we denote by s0 and s1, have the property that s0 − s1 = s (over Z). By splitting s
into two random shares s0 and s1, individually each share is independent of the secret
s. To use subtractive secret sharing to construct CPRFs, the main idea is to exploit the
symmetry between the two shares. Specifically, consider what happens when the secret
s is zero. Because we have that s0 − s1 = 0, it follows that s0 = s1. This symmetry
present in subtractive secret shares has enabled many efficient techniques for distributed
computations [GI14, BGI15, BGI16, BCG+17, BCG+19b, BKS19, BCG+20b, OSY21], and
surprisingly, also applies to CPRFs [CMPR23]. Specifically, consider the inner-product
constraint Cz parameterized by a vector z and defined as Cz(x) = ⟨z,x⟩. Next, denote
subtractive secret shares of the constraint vector z by z0 and z1, such that z0 − z1 = z.
Thanks to the aforementioned symmetry property, for all input vectors x:

• If ⟨z,x⟩ = 0 (i.e., Cz(x) = 0, authorized), then ⟨z0,x⟩ = ⟨z1,x⟩, and

• If ⟨z,x⟩ ≠ 0 (i.e., Cz(x) ̸= 0, unauthorized), then ⟨z0,x⟩ ≠ ⟨z1,x⟩.
In words, the constraint is satisfied if and only if both shares of the inner product are equal.
Moreover, note that z1 can be sampled after z0, because z0 is a random value independent
of the “secret” constraint z. We now describe how we can use these properties of subtractive
secret sharing to construct a CPRF.

Initial attempt (not secure). Our first idea, which unfortunately turns out to be not
secure, is to let the master secret key msk = z0, for a random z0. Then, for a given constraint
vector z, the constrained key is computed “on the fly” as csk = z1, where z1 = z0 − z. The
intuition is that for all x where ⟨z,x⟩ = 0 (i.e., for all authorized x), both the master secret
key and the constrained key can be used to derive the same key k. Specifically, we can simply
let k = ⟨z0,x⟩ = ⟨z1,x⟩. Using the key k, in conjunction with any PRF F , we can define the
output of the evaluation on the input x to be Fk(x). Additionally, for all x where ⟨z,x⟩ ̸= 0
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(i.e., for all unauthorized x), the master key and constrained key derive different PRF keys,
which results in the constrained key outputting a pseudorandom value.

Unfortunately, while this initial attempt provides the necessary correctness properties, it is
not secure for the following two reasons:

(1) the CPRF adversary, knowing the constraint z and given z1 can trivially recover z0
(the master secret key) simply by computing z0 = z1 + z, and

(2) in the case where ⟨z,x⟩ ≠ 0, the derived key is still related to the master key msk, in
that ⟨z1,x⟩ = ⟨z0,x⟩ − ⟨z,x⟩.

Couteau et al. [CMPR23] resolves these two issues by resorting to HSS. In particular,
they only use the value of ⟨z,x⟩ (which each party can compute a share of given z0 and z1,
respectively) as a conditional mask in a HSS computation that computes a PRF. As such,
they require evaluating a PRF inside of HSS which makes their construction impractical.
This is where our approach diverges from the one of Couteau et al. [CMPR23], which we
explain next.

Second attempt (secure). To fix our initial attempt, we must first prevent the adversary
from recovering the full vector z0 (the master secret key) from the constrained key z1, while
still guaranteeing the necessary property that ⟨z0,x⟩ = ⟨z1,x⟩ whenever ⟨z,x⟩ = 0. To
achieve this, we exploit the linearity of inner products. Specifically, let F be a finite field
of order at least 2λ, for a security parameter λ. As before, we let msk := z0, for a random
z0 ∈ Fℓ. However, now we let csk := z1, where z1 := z0 −∆z, for a random scalar “shift”
∆ ∈ F. Notice that when ⟨z,x⟩ = 0,

⟨z0,x⟩ = ⟨z0,x⟩ −∆ ⟨z,x⟩ = ⟨z0,x⟩ −⟨∆z,x⟩
By linearity of
inner products

= ⟨z1,x⟩ ,

which still guarantees that the master secret key and constrained key can be used to derive
the same PRF key k whenever C(x) = 0. Moreover, because ∆ is uniformly random over F
(which has order at least 2λ), z1 cannot be used to recover z0, even with knowledge of the
constraint z, thereby preventing the CPRF adversary from recovering the master secret key
msk from the constrained key csk. Indeed, if the constraint vector is non-zero, there will be
at least one coordinate that is scaled by ∆ preventing the adversary from recovering the full
master key vector.

Now, with the random shift ∆, we ensure that the constrained key csk does not leak the
full master secret key. However, we are still left with the second problem we identified in our
initial attempt: the derived PRF keys are still related to the master secret key, which does
not guarantee that the resulting PRF evaluation is pseudorandom to the adversary. To deal
with this, we can use a random oracle to instantiate a “correlation-resistant” PRF.

Construction in the random oracle model. One simple way to instantiate the CPRF
with correlated keys is to instantiate the PRF with a random oracle H. This forms the
basis for our first construction, which we describe in Section 2.4. In a nutshell, we show
that, if we use the derived key k = ⟨z1,x⟩ with a random oracle H as the PRF, then the
construction Fk(x) := H(k,x) is a secure CPRF. Specifically, the random oracle ensures that
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each evaluation is uniformly random, while still guaranteeing both the master secret key and
the constrained key derive the same k when the constraint is satisfied.

Removing the random oracle with an RKA-secure PRF. To remove the random oracle
requirement, we show that we can use a “special” PRF that remains provably secure when
evaluated with different related keys. Such PRFs are known as Related-Key-Attack (RKA)
secure PRFs [Bih94,BK03] and have been studied extensively [BK03,GL10,BC10,GOR11,
BLMR13,ABPP14,AW14,LMR14,CLWG19,BCG+20a], yielding several constructions to
choose from. This result is rather surprising, since prior works that require notions of
correlation-robustness (e.g., [IKNP03,KS08,PSZ18]) could only be constructed from more
powerful assumptions. In contrast, we show that constructing CPRFs with inner-product
constraints requires a much weaker flavor of correlation-robustness satisfied by RKA-secure
PRFs with affine key-derivation functions. In particular, this weaker notion of correlation-
robustness can be instantiated unconditionally leading to our one-way function based CPRF
construction in Section 2.6.

Suitable RKA-secure PRFs. As we have informally shown above, a fully “RKA-secure” PRF
can be realized with a random oracle to remove correlations in the keys. However, constructions
of RKA-secure PRFs exist from several standard assumptions. These constructions achieve
security against adversaries that can adaptively query the PRF when keyed on arbitrary
functions of the secret key. In particular, we require RKA-security against affine functions of
the key (see Section 2.3 for definitions), which is a stronger notion compared to standard
RKA-security against additive functions that is often considered in the literature. The affine
function requirement eliminates many RKA-secure PRF constructions (e.g., [BK03,BC10,
GL10,BLMR13,AW14,LMR14,CLWG19]), leaving us only with the DDH-based RKA-secure
PRF for affine functions of Abdalla et al. [ABPP14].

The DDH-based RKA-secure PRF forms the basis for our first instantiation in the standard
model. However, we also show that we can use any (weak) PRF2 that is RKA-secure against
additive functions to instantiate our framework and obtain a (weak) CPRF for inner-product
predicates. In particular, this allows us to use the VDLPN-based RKA-secure (weak) PRF of
Boyle et al. [BCG+20a].

Additionally, we show that we can adapt the one-way function based RKA-secure PRF of
Applebaum and Widder [AW14] to instantiate our framework (under certain restrictions).
Specifically, the PRF of Applebaum and Widder [AW14] is only secure against additive
functions and requires the number of related keys that the adversary queries to be apriori
bounded by some polynomial t (in the security parameter). While these restriction makes
their RKA-secure PRF construction have limited applications elsewhere, we find that it is
just sufficiently powerful to apply to our framework provided that we bound the magnitude
of the input vectors to be polynomial in t and restrict the CPRF to a polynomially-sized
domain. However, a problem is that their construction is only proven RKA-secure for additive
functions of the key, which is not suitable to instantiate our framework. Fortunately, however,
we can easily adapt their result to the case of affine functions, making it compatible with
our framework and leading to the first CPRF construction for inner-product predicates in
Minicrypt.

2A weak PRF is secure if the adversary only queries it on random inputs.
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2.3 Preliminaries

2.3.1 Notation

We let F denote a finite field (e.g., integers mod p), Z denote the set of integers, and N denote
the set of natural numbers. We let F∗ denote the set F \ {0}. We denote by poly(·) the set of
all polynomials and by negl(·) any negligible function. We occasionally abuse notation and
let poly denote a fixed polynomial. For a PRF family F : K ×X → Y and input x ∈ X , we
write Fk(x) to mean F (k, x).

Vectors and matrices. A vector v = (v1, . . . , vn) is denoted using bold lowercase letters. Scalar
multiplication with a vector is denoted av = (av1, . . . , avn) and the inner product between
two vectors a and b is denoted ⟨a,b⟩.

Sampling and assignment. We let x
R← S denote a uniformly random sample drawn from a

set S. We let x← A denote assignment from a randomized algorithm A and x := y denote
initialization of x to the value of y (which may be the output of a deterministic algorithm).

Efficiency and indistinguishability. By an efficient algorithm A we mean that A is modeled by
a (possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. We write
D0 ≈c D1 to mean that two distributions D0 and D1 are computationally indistinguishable
to all efficient distinguishers D and D0 ≈s D1 to mean that D0 and D1 are statistically
indistinguishable.

2.3.2 Constrained pseudorandom functions

We start by recalling the syntax and properties of constrained pseudorandom functions
(CPRFs). For simplicity, we restrict the definition to 1-key, constraint-hiding CPRFs, which
is the definition satisfied by our constructions. We point to Boneh, Lewi, and Wu [BLW17]
for a more general definition of constraint-hiding CPRFs (i.e., with polynomial-key security).

Definition 2.3.1 (Constrained Pseudorandom Functions; Adapted from [BLW17,CMPR23]).
Let λ ∈ N be a security parameter. A Constrained Pseudorandom Function (CPRF) with
key space K = Kλ, domain X = Xλ, and range Y, that supports constraints represented
by the class of circuits C = {Cλ}λ∈N, where Cλ : X → {0, 1}, consists of the following four
algorithms.

• KeyGen(1λ)→ msk. The randomized key generation algorithm takes as input a security
parameter λ. Outputs a master secret key msk ∈ K.

• Eval(msk, x) → y. The deterministic evaluation algorithm takes as input the master
secret key msk and input x ∈ X . Outputs y ∈ Y.

• Constrain(msk, C)→ csk. The randomized constrain algorithm takes as input the master
secret key msk and a constraint circuit C ∈ C. Outputs a constrained key csk.

• CEval(csk, x)→ y. The deterministic constrained evaluation algorithm takes as input
the constrained key csk and an input x ∈ X . Outputs y ∈ Y.
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We let any auxiliary public parameters PP be an implicit input to all algorithms. A CPRF
must satisfy the following correctness and security properties.

Correctness. For all security parameters λ, all constraints C ∈ C, and all inputs x ∈ X
such that C(x) = 0 (authorized), it holds that:

Pr

[
Eval(msk, x) = CEval(csk, x) :

msk← KeyGen(1λ)

csk← Constrain(msk, C)

]
≥ 1− negl(λ).

(1-key, adaptive) Security. A CPRF is (1-key, adaptively)-secure if for all efficient
adversaries A, the advantage of A in the following security experiment ExpsecA,b(λ) is negligible
in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅,
and runs A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary inputs x ∈ X to the challenger.
For each x, the challenger computes y := Eval(msk, x), sends y to A, and proceeds to
update Q := Q ∪ {x}.

3. Constrain query: A sends one constraint C ∈ C to the challenger. The challenger
computes csk← Constrain(msk, C), and sends csk to A.

4. Challenge query: For the single challenge query, A sends input x∗ ∈ X as its challenge
query, subject to the restriction that x∗ ̸∈ Q and C(x∗) ̸= 0. If b = 0, the challenger
computes y∗ := Eval(msk, x∗). Else, if b = 1, the challenger samples y∗

R← Y. The
challenger sends y∗ to A.

5. Post-challenge queries: A continues to adaptively query the challenger on inputs
x ∈ X , subject to the restriction that x ̸= x∗. For each x, the challenger computes
y := Eval(msk, x) and sends y to A.

6. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvsecA (λ) is defined as

AdvsecA (λ) :=
∣∣Pr[ExpsecA,0(λ) = 1]− Pr[ExpsecA,1(λ) = 1]

∣∣ ,
where the probability is over the randomness of A and KeyGen.

Definition 2.3.2 (Constraint Privacy; Adapted from [BLW17, CMPR23]). A CPRF is
(1-key, adaptive)-constraint-hiding if for all efficient adversaries A, the advantage of A in the
following security experiment ExpprivA,b(λ) is negligible in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger runs msk← KeyGen(1λ), initializes the set Q := ∅,
and runs A(1λ).

2. Pre-challenge queries: A adaptively sends arbitrary input values x ∈ X to the
challenger. For each x, the challenger computes y := Eval(msk, x), sends y to A, and
proceeds to update Q := Q ∪ {x}.
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3. Constrain query: A sends a pair of constraints (C0, C1) ∈ C2 to the challenger,
subject to the restriction that C0(x) = C1(x), for all x ∈ Q. The challenger computes
csk∗ ← Constrain(msk, Cb), and sends csk∗ to A.

4. Post-challenge queries: A adaptively sends arbitrary input values x ∈ X to the
challenger, subject to the restriction that C0(x) = C1(x). For each x, the challenger
computes y := Eval(msk, x), and sends y to A.

5. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage AdvprivA (λ) is defined as

AdvprivA (λ) :=
∣∣∣Pr[ExpprivA,0(λ) = 1]− Pr[ExpprivA,1(λ) = 1]

∣∣∣ ,
where the probability is over the randomness of A and KeyGen.

Definition 2.3.3 ((1-key, selective) Security). A CPRF as defined in Definition 2.3.1 is said
to be (1-key, selectively)-secure if the adversary commits to the constraint C before querying
the challenger [BLW17]. That is, A sends the constraint C to the challenger before issuing any
pre-challenge queries. The same applies to the constraint-privacy definition (Definition 2.3.2).

Remark 3 (Unique evaluation queries). Without loss of generality, we can restrict the
PRF adversary A to issuing only unique evaluation queries (as was also done in prior PRF
formalizations [AW14,AMN+18]). Note that the adversary is already restricted to a unique
challenge query in the above definition.

2.3.3 RKA-secure PRFs

Here, we formalize the notion of related-key attack (RKA)-secure PRFs.

Remark 4 (Find-then-guess security). We slightly modify the standard defintion of RKA-
secure PRFs (e.g., [BK03]) to better align with the syntax of constrained PRFs. In the basic
definition, the adversary does not obtain evaluation queries from what is guaranteed to be
the output of the PRF F on some key. However, we note that this extra evaluation oracle
is without loss of generality, and is only added to syntactically simplify our proofs. This
definition is known as the find-then-guess PRF security game [CMPR23, Definition 10] and
implies the real-or-random PRF security game, albeit with a polynomial loss in security.

Definition 2.3.4 (Φ-restricted Adversaries). An efficient RKA-PRF adversary A is said to
be Φ-restricted if its oracle queries have a related-key derivation function ϕ chosen arbitrarily
from a set of valid key derivation functions Φ.

Definition 2.3.5 (Related-Key-Attack Secure PRFs [BK03]). Let λ ∈ N be a security
parameter and ℓ = ℓ(λ) ∈ poly(λ). Let F = {Fk : Xλ → Y}k∈Kλ

be a family of functions and
Φ: Kλ → Kλ be a family of related-key derivation functions. F is said to be an RKA-secure
PRF family if for all efficient Φ-restricted adversaries A, the advantage of A in the following
security experiment ExprkaA,b(λ) is negligible in λ. Here, b denotes the challenge bit.
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1. Setup: On input 1λ, the challenger samples k
R← Kλ, initializes the set Q := ∅, and

runs A(1λ).
2. Pre-challenge queries: For each query (ϕ, x), the challenger computes y := Fϕ(k)(x),

sends y to A, and proceeds to update Q := Q ∪ {(ϕ, x)}.
3. Challenge query: For the single challenge query (ϕ∗, x∗), subject to the restriction

that (ϕ∗, x∗) ̸∈ Q, the challenger proceeds based on the bit b as follows. If b = 0, the
challenger computes y∗ := Fϕ∗(k)(x

∗). If b = 1, the challenger samples y∗
R← Y. The

challenger then sends y∗ to A.

4. Post-challenge queries: For each query (ϕ, x), subject to the restriction that (ϕ, x) ̸=
(ϕ∗, x∗), the challenger computes y := Fϕ∗(k)(x), and sends y to A.

5. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b and its advantage AdvrkaA (λ) is defined as

AdvrkaA (λ) :=
∣∣Pr[ExprkaA,0(λ) = 1]− Pr[ExprkaA,1(λ) = 1]

∣∣ ,
where the probability is over the randomness of A and choice of k.

Definition 2.3.6 (Affine Related-Key Derivation Functions [ABPP18]). Let R be a finite
ring and let m ≥ 1 be an integer, let the class Φaff (aff for affine) denote the class of functions
from Rm to Rm that can be separated into m component functions consisting of degree-1
univariate polynomials. That is,

Φaff :=

{
ϕ : Rm → Rm ϕ = (ϕ1, . . . , ϕm);

∀i ∈ [m], ϕi(ki) = γiki + δi, γi ̸= 0

}
.

Note that γi ̸= 0 is necessary to make the derivation function non-trivial. The definition of
Abdalla et al. [ABPP18] uses Zp; here we generalize it to any ring R.

Remark 5. Note that Φaff captures additive and multiplicative relations, which we denote by
Φ+ ⊂ Φaff and Φ× ⊂ Φaff , respectively.

2.4 Adaptive Construction in the Random Oracle Model

In this section, we present a basic construction using a random oracle. In Section 2.5.1, we
extend this construction into a general framework based on RKA security, which we use in
conjunction with RKA-secure PRFs to realize CPRFs for inner-product predicates under
DDH, VDLPN, and OWFs.

The main idea is to instantiate the high-level construction presented in Section 2.2 with
a random oracle H : K × Fℓ → Y taking the role of the PRF. Doing so ensures that when
⟨z,x⟩ ≠ 0, the output is uniformly random and independent of the constrained key csk, which
guarantees that the evaluation under msk is independent of csk. We prove the following
theorem.
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Adaptive CPRF for Inner-Products from a Random Oracle

Public Parameters. Let λ be a security parameter, ℓ ≥ 1 be an integer, and F be a
finite field of order at least 2λ. Define a key space K, a range Y, and a suitable choice
of efficiently computable deterministic function map : F→ K. Let H : K × Fℓ → Y be a
function modeled by a random oracle.

KeyGen(1λ, ℓ):

1 : k0
R← F

2 : z0
R← Fℓ

3 : msk := (k0, z0)

Constrain(msk, z):
1 : parse msk = (k0, z0)

2 : ∆
R← F∗

3 : z1 := z0 −∆z

4 : return csk := (k0, z1)

Eval(msk,x):
1 : parse msk = (k0, z0)

2 : δx := ⟨z0,x⟩
3 : k := map(k0 + δx)

4 : return H(k,x)

CEval(csk,x):
1 : parse csk = (k0, z1)

2 : δx := ⟨z1,x⟩
3 : k := map(k0 + δx)

4 : return H(k,x)

Figure 2.1: Adaptive CPRF construction in the random oracle model.
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Theorem 2.4.1. Let λ be a security parameter, ℓ ≥ 1 be any integer, F be a finite field of
order at least 2λ, and K = Kλ be a key space. The construction in Figure 2.1 is a (1-key,
adaptively-secure, constraint-hiding) CPRF in the random oracle model.

Proof. We prove each required property in turn.

Correctness. Correctness follows from the intuition presented in Section 2.2. For all
constraints z and inputs x, whenever ⟨z,x⟩ = 0, we have that

δx = ⟨z0,x⟩ = ⟨z0,x⟩+ ⟨z,x⟩ = ⟨z0,x⟩+ ⟨∆z,x⟩ = ⟨z1,x⟩ .

Therefore, Eval and CEval in Figure 2.1 compute the same key k, because both Eval and
CEval add the same shift δx to the starting key k0. It then follows that the evaluation is
identical under the master key and the constrained key given that Fk is deterministic.

(1-key, adaptive) Security. Our proof consists of a sequence of hybrid games.

• Hybrid H0. This hybrid consists of the (1-key, adaptive) CPRF security game. We note
that here, the challenger provides an oracle OH via which the adversary A queries the
random oracle H.

• Hybrid H1. In this hybrid game, we place the following restrictions on the adversary:
(1) Each query issued by A to the challenger (including queries to OH) must be unique,
and (2) after issuing the constraint query, the adversary is only allowed to query the
pre- and post-challenge oracles on constrained inputs.

These restrictions are without loss of generality in the 1-key setting, and have been
used in prior work (e.g., [AMN+18,DKN+20]). It follows that A’s advantage in H1 is
identical to its advantage in H0.

• Hybrid H2. In this hybrid game, the challenger starts by sampling responses to the
pre-challenge evaluation queries until the constraint query is issued. That is, for a
bound q0 on the number of pre-challenge queries issued by A, the challenger samples
v1, . . . , vq0

R← Y . Then, the challenger responds to the i-th pre-challenge query xi with
vi, and programs the random oracle OH to output vi on all future queries r where it
holds that r = k0 + ⟨z0,xi⟩, for some i ∈ [q0]. After the constrain query, the challenger
responds to pre-challenge queries as in H1.

Claim. A’s advantage in H2 is at most negl(λ) larger compared to H1.

Proof. Let qH be the total number of random oracle queries issued by the adversary
prior to the constrain query, and let {ri}i∈[q0] be the queries to OH . We define the event
bad0 as:

∃(i, j) ∈ [qH ]× [q0] such that ri = (k0 + ⟨z0,xj⟩ ,xj) ∧H(ri) ̸= vj.

The event bad0 corresponds to the case where the adversary happens to query the
random oracle OH on a “bad” input ri prior to the challenger programming OH to
output vi, causing the response to be inconsistent with respect to H1. For any given
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pre-challenge query xj, issued before the constrain query, the probability that A issues
an ri query to OH such that ri = (k0 + ⟨z0,xj⟩ ,xj) is equivalent to the probability of
guessing k0, which is bounded by 1

|F| . Hence, by a union bound, we get that

Pr
k0

R←F
[bad0] ≤

qH · q0
|F|

≤ qH · q0
2λ

≤ negl(λ),

which bounds A’s advantage in H1 to a negligible function in λ. □

• Hybrid H3. In this hybrid game, we swap the definition of the constrained key and
master key. Specifically, in this game, the challenger responds to A’s constrain query z
by sampling z1

R← Fℓ and sending back csk = z1. The challenger then samples ∆
R← F,

computes z0 = z1 + ∆z, and responds to future evaluation queries using z0 as the
master key.

Claim. A’s advantage in H3 is equivalent to its advantage in H2.

Proof. This change is purely syntactic and therefore does not affect the distribution of
the keys. In particular, note that in H2, all evaluation queries prior to the constrain
query are sampled independently of the master key. As such, it can be sampled at the
time of the constrain query. □

• Hybrid H4. In this hybrid game, the challenger samples w1, . . . , wq1
R← Y as the

responses to the q1 pre- and post-challenge evaluation queries issued following the
constrain query. Then, the challenger responds to A’s i-th evaluation query xi, where
⟨z,xi⟩ ≠ 0 (recall the restriction in H0), with wi.

Claim. A’s advantage in H4 is at most negl(λ) larger compared to H3.

Proof. Here, we let qH be a bound on the total number of random oracle queries issued
by the adversary throughout the game and let q1 be a bound on the number of pre-
and post-challenge evaluation queries issued after the constrain query. We then define
the event bad1 as:

∃(i, j) ∈ [qH ]× [q1] such that ri = (k0 + ⟨z0,xj⟩ ,xj) ∧H(ri) ̸= wj,

where ri is a query to OH issued by A and each xj is constrained by assumption. The
event bad1 corresponds to the case where the adversary happens to query OH on an
input corresponding to a constrained evaluation under the master key msk, causing the
response to be inconsistent with respect to the distribution inH3. For all post-constraint
evaluation queries xj, where j ∈ [q1], define yj = H(k0+⟨z0,xj⟩ ,xj), which is computed
identically to a post-constraint evaluation response in hybrid H3. We claim that yj is
computed independently of the constrained key csk = z1. To see this, note that we can
equivalently express yj in terms of z1 as yj = H(k0 + ⟨z1,xj⟩ + ∆ ⟨z,xj⟩ ,xj), where
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⟨z,xj⟩ ≠ 0 by assumption. Then, because ∆ is uniformly random and independent of z1
in H3, each yj is computed using a random oracle H that is “seeded” by ∆ ⟨z,xj⟩, which
makes the response independent of z1. Then, to compute the probability of the event
bad1, over the choice of ∆ ∈ F, we can apply a union bound over all q1 post-constraint
evaluation queries issued by A to get

Pr
∆

R←F
[bad1] ≤

qH · q1
|F|

≤ qH · q1
2λ

= negl(λ),

which bounds the adversary’s advantage in H4 to a negligible function in λ. □

• Hybrid H5. In this hybrid game, the challenger samples a uniformly random key k to
answer the challenge query when the challenge bit is set to b = 0.

Claim. A’s advantage in H5 is equivalent to its advantage in H4.

Proof. Note that all evaluation queries inH4 are sampled independently of ∆. Therefore,
∆ is only used by the challenger in H4 to respond to the challenge query, which is
equivalent to sampling a uniformly random and independent key k to answer the
challenge query x∗, given that k0 + ⟨z0,x∗⟩ = k0 + ⟨z1,x∗⟩+∆ ⟨z,x∗⟩ is a uniformly
random value in F. □

At this point, because H is a random oracle, the response to the challenge query is equivalent
to sampling a uniformly random value, making A’s advantage in H5 exactly equal to 0.
Taking into account the other hybrids, we conclude that A’s overall advantage in winning
the CPRF security game is therefore negligible.

Remark 6. An alternative proof strategy is to employ the framework of Attrapadung et
al. [AMN+19] and show that H(k0 + ⟨z0,x⟩ ,x) is a no-evaluation secure CPRF (similar to
the CPRF game but the adversary does not get access to an evaluation oracle). They prove that
any no-evaluation secure and “collision-resistant” CPRF becomes adaptively secure in the ROM
when the output is passed through a random oracle. However, this then necessitates making
the construction of the form H ′(H(k0 + ⟨z0,x⟩ ,x)) or arguing why H ′(H(·)) is equivalent to
H(·) in the ROM. We opt here to prove adaptive security directly for completeness.

Constraint Privacy. We must prove that for all z and z′ provided by the adversary A, the
constrained key, and all evaluation and challenge queries, do not reveal whether the constraint
z or z′ is used by the challenger.

First, we begin by noting that, even given (z, z′,∆), z0 +∆z is distributed identically
to z0 + ∆z′ because z0 is uniformly random and independent of z and z′. Therefore, the
constrained key, absent the evaluation queries, is efficiently simulatable regardless of the
constraint chosen by the challenger.

Now, we must show that this remains the case even when the adversary is given access to
the evaluation and challenge oracles. Observe that we can proceed via the same sequence of
hybrids used in the security proof. Note that in the game defined in Hybrid H5, we can view
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each constrained query as being answered using a uniformly random key ki ∈ K. As such,
the evaluation queries on constrained inputs (including the challenge query) are independent
of the constraint, which guarantees that A cannot distinguish between z and z′ with better
than negligible advantage.

This concludes the proof of constraint privacy and the proof of the theorem. ■

Remark 7 (Replacing the random oracle with a correlated-input secure hash). As noted
by several prior works (e.g., [IKNP03,GOR11,DGI+19]), the random oracle model is an
overkill when all that is required is a notion of “correlation-robustness.” Specifically, in our
case, all we require is that H removes specific types of correlations present in its inputs.
With this in mind, we can replace the random oracle H with a correlated-input secure hash
(CIH) function [IKNP03,GOR11,AMN+18,DGI+19]. At a high level, a CIH is a publicly
parameterized function H whose outputs “look random and independent” to a computationally-
bounded adversary, even when the inputs are correlated. Specifically, we require the CIH to be
secure against affine correlations between the inputs. The proof of security for Theorem 2.4.1
then follows the same blueprint, but instead hinges on the correlated-input security of H to
ensure that the outputs are computationally indistinguishable from uniform. Unfortunately, we
are not aware of an adaptively-secure CIH function construction (to the best of our knowledge,
all existing constructions are in the selective-security regime). However, we note that there
exist strong connections between CIH functions and RKA-PRFs, as discussed in-depth by
Goyal, O’Neill, and Rao [GOR11].

2.5 A General Framework and Constructions

In this section, we provide a general framework that we can instantiate using RKA-secure PRFs.
In Section 2.5.1, we start by extending the ideas behind the construction from Section 2.4
into a general framework. We then prove that this framework yields selectively-secure
constraint-hiding CPRFs from any RKA-secure PRF supporting Φaff key derivation functions.
In Sections 2.5.2 and 2.5.3, we plug in the DDH-based and VDLPN-based RKA-secure PRF
constructions into the framework. We defer instantiating the framework with our OWF-based
RKA-secure PRF to Section 2.6, as there we must first construct a Φaff-RKA-secure PRF
from OWFs.

2.5.1 Framework

Existing constructions of RKA-secure PRFs (e.g., [BC10,ABPP14,AW14,BCG+20a]) have a
key that is a vector of n field elements. In particular, unlike the ROM-based construction
from Figure 2.1, where the derived key is a single field element, here we will need the keys to
be in the vector space Fn (or subfield thereof). Our framework can be seen as an extended
version of the ROM-based construction, where we can replace the random oracle with an
RKA-secure PRF. At a high level, to accommodate keys that consist of vectors of n elements,
the idea is to run the construction from Figure 2.1 (but instantiated with an RKA-secure
PRF instead of a random oracle) independently n times to derive a key for each coordinate.
We describe the framework in Figure 2.2.
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Selective CPRF for Inner-Products from RKA-secure PRFs

Public Parameters. Let λ be a security parameter, n, ℓ ≥ 1 be integers, and F be a finite
field. Define a key space K and range Y , and a suitable choice of efficiently computable
deterministic function map : Fn → K. Let F =

{
Fk : Fℓ → Y

}
k∈K RKA-secure PRF

family supporting affine key-derivation functions.

KeyGen(1λ, ℓ):

1 : k0
R← Fn

2 : foreach i ∈ [n] :

3 : z0i
R← Fℓ

4 : msk := (k0, z01, . . . , z0n)

Constrain(msk, z):
1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : ∆i
R← F

4 : z1i := z0i −∆iz

5 : return csk := (k0, z11, . . . , z1n)

Eval(msk,x):
1 : parse msk = (k0, z0i, . . . , z0n)

2 : foreach i ∈ [n] :

3 : δxi := ⟨z0i,x⟩
4 : δx := (δx1, . . . , δxn)

5 : k := map(k0 + δx)

6 : return Fk(x)

CEval(csk,x):
1 : parse csk := (k0, z11, . . . , z1n)

2 : foreach i ∈ [n] :

3 : δxi := ⟨z1i,x⟩
4 : δx := (δx1, . . . , δxn)

5 : k := map(k0 + δx)

6 : return Fk(x)

Figure 2.2: Selectively-secure CPRF framework using RKA-secure PRFs.
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Theorem 2.5.1. Let K be a subfield of F and let the PRF key space K = Kn. Fix map to
be any non-trivial ring homomorphism applied component-wise. If F is a family of RKA-
secure pseudorandom functions with respect to affine related key derivation functions Φaff , as
defined in Definition 2.3.6, then Figure 2.2 instantiated with F is a (1-key, selectively-secure,
constraint-hiding) CPRF.

Proof. We prove the required properties in turn.

Correctness. For all constraints z and inputs x, whenever ⟨z,x⟩ = 0, we have that
δxi = ⟨z0i,x⟩ = ⟨z0i,x⟩ + ∆i ⟨z,x⟩ = ⟨z0i,x⟩ + ⟨∆iz,x⟩ = ⟨z1i,x⟩ ∈ F. Therefore, the
resulting δx (as computed in Eval and CEval of Figure 2.1) is the same. Moreover, this holds
for all i ∈ [n], and because map is a ring homomorphism to a subfield of F, the resulting keys
are also identical when ⟨z,x⟩ = 0. It then follows that the PRF evaluation is identical under
the master key and the constrained key, because both Eval and CEval add the same δx.

(1-key, selective) Security. We prove security by a reduction to the RKA-security of F .
Our proof consists of a sequence of hybrid games.

• Hybrid H0. This hybrid consists of the (1-key, selective) CPRF security game.

• Hybrid H1. In this hybrid, the challenger first samples the constrained key and then
samples the master key. Specifically, at the start of the game, given the constraint z
(we are in the selective security regime), the challenger first samples the constrained
key csk := (k0, z11, . . . , z1n), where k0

R← Fn and z1i
R← Fℓ, for all i ∈ [n]. Then,

the challenger computes the master secret key as msk := (k0, z01, . . . , z0n), where
z0i := z1i +∆iz and ∆i

R← F, for all i ∈ [n].

Claim. A’s advantage in H1 is identical to A’s advantage in H0.

Proof. The claim follows immediately by observing that the distribution of msk and
csk in H1 is identical to H0, because the change is merely syntactic. □

• Hybrid H2. In this hybrid game, the challenger does not sample ∆ anymore. Instead,
it is given access to the following stateful oracle Orka:

Oracle Orka

Initialize. Sample ∆
R← Kn.

Evaluation. On input a affine function ϕ ∈ Φaff and x ∈ Fℓ, return Fϕ(∆)(x).

The challenger is then defined as follows.

1. Setup: On input (1λ, z), B initializes Q := ∅, samples csk according to H1

by sampling k0
R← Fn, and z1i

R← Fℓ, for all i ∈ [n], and runs A on input
csk := (k0, z11, . . . , z1n).
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2. Pre-challenge queries: For each query x issued by A, the challenger updates
Q := Q ∪ {x}, then does the following to compute y:

• Compute ai := map(⟨z,x⟩) and bi := map(k0i + ⟨z1i,x⟩), for all i ∈ [n].

• Set ϕ : u 7→ a ◦u+b where a := (a1, . . . , an) and b := (b1, . . . , bn), and where
◦ denotes the component wise (i.e., Hadamard) product.

• Query Orka on input (ϕ,x), and forward the response y to A.
▷ Note that y is computed by Orka as Fk′(x) where
▷ k′ = a ◦∆+ b ∈ Kn = ϕ(∆), for ϕ ∈ Φaff .

3. Challenge: For the single challenge query x∗, subject to ⟨z,x∗⟩ ≠ 0 and x∗ ̸∈ Q,
the challenger does the following. Sample b

R← {0, 1}, then:

• If b = 0, then

– Compute ai := map(⟨z,x⟩) and bi := map(k0i + ⟨z1i,x∗⟩), for all i ∈ [n].

– Set ϕ∗ : u 7→ a◦u+b where a := (a1, . . . , an) and b := (b1, . . . , bn), where
◦ denotes the component-wise product.

– Query Orka on input (ϕ∗,x∗), and forward the response y∗ to A.

• Else if b = 1, then

– Sample y∗
R← Y and send y∗ to A.

4. Post-challenge queries: Answered identically to pre-challenge queries.

Claim. A’s advantage in H2 is identical to A’s advantage in H1.

Proof. The difference between H2 and H1 is again purely syntactic since each output is
computed identically in both games, with the only difference being that the challenger
now only has access to ∆ via the oracle Orka. □

Claim. If F is an RKA-secure PRF for affine related key derivation functions Φaff, then
there does not exist an efficient A that wins the game defined in H2 with better than negligible
advantage.

Proof. Suppose, towards contradiction, that there exists an efficient adversary A for H2 that
wins with non-negligible advantage. Construct an efficient Φaff-restricted adversary B that
wins the RKA security game for the PRF Fk with the same advantage. B simply plays the
role of the challenger in H2, forwarding all queries to its own challenger. Note that this makes
B’s queries Φaff-restricted. Therefore, on the one hand, when B is given access to a truly
random function at the challenge phase, its answers are distributed identically to H2 when
the challenger samples b = 1. On the other hand, when B is given access to an RKA-PRF
oracle, B’s answers are distributed identically to H2 when the challenger samples b = 0 and
queries Orka. As such, B has the same advantage as A, which contradicts the RKA-security
of F . □
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This concludes the proof of (1-key, selective) security.

Constraint Privacy. For constraint privacy, we must show that if F is an RKA-secure
PRF family, then all evaluation and challenge queries remain pseudorandom, regardless of
whether constraint z or z′ is used by the challenger.3

Again, note that z0i + ∆iz is distributed identically to z0i + ∆iz
′, thereby making

the constraint key, absent the evaluation queries, efficiently simulatable regardless of the
constraint chosen by the challenger. Now, we must show that this remains the case even
when the adversary is given access to the evaluation oracles. We prove this via the following
lemma. Roughly speaking, the lemma states that if the underlying PRF is RKA-secure, then
distinguishing between evaluations under two different related-key derivation functions of the
PRF key contradicts the RKA security of the PRF.

Lemma 2.5.1. Let λ be a security parameter and F = {Fk : X → Y}k∈K be an RKA-secure
PRF. Then, for all efficient Φ-restricted adversaries A, the advantage in the following game
is negligible in λ.

1. Setup: On input 1λ, the challenger samples k
R← K, samples a random bit b ∈ {0, 1},

initializes the set Q := ∅, and runs A(1λ).
2. Pre-challenge queries: For each query (ϕ, x), the challenger computes y := Fϕ(k)(x),

sends y to A, and proceeds to update Q := Q ∪ {(ϕ, x)}.
3. Challenge query: A sends challenge query (ϕ∗0, ϕ

∗
1, x
∗), subject to the restriction that

(ϕ∗c , x
∗) ̸∈ Q, ∀c ∈ {0, 1}. The challenger computes y∗ := Fϕ∗

b (k)
(x∗) and sends y∗ to A.

4. Post-challenge queries: For each query (ϕ, x) subject to the restriction that (ϕ, x) ̸=
(ϕ∗c , x

∗),∀c ∈ {0, 1}, the challenger computes y := Fϕ(k)(x), and sends y to A.

5. Guess: A outputs its guess b′.

A wins if b′ = b and its advantage is defined as |Pr[A wins]− 1
2
|, where the probability is

over the internal coins of A and choice of k.

The lemma follows immediately from a standard hybrid argument. By RKA-security
of the PRF F we have that Fϕ0(k)(x) ≈c R(x) ≈c Fϕ1(k)(x), where R is a random function.
Therefore, a distinguisher would directly contradict the security of the RKA-PRF.

■

2.5.2 DDH-based construction

In this section, we describe the DDH-based RKA-secure PRF construction of Bellare and
Cash [BC10] (later extended by Abdalla et al. [ABPP14]) and describe how it fits into the
framework described in Figure 2.2 to realize a DDH-based CPRF for inner-product predicates.

RKA-secure PRF from DDH. The multiplicative variant [BC10,ABPP14] of the Naor–
Reingold PRF [NR97] is parameterized by an integer n ≥ 1 and a multiplicative group G of
prime order p with generator g. The PRF key k = (a1, . . . , an) ∈ Zn

p consists of n random

3Recall that the adversary provides two constraints z and z′.
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elements in Zn
p and the input x ∈ {0, 1}n \ {0n} is chosen from the set of all non-zero n-bit

strings. The PRF NR∗ is then defined as:

NR∗((a1, . . . , an), x) = g
∏n

i=1 a
xi
i . (2.1)

The RKA-secure version of the multiplicative Naor–Reingold PRF is parameterized by a
collision-resistant hash function h : {0, 1}n ×Gn → {0, 1}n−2 and is defined as:4

NR∗((a1, . . . , an), 11∥h(x, ga1 , . . . , gan)). (2.2)

Abdalla et al. [ABPP14, Section 4] show that Equation 2.2 is an RKA-secure PRF for
Φaff-restricted adversaries. For completeness, we provide a merger of the main theorems from
Abdalla et al. [ABPP14] pertaining to this construction here.

Proposition 2.5.1 (Merge of [ABPP14, Theorems 4.5, 5.1, & A1]). Let G be a multi-
plicative group of prime order p and let NR∗ be defined as in Equation 2.1. Let H =
{h : {0, 1}n ×Gn → {0, 1}n−2})n∈N be a collision-resistant hash function family. Define the
PRF family F = {Fk : {0, 1}n → G}k∈Zn

p
to be as in Equation 2.2. Then, if the DDH

assumption holds in G, F is RKA-secure against all efficient, Φaff-restricted adversaries A.

Remark 8 (RKA security under DDH). Abdalla et al. [ABPP14] prove the RKA security
of their construction for Φaff-restricted adversaries under the 1-DDHI assumption (which is
known to be equivalent to the Square DDH assumption [BP12]). However, they explicitly
note that, by combining Theorems 4.5, 5.1, & A1 (found in the full version of their paper),
they obtain the same result under the DDH assumption. This same result was also used by
Attrapadung et al. [AMN+18].

Remark 9 (Supporting vector inputs). NR∗ takes as input a binary string x ∈ {0, 1}n as
opposed to a vector x ∈ Fℓ as is assumed by our framework. However, we can easily map
any x ∈ Fℓ to a binary string of required length via any collision-resistant hash function
(CRHF), which is known from the discrete logarithm assumption [Dam88] (implied by DDH,
see Section 2.5.2.1), making vector inputs x ∈ Fℓ syntactically cleaner and without any loss
of generality. In particular, for a CRHF h, the binary string input x can be computed as h(x).
Moreover, since the RKA-secure variant of NR∗ already requires hashing the input using a
CRHF, this does not introduce additional computational complexity.

Construction from DDH-based RKA-secure PRF. With the RKA-secure PRF con-
struction of Proposition 2.5.1, we can instantiate the framework of Figure 2.2.

To satisfy the key space and related-key derivation requirements, we must instantiate
our framework with the following parameters. Let p be the order of the DDH-hard group G.
We set F to be a field extension of Fp, and let n = n(λ) ∈ poly(λ), following Equation 2.2.
Applying Theorem 2.5.1 in conjunction with Proposition 2.5.1 yields:

Theorem 2.5.2. Assume that the DDH assumption holds in a cyclic group G of order p.
Then, there exists a (1-key, selectively-secure, constraint-hiding) CPRF for inner-product
constraint predicates with vectors in Fℓ

p, for any ℓ ≥ 1.
4Note that the prefix “11” ensures that the input is never 0n, and therefore always in the domain of

NR∗ [BC10,ABPP14].
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Remark 10 (Complexity of the DDH-based construction). The Naor–Reingold PRF from
Equation 2.1 can be evaluated in NC1. Interestingly, the same is true of the RKA-secure
variant of Equation 2.2, provided that the collision resistant hash function can be evaluated in
NC1 (which is the case of the discrete log based construction [Dam88]; see also Section 2.5.2.1).
We will use this later in Section 2.8 when applying our construction to derive lower bounds in
learning theory.

2.5.2.1 Tool: Collision-resistant hashing from discrete logarithms

Here, we describe a construction of a collision-resistant hash function (CRHF) family from the
discrete logarithm (DL) assumption that generalizes the construction of Damgård [Dam88] in
the natural way. Importantly, this construction is in the complexity class NC1, which makes
the CPRF construction from the DDH assumption (when instantiated with this DL-based
CRHF family) have an evaluation function that is computable in the complexity class NC1.

Construction. Fix a prime-order group G in which the discrete logarithm problem is
hard and let extract : G → {0, 1}k be a randomness extractor with λ ≤ k < log2(|G|)
and public parameters PPe. Let p > 2λ be the order of G and define the CRHF family
H =

{
hg : Zn

p → {0, 1}k
}
g∈Gn , parameterized by n random generators g = (g1, . . . , gn) and

public parameters PP consisting of the group description and PPe, where the function
hg : Zn

p → {0, 1}k is defined as

hg(x) = extract(
n∏

i=1

gxi
i ).

Claim. The function family H :=
{
hg : Zn

p → {0, 1}k
}
g∈Gn is a CRHF family.

Proof. Consider the simpler hash function ĥg(x) =
∏n

i=1 g
xi
i parameterized by g = (g1, . . . , gn).

Suppose, towards contradiction, that there exists an efficient A that finds a pair of colliding
inputs to ĥg with non-negligible probability ν(λ). Then, on input (1λ,G,g), A outputs (x,x′)
such that x ̸= x′ and ĥg(x) = ĥg(x

′), with probability at least ν(λ). Therefore, when A
succeeds, we have that

∏n
i=1 g

xi
i =

∏n
i=1 g

x′
i

i . We can use A to solve the discrete logarithm
problem as follows. On input a generator g for G and an element y ∈ G,
1: Sample i

R← [n].
2: Sample (a1, . . . , ai−1, ai+1, . . . , an)

R← Zn−1
p \ {0}.

3: Set g = (ga1 , . . . , gai−1 , y, gai+1 , . . . , gan).
4: Run A on input (1λ,g) and obtain as output (x,x′).
5: Compute z :=

∑n
j=1,j ̸=i ajxj and z′ :=

∑n
j=1,j ̸=i ajx

′
j.

6: Output ai := (z′ − z)/(xi − x′i).
We now analyze the reduction. The probability that xi ̸= x′i is at least 1

n
because i is

chosen uniformly from the set {1, . . . , n}. Second, observe that

n∑
j=1

ajxj −
n∑

j=1

ajx
′
j = z − z′ + ai(xi − x′i) = 0,
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which implies that (z′ − z)/(xi − x′i) = ai. As such, the reduction succeeds with probability
1
n
ν(λ), which is non-negligible, contradicting the discrete logarithm assumption in G.

Finally, it follows that hg is a CRHF if ĥg is a CRHF because extract is a randomness
extractor and k > λ, making the advantage of A in the case where it is given outputs of the
randomness extractor equivalent to the case where it is given the explicit description of group
elements. Specifically, this follows from a random element of G having at least λ bits of min
entropy.

■

2.5.3 VDLPN-based construction

In this section, we show that we can instantiate the framework from Figure 2.2 using any
RKA-secure PRF supporting only additive key derivation functions Φ+ ⊂ Φaff over the field
F2. In particular, this allows us to instantiate our framework using the weak PRF candidate
of Boyle et al. [BCG+20a] based on the variable density learning parity with noise (VDLPN)
assumption. This yields the first construction of a (weak) CPRF for inner-product predicates
under a code-based assumption.

RKA-secure weak PRF candidate from VDLPN. For a security parameter λ, the
VDLPN-based weak PRF candidate of Boyle et al. [BCG+20a] is parameterized by integers
D = D(λ), w = w(λ), input space {0, 1}n and key space {0, 1}n, where n := w ·D(D − 1)/2.
The PRF FK is defined as:

FK(x) =
D⊕
i=1

w⊕
j=1

i∧
k=1

(Ki,j,k ⊕ xi,j,k). (2.3)

Theorem 2.5.3 (Informal; Adapted from [BCG+20a, Theorem 6.9]). Let λ be a security
parameter and suppose that the VDLPN assumption holds with parameters w(λ) and D(λ).
Then, the PRF in Equation 2.3 is an RKA-secure weak PRF with respect to additive key
derivation functions Φ+.

We will use the following lemma which proves that for the case of F2, additive and affine
RKA security are in fact equivalent in our context:

Lemma 2.5.2. Let F be a PRF with key space Fn
2 that is secure against Φ+-restricted

adversaries. Then, the framework from Figure 2.2 instantiated with F is a secure CPRF.

Proof. Consider the proof of Theorem 2.5.1. We look at the queries issued by the CPRF
challenger to the RKA oracle Orka in Hybrid H2 of the proof. For each query x issued by
the adversary to the CPRF challenger, the induced affine function ϕ ∈ Φaff is parameterized
by vectors a,b ∈ Fn

2 . Note that a = (a1, . . . , an), where ai := ⟨z,x⟩. Moreover, ai ̸= 0 for
all queries that do not satisfy the constraint, which implies that ai = 1 ∈ F2. As such, each
(constrained) query issued to the RKA oracle Orka by the challenger is an affine function
ϕ ∈ Φaff parameterized by (1,b) and the oracle Orka responds with the PRF evaluated using
key k := 1 ◦∆+ b. This is equivalent to an additive function ϕ′ ∈ Φ+ simply parameterized
by b. The reduction in Theorem 2.5.1 therefore goes through as before, concluding the
lemma. ■

66



Construction from VDLPN-based RKA-secure weak PRF. With the RKA-secure weak
PRF construction of Equation 2.3, we can instantiate the framework from Figure 2.2. To satisfy
the key space and related-key derivation requirements, we must instantiate our framework
with the following parameters. We set F to be a field extension of F2n , n = n(λ) ∈ poly(λ),
map maps from F to Fn

2 , and ℓ ≥ n (inputs of length ℓ can be truncated to n before being
fed into the PRF, without loss of generality). Applying Theorem 2.5.1 in conjunction with
Theorem 2.5.3 and Lemma 2.5.2 yields:

Theorem 2.5.4. Assume that the VDLPN assumption holds. Then, there exists a (1-
key, selectively-secure, constraint-hiding) weak CPRF for inner-product constraint predicates
computed over vectors in Fℓ

2, where ℓ ≥ n.

2.6 CPRFs for Inner-Product Predicates from OWFs

In this section, we instantiate our framework from Section 2.5.1 under the minimal assumption
that one-way functions exist. Unlike our constructions in Section 2.5.1, here we will require
that the set of possible related keys computed for evaluation queries is bounded in size by
a fixed polynomial t = t(λ), which forces us to restrict the input domain of the CPRF.
Specifically, we show that we can satisfy this requirement without placing any restrictions
on the CPRF adversary if the CPRF inputs are vectors in [0, B)ℓ with B ∈ O(1) and
ℓ = ℓ(λ) ∈ O(log λ). These restrictions limit the L∞-norm of each input vector and make
the input domain of the CPRF polynomial in the security parameter. We note that this is
the same class of inner-product constraints considered by Davidson et al. [DKN+20] (inner
products over Z) from the LWE assumption, albeit here we only obtain a polynomially-sized
input domain.

Our construction builds off of a result by Applebaum and Widder [AW14], which constructs
a restricted class of RKA-secure PRFs from any PRF and an m-wise independent hash function.
Their construction is secure against additive relations over a group, provided that the RKA
adversary uses at most t = t(λ) different related-key derivation functions ϕ1 . . . , ϕt ∈ Φ+,
where t≪ m. (We stress, however, that the adversary can query the PRF on an unbounded
number of inputs using each of the t different RKA functions.) Because m-wise independent
hash functions can be constructed unconditionally [WC81], the resulting RKA-secure PRF
can be realized from any PRF, thus relying only on the assumption that one-way functions
exist [GGM86,AW14]. More formally, they prove:

Theorem 2.6.1 (Adapted from [AW14]). Let K = {Gλ}λ∈N be a sequence of efficiently
computable additive groups, and t = t(λ) be an arbitrary fixed polynomial. Then, assuming the
existence of a PRF F = {Fk : Xλ → Y}k∈Gλ

, there exists an RKA-secure PRF with respect
to addition over K provided that the total number of unique related-key derivation functions
queried by the adversary is bounded by t. (The adversary is allowed to query each function
on any number of inputs.)

Unfortunately, we require the PRF to be RKA-secure with respect to affine relations Φaff

and therefore cannot apply Theorem 2.6.1 directly. More concretely, the issue with affine
(as opposed to additive) relations is that they are not “claw-free,” meaning that there exist
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pairs of different functions ϕ1, ϕ2 ∈ Φaff such that for a key k ∈ K, ϕ1(k) = ϕ2(k). The
lack of claw-freeness poses problems in security proofs because, if an adversary is able to
find two different ϕ1, ϕ2 ∈ Φaff such that ϕ1(k) = ϕ2(k), the adversary learns information
about k and can then break the RKA-security of the PRF [ABPP14]. To address this, we
strengthen Theorem 2.6.1 for the case of Φaff-restricted adversaries by showing that the
number of collisions is bounded by a negligible factor in the security parameter, proving a
stronger theorem via their approach. We describe this next.

2.6.1 Affine RKA-secure PRFs from OWFs

In this section, we show how to construct RKA-secure PRFs for affine related-key derviation
functions from one-way functions. The framework and proof closely follows that of Applebaum
and Widder [AW14] for constructing RKA-secure PRFs from m-wise independent hash
functions.

Immunizing PRFs against RKA. The idea of Applebaum and Widder [AW14] is to
immunize any regular PRF family F with key space K = Kλ against a bounded related-key
attack, where the adversary makes at most t related key queries (but can make an unbounded
number of PRF queries under each related key) for some apriori fixed t = t(λ) ∈ poly(λ).
The high-level idea is to use a long key s from a large key space S (larger than Kt) and use
a public hash function h to derive a shorter key h(s) ∈ K for F . Here, we generalize their
approach to the case of affine functions.

Definition 2.6.1 (t-good Hash Function). Let λ be a security parameter, F be finite field of
order at least 2λ, and K ⊆ {0, 1}λ be a set of strings. A hash function h : F→ K is said to be
t-good if for any t-tuple of distinct affine function (ϕ1, . . . , ϕt) ∈ Φt

aff, the joint distribution
of (h(s), h(ϕ1(s)), . . . , h(ϕt(s)) induced by a random choice of s R← F, is ε-close in statistical
distance to the uniform distribution over Kt+1, for some negligible ε = ε(λ).

Definition 2.6.2 (t-good Hash Family). Let λ be a security parameter, F be a finite field of
order at least 2λ, and Z,K ⊆ {0, 1}λ. A family of hash functions H = {hz : F→ K}z∈Z is
said to be t-good if with all-but-negligible probability, for a randomly selected z

R← Z, the hash
function hz is t-good.

Remark 11 (Relation to correlation-robustness). We note that a t-good hash function can
instantiated via a suitable correlation-robust hash function (and, in particular, a random
oracle), which provides an alternative strategy to constructing CPRFs (in the selective security
regime) from a random oracle.

We now prove that if we have a t-good hash family, we can “immunize” any PRF against
affine related key attacks. Later, in Lemma 2.6.1, we show how to construct a t-good hash
family from m-wise independent hash functions.

Theorem 2.6.2 (Extended from [AW14, Lemma 7.1]). Let λ be a security parameter,
t = t(λ) ∈ poly(λ), F be a finite field of order at least 2λ, and Z,K ⊆ {0, 1}λ. Let
F = {Fk : X → Y}k∈K be a PRF family and H = {hz : F→ K}z∈Z be a t-good hash family.
The PRF family G = {Gs,z : X → Y}s∈F,z∈Z , parameterized by a secret s

R← F and public
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z
R← Z, and defined by the mapping Gs,z(x) 7→ Fk(x), where k := hz(s), is an RKA-secure

PRF family against t-bounded Φaff-restricted adversaries.

Proof. Suppose, towards contradiction, there exists an efficient Φaff-restricted A that has
non-negligible advantage in the RKA-security game for G. Then, there exists a non-negligible
function ν such that, ∣∣∣∣∣ Pr

s
R←F,z R←Z

[AGs,z(1λ, z)]− Pr
z

R←Z
[AR(1λ, z)]

∣∣∣∣∣ ≥ ν(λ),

where R is a truly random function.

Then, consider a vector of t + 1 keys k := (k0, k1, . . . , kt) ∈ Kt+1, and define a stateful
oracle Ok as follows.

Oracle Ok

Initialize. Set Qϕ := {}, define a dictionary T := [ ], and counter j := 1.

Evaluation.

- For each non-RKA query x, output Fk0(x).

- For each RKA query (ϕ, x):

- If ϕ ∈ Qϕ, retrieve ki := T [ϕ] and output Fki(x).

- If ϕ ̸∈ Qϕ, set T [ϕ] := kj, set j := j + 1, and output Fkj(x).

In words, Ok outputs Fki(x), and stores the association between ϕ and ki to answer all future
queries involving ϕ using PRF key ki.

Now, because hz is t-good, for a random vector k of t+ 1 keys, we have that∣∣∣∣∣ Pr
k

R←Kt+1,z
R←Z

[AOk(1λ, z)]− Pr
z

R←Z
[AGs,z(1λ, z)]

∣∣∣∣∣ ≥ ν(λ)− negl(λ).

By a straightforward hybrid argument, it follows that A has non-negligible advantage
in winning the (standard) PRF game by distinguishing between Ok and the truly random
function R, contradicting that F is a PRF. This proves security against Φaff-restricted
adversaries.

■

The following lemma shows that any Ω(λ · t2)-wise independent hash function with a
sufficiently large domain is t-good in the sense of Definition 2.6.1. Moreover, an m-wise
independent hash function can be constructed unconditionally for any m (e.g., using a
universal hash based on random polynomials [WC81]).

Lemma 2.6.1. Let λ be a security parameter, t = t(λ) ∈ poly(λ), and H be a family of
m-wise independent hash functions with domain S = {Sλ} and range K = {Kλ} where
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m ≥ λ(3t + 5)(t + 1), |Kλ| = 2λ, and |Sλ| = 2λ(2t+6). Then, H is a t-good family of hash
function. In particular, for all but a 2−λ fraction of the functions in H, the distribution of
hz

R← H is 2−0.99λ-close to uniform.

Proof. The proof is almost identical (occasionally taken verbatim) to the related proof of
Applebaum and Widder [AW14, Lemma 7.2] for the case of additive functions. However, it
differs in several key places where we must consider affine functions and their impact on the
corresponding distributions, which has sufficient repercussions to necessitate rewriting the
proof in full.

Fix a sequence of t distinct affine functions ϕ := (ϕ0, ϕ1, . . . , ϕt) where we define ϕ0 to be
the identity function for notational convenience. We say that hz ∈ H is ε-good for ϕ if for a
random s, the distribution {hz(ϕi(s)}0≤i≤t is ε-close to the uniform distribution over Kt+1.
In order to bound the statistical distance, we must prove the following claim.

Claim. For all but a 2−2λ(t+1)−λ-fraction of the h ∈ H the following holds. For every vector
of (not necessarily distinct) keys k := (k0, . . . , kt) ∈ Kt+1,

Pr
s
R←S

[
t∧

i=0

h(ϕi(s)) = ki

]
∈
(

1

|K|t+1
· (1± 2−0.99λ)

)
.

Proof. Fix a vector of keys k ∈ Kt+1. For every s ∈ S, define the indicator random variable
χs which takes on the value 1 if h(ϕi(s)) = ki for all i ∈ {0, 1, . . . , t} and a random choice of
h ∈ H. Observe that the random variable χ̄ taking the value of Prs[

∧t
i=0 h(ϕi(s)) = ki], and

induced by a choice of h, can be written as χ̄ =
∑

s∈S
χs

|S| . Next, we must prove the following
bound:

Pr
h

R←H

[
χ̄ ̸∈

(
1

|K|t+1
· (1± 2−0.99λ)

)]
≤ 2−3λ(t+1)−λ, (2.4)

which we will later use to prove the claim via a simple union bound. To prove Equation
2.4, observe that since H is an m-wise independent hash family and m > t + 1, we have
that E[χs] = 1/|K|t+1, for every s. Then, by linearity of expectation, it is easy to see that
E(χ̄) = 1/|K|t+1. Next, we show that the average of χs is concentrated around its expectation.
Following the proof of Applebaum and Widder [AW14, Claim 7.3], we can show that the χs’s
are r-wise independent, for r ≥ 3t+ 5, which yields a strong concentration bound despite
local dependencies in the χs’s (see the result of Gradwohl and Yehudayoff [GY08] for an
overview of the deployed proof strategy).

To formally prove the bound, define a graph G over any pair of s, s′ ∈ S by placing an
edge between s and s′ if ϕi(s) = ϕj(s

′) for some i ̸= j. It then follows that the degree of
each node in G is at most d = (t + 1)2. We claim that for every independent set I in the
graph, the random variables {χs : s ∈ I} are r-wise independent (or using the terminology
of Gradwohl and Yehudayoff [GY08], the random variables r-agree with G). To show this,
consider any independent set I ⊆ S. For any r-sized subset (s1, . . . , sr) ⊆ I, the value of
each random variable χsj for sj ∈ I, solely depends on the value of h evaluated on the set
of t+ 1 points (ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)). Moreover, observe that for all choices of t+ 1
distinct affine functions (ϕ1, . . . , ϕt+1), all elements of the set {ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)}
are also distinct with probability at least 1− t+1

2λ
, since the probability of a collision between
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any distinct ϕu and ϕv is exactly 1/|S| < 2−λ ≤ 1/|K|. It then follows (via a union bound
and using the fact that I is an independent set) that the sets {ϕ0(sj), ϕ1(sj), . . . , ϕt+1(sj)}
for all j ∈ [r] are distinct with probability at least 1− r(t+1)

2λ
.

From the above, we conclude that with all but negligible probability in λ, the image
of these sets under a randomly chosen h are statistically independent, since h is m-wise
independent for m ≥ r(t+ 1). It then follows that χs1 , . . . , χsr are statistically independent,
or in other words, agree with G [GY08]. Applying the bound of [GY08, Corollary 3.2] and
taking into account the negligible collision probability computed above, we get that:

Pr
h

R←H

[
χ̄ ̸∈

(
1

|K|t+1
· (1± δ)

)]
< 4
√
πr

(
|K|t+1

√
(d+ 1)r

δ
√
|S|

)r

+
r(t+ 1)

2λ
. (2.5)

Then, setting δ = 2−0.99λ, |K| = 2λ, |S| = 2(2t+6)λ, and r, t ∈ poly(λ), Equation 2.5 is
upper-bounded by 2−λr ≤ 2−3λ(t+1)−λ for all sufficiently large λ (recall that d = (t+ 1)2 and
r ≥ 3t+ 5), and so Equation 2.4 follows. The claim then follows by applying a union bound
over all 2λ(t+1) possible k ∈ Kt+1, since λ(t+ 1)− 3λ(t+ 1)− λ = −2λ(t+ 1)− λ. ■

To complete the proof of the lemma, note that any h that satisfies the lemma is 2−0.99λ-
good (as defined in the beginning of the proof) for the fixed sequence of affine functions ϕ.
Specifically, (h(ϕ0(s)), . . . , ht(ϕt+1(s))) has a statistical distance of at most 2−0.99λ from the
uniform distribution. Moreover, as shown above, all but a 2−2λ(t+1)−λ-fraction of the h ∈ H
are t-good for the fixed vector ϕ. By applying a union bound over all possible 22λ(t+1) affine
functions, we conclude that all but a 2−λ-fraction of the h ∈ H are t-good, in the sense of
Definition 2.6.1, and the lemma follows. ■

2.6.2 CPRF construction from OWFs

Using the RKA-secure PRF construction from Theorem 2.6.2, we can instantiate the frame-
work from Figure 2.2 with F = Fp, for sufficiently large p ≥ 2λ(2t+6) as required by Lemma 2.6.1,
and n ≥ 1. However, we must set the input vector domain to [0, B)ℓ ⊂ Zℓ with the vector
length ℓ such that Bℓ ≤ t. Specifically, this ensures that the total number of unique inputs
to the t-good hash when deriving affine keys is bounded by t = t(λ) ∈ poly(λ). To see this,
note that there are Bℓ possible values for the inner product ⟨z0,x⟩+∆ ⟨z,x⟩ given that z
and z0 are fixed while x ∈ [0, B)ℓ is chosen by the adversary. Hence, we can simply let map
be defined by applying n different t-good hash functions component-wise to derive the PRF
key in Kn. Then, applying Theorem 2.5.1 in conjunction with Theorem 2.6.2 yields:

Theorem 2.6.3. Let λ be a security parameter and fix a polynomial t = t(λ) ∈ poly(λ).
Assume that one-way functions exist. Then, there exists a (1-key, selectively-secure, constraint-
hiding) CPRF for inner-product constraint predicates with ℓ = ℓ(λ) ∈ O(log λ) and input
vectors in the range [0, B) for any constant B such that Bℓ ≤ t.

Proof. We recall the proof of Theorem 2.5.1, and in particular Hybrid H2. In the game
defined by H2, for each query x issued by the CPRF adversary, the challenger derives the
affine function ϕ parameterized by vectors a,b ∈ Fn

p where:

71



• a := (a1, . . . , an) with ai = ⟨z,x⟩ for all i ∈ [n].

• b := (b1, . . . , bn) with bi = ⟨z0i,x⟩ for all i ∈ [n].

Note that z and z0i, for all i ∈ [n] are fixed at the start of the CPRF game. Therefore,
a,b are both entirely determined by the query vector x. The RKA oracle Orka in H2 (when
instantiated with the immunized RKA-PRF construction of Theorem 2.6.2) computes the
RKA key as hi(ai∆i + bi) for all i ∈ [n], where hi is an independent t-good hash function
and ∆i is an independent PRF key. We must show that, for all possible sets of queries
Q := {xj | 1 ≤ j ≤ qE} issued by A (here qE is an arbitrary upper bound on the total number
of evaluation queries), the number of unique inputs to hi never exceeds t. This follows from
the fact that the number of possible values that ki := ai∆i + bi can take on is bounded by
the number of unique values of x, which in turn is bounded by Bℓ ≤ t, by construction. We
stress that there are no restrictions placed on the adversary’s queries—the adversary can
adaptively query the CPRF challenger and issue any polynomial number of evaluation queries
(independently of t). ■

As a corollary, we obtain an analogous result to Theorem 2.6.3 but with an exponential
input domain provided that the CPRF adversary makes at most t unique evaluation queries
on constrained inputs.

Corollary 2.6.1. Let λ be a security parameter and fix a polynomial t = t(λ) ∈ poly(λ).
Assume that one-way functions exist. Then, there exists a (1-key, selectively-secure, constraint-
hiding) CPRF for inner-product constraint predicates for any ℓ ≥ 1 provided that the adversary
makes at most t constrained evaluation queries.

2.7 Extensions

In this section, we describe extensions to CPRFs with inner-product constraints.

2.7.1 More general constraint predicates

It is known (in some cases folklore) that CPRFs for inner-product constraint predicates
yield CPRFs with constraints described by constant-degree polynomials, t-CNF formulas
(with constant t) [DKN+20], and the “AND” of an arbitrary set of constraint predicates. We
explicitly describe these extensions here for completeness. We note that all the presented
extensions preserve the constraint-hiding property.

CPRFs for constant-degree polynomials. A CPRF for inner-product constraint predi-
cates can be converted to a CPRF for constraint predicates described by constant-degree
polynomials P by associating each entry in the constraint vector z with a coefficient of P .
Specifically, let z = (ad, ad−1, . . . , a1, a0) be the coefficients describing the degree-d polynomial
over F. Then, for input vectors of the form x = (xd, xd−1, . . . , x, 1), it holds that P (x) = 0 if
and only if ⟨z,x⟩ = 0.

CPRFs for t-CNF formulas. Any t-CNF formula can be defined as the AND of d =
(
m
t

)
·2t

NC0
t circuits, where NC0

t is the class of NC0 circuits that read at most t indices of the input
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bits [DKN+20]. More formally, a t-CNF circuit C : {0, 1}m → {0, 1} can be defined as:

C(x) =
d∧

i=1

Ci(x) where Ci ∈ NC0
t . (2.6)

Davidson et al. [DKN+20, Appendix C] provide a simple reduction from CPRFs for
inner-product predicates to CPRFs for t-CNF formulas. The high-level idea is to let x =
(C1(x), C2(x), . . . , Cd(x),−1), where the Ci’s describe the t-CNF circuit C, as per Equation
2.6. The constraint vector is then defined as z = (z1, . . . , zd, w), where zi = 1 if the i-th circuit
needs to be satisfied and zi = 0 otherwise, and w is the hamming weight of (z1, . . . , zd). It
then holds that ⟨z,x⟩ = 1 if and only if C(x) = 0. This reduction to t-CNF formulas implicitly
uses the fact that we can describe constraints as the “AND” of many individual, simpler
constraints. We describe this trick explicitly, and explain how it applied to constructing
constraint predicates described by matrix-vector products.

Conjunction of constraints. Here, we show that if we have a CPRF for a constraint class
C, then we can construct a CPRF for the constraint class

∧d
i=1Ci where ∀i, Ci ∈ C. In a

nutshell, we can define the CPRF for “AND constraints” as a vector of d CPRFs such that
the output is defined to be the addition of all the individual CPRF outputs. It is not difficult
to see that the sum of the d individual CPRF outputs will be consistent with the evaluation
under the master secret key if and only if all the constraints are satisfied.

Let CPRF = (CPRF.KeyGen,CPRF.Eval,CPRF.Constrain,CPRF.CEval) be a CPRF for
constraints in the class C. We construct the CPRF ĈPRF for the AND of d constraints in C
as follows. Let ⊕ denote the group operation over the range Y .

• ĈPRF.KeyGen(1λ, d):

1: Compute mski ← CPRF.KeyGen(1λ) for all i ∈ [d].
2: Output msk := (msk1, . . . ,mskd).

• ĈPRF.Eval(msk, x):

1: Parse msk = (msk1, . . . ,mskd).
2: Compute yi := CPRF.Eval(mski, x) for all i ∈ [d].
3: Output

⊕d
i=1 yi.

• ĈPRF.Constrain(msk, Ĉ):

1: Parse msk = (msk1, . . . ,mskd) and Ĉ = (C1, . . . , Cd) ∈ Cd.
2: Compute csk(i) ← CPRF.Constrain(mski, Ci) for all i ∈ [d].
3: Output csk := (csk(1), . . . , csk(d)).

• ĈPRF.CEval(csk, x):

1: Parse csk = (csk(1), . . . , csk(d)).
2: Compute yi := CPRF.CEval(csk(i), x) for all i ∈ [d].
3: Output

⊕d
i=1 yi.
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We prove the following proposition with regards to the above construction.

Proposition 2.7.1. Let CPRF = (CPRF.KeyGen,CPRF.Eval,CPRF.Constrain,CPRF.CEval)

be a CPRF for constraints in the class C. Then ĈPRF is a CPRF for constraint predicates
described as

∧d
i=1 Ci, where Ci ∈ C. Moreover, if CPRF is constraint-hiding, then so is ĈPRF.

Proof sketch. We briefly sketch the proofs of correctness and security.

Correctness. Correctness holds because if all d constraints C1, . . . , Cd are satisfied, then
Êval and ĈEval agree on all yi computed as CPRF.Eval(mski, x) and CPRF.CEval(csk(i), x),
respectively. It then follows that the sum of the outputs is identical under both the master
secret key and constrained key.

Security. If at least one C1, . . . , Cd is not satisfied, then CPRF.CEval(csk(i), x), for at least one
i ∈ [i] will output a pseudorandom value in Y (by the security of CPRF). By a straightforward
hybrid argument, it then follows that ĈPRF.CEval(csk(i), x) outputs a pseudorandom value
that is independent of the CPRF evaluation under the master key. Constraint hiding follows
by a similar hybrid argument. ■

Matrix-vector product constraints. As a corollary of Proposition 2.7.1 and our construc-
tions of CPRF for inner-product predicates, we can construct CPRFs for constraints where
the constraint is satisfied if and only if Ax = 0, for some constraint matrix A. Specifically,
for a matrix A ∈ Fd×ℓ where (a1, . . . , ad) ∈ (Fℓ)d is the vector of rows of A, it holds that
Ax = 0⇐⇒

∧d
i=1 ⟨ai,x⟩ = 0.

2.8 Application to Learning Theory

In this section, we highlight known connections between learning theory and CPRFs and
provide a corollary that is implied by our CPRF construction from DDH.

Membership queries with restriction access. Motivated by the goal of providing
stronger lower bounds in learning theory, Cohen, Goldwasser, and Vaikuntanathan [CGV15]
introduce a learning model they call MQ with Restriction Access (MQRA) and show that
CPRFs naturally define a concept class that is not learnable, even when the learner obtains
non-black-box access to the function on a restricted subset of the domain. Informally, in
the basic MQ learning framework [Val84] (without restriction access), a learner gets oracle
access to a function and must approximate the function after a sufficient number of queries.
Restriction access [DRWY12] is a different model in learning theory, where the learner
obtains a non-black-box implementation of the function computing a restricted set of function
evaluations. Cohen et al. [CGV15] merge the two models to introduce the model of MQ with
Restriction Access (MQRA), where in addition to black-box membership queries, the learner
obtains non-black-box access to a restricted “simplified” version of the function. We provide
the informal definition here, and point the reader to Cohen et al. [CGV15] for details and
further discussion.

Definition 2.8.1 (Membership queries with restriction access (MQRA) [CGV15]). Let C : X →
{0, 1} be a concept class, and S = {S ⊆ X} be a collection of subsets of the domain X . S
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is the set of allowable restrictions for concepts f ∈ C. Let Simp be a “simplification rule”
which, for a concept f and restriction S outputs a “simplification” of f restricted to S. An
algorithm A is an (ϵ, δ, α)-MQRA learning algorithm for representation class C with respect to
a restrictions in S and simplification rule Simp if, for every f ∈ C, Pr[ASimp(f,·) = h] ≥ 1− δ,
where h is an ϵ-approximation to f , and furthermore, A only requests restrictions for an
α-fraction of the whole domain X .

Cohen et al. [CGV15] prove the following theorem (restated here in its informal version
since the formal definitions require substantial notation):

Theorem 2.8.1 (Informal). Suppose F is a family of constrained PRFs which can be
constrained to sets in S = {S ⊆ X}. If F is computable in circuit complexity class C, then C
is hard to MQRA-learn with restrictions in S.

Let IP =
{
{x1, . . . ,xN , z} | x1, . . . ,xN , z ∈ Fℓ; ⟨xi, z⟩ = 0, ∀i ∈ [N ]

}
N∈N be the subsets

of the input domain Fℓ that satisfy the inner-product relation with respect to a vector z.
Using our CPRFs for inner-product predicates, we immediately obtain the following two
corollaries.

Corollary 2.8.1. Assuming the DDH assumption holds in a cyclic group G, there is a
simplification rule such that NC1 is hard to MQRA-learn with respect to restrictions in IP.

In particular, Corollary 2.8.1 uses the fact that our DDH-based CPRF construction can be
evaluated in NC1 (recall Remark 10).

2.9 Evaluation

In this section, we implement and benchmark our CPRF constructions. Our implementation
is open source [SS24b]. For each construction, we first analyze the complexity (in terms of
multiplication, additions, and invocations of other cryptographic primitives) and then report
the concrete performance of our Go (v1.20) implementation benchmarked on an Apple M1
CPU. All benchmarks are performed on a single core.

2.9.1 Complexity and benchmarks

Random oracle construction. The random oracle construction requires computing the
inner product in F followed by a call to a random oracle. We heuristically instantiate the
random oracle using the SHA256 hash function. We let the F = Fp be a finite field where p is
a 128-bit prime. The bottleneck of the construction is computing the inner product (modulo
p), which requires a total of ℓ modular multiplications and additions. We report the concrete
performance in Table 2.2. Overall, evaluation requires a few microseconds of computation
time, ranging from 2µs for small vectors (ℓ = 10) and 200µs for large vectors (ℓ = 1000).

DDH-based construction. In the DDH-based construction, the bulk of the required
operations are performed modulo p, where p is the order of the DDH-hard group. For a
security parameter λ and n = n(λ), the CPRF construction requires computing (1) nℓ
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(ℓ) 10 50 100 500 1000
2 µs 10 µs 19 µs 98 µs 200 µs

Table 2.2: Concrete evaluation time for our
RO-based construction for vectors of length ℓ.

(ℓ) 10 50 100 500 1000
8 ms 11 ms 16 ms 46 ms 85 ms

Table 2.3: Concrete evaluation time for our
DDH-based construction for vectors of length ℓ.

multiplications and nℓ additions (mod p) to compute the inner products between length-ℓ
vectors, (2) one invocation of a collision-resistant hash function, and (3) n multiplications
(mod p) and n+ 1 group operations in G to compute the PRF evaluation. This results in a
total complexity of n(ℓ+ 1) multiplications (mod p), nℓ additions, n+ 1 group operations,
and one invocation of a CRHF. Using the P256 elliptic curve, letting n = 128, and using
the discrete logarithm based CRHF construction (described in Section 2.5.2.1), each CPRF
evaluation requires a few milliseconds to compute (note that in practice, the DL-based CRHF
can be replaced with a fixed-key AES or SHA256 hash function for better performance). We
report the concrete performance in Table 2.3. The concrete performance is worse for smaller
vectors due to constant overheads of computing the CRHF and PRF relative to computing
the inner product. For larger vectors, however, the inner product computation dominates the
cost.

OWF-based construction. Our OWF-based construction requires computing the inner
products over the integers, which requires ℓ multiplications and ℓ additions in Z to compute
inner products. Then, we need to evaluate an m-wise independent hash function. This
requires evaluating a random polynomial of degree m = O(λ · t2) with O(λ · t)-bit coefficients
(recall Lemma 2.6.1). Here, we let λ = 40 as it is a statistical security parameter of the t-good
hash function. For very small values of B and ℓ, we obtain reasonable concrete efficiency
when evaluating the m-wise independent hash function (less than one second of computation
for B = 2 and ℓ = 5 and roughly 50MB public parameters). However, for larger parameters,
the concrete efficiency quickly becomes impractical. This blowup is due to the quadratic
overhead of Lemma 2.6.1. Additionally, the public parameters quickly become impractically
large (in the petabytes) as ℓ increases, due to the cubic factor in t needed to describe the
random polynomial. Indeed, this description already reaches terabytes in size with B = 2
and ℓ = 10, barring any concretely practical instantiation.

2.9.2 Comparison to other CPRF constructions

Prior CPRF constructions for inner product (and NC1) predicates [AMN+19, DKN+20,
CMPR23] do not have implementations, and due to large parameters or heavy building
blocks, are far too inefficient to be implemented. We briefly discuss the concrete efficiency
roadblocks associated with these constructions.

The LWE-based CPRF construction of Davidson et al. [DKN+20] is implementable
but very inefficient due to the large parameters required for security and computationally
expensive building blocks. Specifically, their construction requires computing a linear (in the
input size) number of matrix-matrix products, which poses an efficiency roadblock. Similar
roadblocks are faced with other LWE-based constructions, even if adapted to the simpler
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case of inner-product constraints. While concrete efficiency can be improved by assuming
Ring LWE, the concrete costs remain high.

The construction of Attrapadung et al. [AMN+18] is tailored to evaluating NC1 Boolean
circuits and requires computing a linear number of group exponentiations in the degree of
the universal NC1 circuit computing the constraint predicate. While their construction can
be theoretically applied to computing inner-product predicates, it does not yield a practical
solution given the need for emulating field operations inside of the NC1 universal circuit.

The approach of Couteau et al. [CMPR23] based on DCR requires evaluating a PRF
using HSS (where the PRF key is encoded as an HSS input share). This requires evaluating a
linear (in the degree of the polynomial computing the PRF) number of HSS multiplications.
Using a DCR-based variant of the Naor-Reingold PRF necessitates computing g

∏n
i a

xi
i in

HSS, where the key k = (a1, . . . , an) is the PRF key provided as input. The exceedingly high
degree of this polynomial eliminates the possibility of a concretely practical instantiation,
since even low-degree polynomials can already be concretely expensive to evaluate in HSS
schemes [BCG+17].
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Chapter 3

Oblivious Transfer Extension with a
Public-Key Setup

Summary

Oblivious Transfer (OT) is at the heart of secure computation and is a foundation for many
applications in cryptography. Over two decades of work have led to extremely efficient
protocols for evaluating OT instances in the preprocessing model, through a paradigm called
OT extension. A few OT instances, generated in an offline phase, can be used to perform
many OTs in an online phase efficiently, i.e., with very low communication and computational
overheads.

Specifically, traditional OT extension protocols use a small number of “base” OTs, generated
using any black-box OT protocol, and convert them into many OT instances using only
lightweight symmetric-key primitives. Recently, a new paradigm of OT with a non-interactive
public-key setup has emerged, which replaces the base OTs with a non-interactive setup:
Using only the public key of the other party, two parties can efficiently compute a virtually
unbounded number of OT instances “on the fly.”

In this chapter, we put forth a novel framework for OT extension with a public-key setup
(henceforth, “public-key OT”) and concretely efficient instantiations. Implementations of our
framework are 30–100× faster when compared to the previous state-of-the-art public-key OT
protocols, and remain competitive even when compared to OT extension protocols that do
not offer a public-key setup. Additionally, our instantiations result in the first public-key OT
schemes with plausible post-quantum security.
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3.1 Introduction

In its simplest form, Oblivious Transfer (OT) allows a party (called the receiver) to privately
retrieve one out of two messages from another party (called the sender). The receiver has a
choice bit b and the sender has a pair of messages (m0,m1). Using OT, the receiver learns mb

but learns nothing about m1−b. Moreover, the sender is guaranteed to learn nothing about
b. OT is a foundational building block for secure multi-party computation [Kil88], and its
applications typically require a large number of oblivious transfers (in the millions or billions).
Unfortunately, all existing protocols for OT require public-key cryptography, making them
concretely inefficient in many applications. Since it is known that OT cannot be constructed in
a black-box manner using only symmetric-key primitives [IR89], this inefficiency is somewhat
inherent to the OT problem. Fortunately, however, since the seminal work of Beaver [Bea96]
and the efficient construction of Ishai, Kilian, Nissim, and Petrank [IKNP03] (henceforth,
IKNP), lightweight OT can be realized by performing a small number of expensive “base” OTs
that are then extended (using only lightweight, symmetric-key cryptography) to perform any
number of regular OTs. Despite its concrete computational efficiency, the original paradigm
of IKNP induces a large communication overhead (λ bits of communication per extended
OT). To address this overhead, new paradigms have recently emerged that enable extending
base OTs using much less communication. Protocols like SoftSpokenOT [Roy22] directly
improve the communication efficiency of IKNP by a small factor k (e.g., k = 5) at the
cost of some increased computation. Silent OT extension protocols [BCG+19a,BCG+19b,
SGRR19, YWL+20, CRR21, OSY21, BCG+22, RRT23] achieve optimal communication (3
bits of communication per OT), but come with a concrete computational overhead that is
noticeably larger than SoftSpokenOT (e.g., RRT, the state-of-the-art silent OT [RRT23],
being about 8× slower than SoftSpokenOT on machines with AVX instructions).

Our goal: “Diffie–Hellman” for secure computation. The state-of-the-art techniques
for efficiently evaluating a large number of OT instances all require the sender and the receiver
to initially interact in a distributed setup phase. Contrast this with the simpler task of
establishing a secure communication channel on the Internet. Thanks to the breakthrough
key-agreement protocol of Diffie and Hellman [DH76] in 1976, any pair of parties can locally
derive a shared symmetric encryption key directly from the public key of the other party.
This approach to securing communication has proven to be highly effective, and is now
widely deployed [Ope24]. Concretely, this means that over a large network of N parties, all
pairs of parties can securely communicate following a one-time public-key setup with O(N)
communication, where all parties broadcast their public keys.

The goal of oblivious transfer with a public-key setup, first explicitly put forth by Orlandi et
al. [OSY21], is to achieve a similar feature for the task of secure computation on the Internet.
Concretely, over a large network of N parties, if all pairs of parties want to be able to jointly
run secure computation protocols (which typically requires evaluating many OTs), they must
all run the distributed setup pairwise, resulting in O(N2) communication and simultaneous
interactions. However, with a public-key setup (or non-interactive “public-key OT” for short),
each pair of parties can instead efficiently generate an arbitrary number of pseudorandom OT
instances, given only the public key of the other party! These pseudorandom OT instances
can then be derandomized in one round to perform regular OTs [Bea95,OSY21,BCM+24].
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Unfortunately, despite being very desirable, this feature is not achievable with any of the
state-of-the-art OT extension protocols, even in the semi-honest model.

Recently, however, the work of Bui, Couteau, Meyer, Passelègue, and Riahinia [BCM+24]
(henceforth, BCMPR) achieved the first practically efficient candidate construction of public-
key OT by building a new Pseudorandom Correlation Function (PCF) for the OT correlation,
and showing that it admits a public-key setup. Concretely, with a public-key PCF, two parties
can, given only each other’s public key, locally generate an arbitrary amount of pseudorandom
OTs. In turn, these pseudorandom OTs can be used to perform a regular bit-OT in one round
of interaction and three bits of communication). While this represents significant progress,
their result falls short of providing a fully satisfactory solution to the problem of efficient
public-key OT. For one, their protocol is not an OT extension, given that it requires (local)
public-key operations for every OT that it generates. Consequently, it is considerably less
efficient than state-of-the-art OT extension protocols. Concretely, BCMPR can generate
up to 21K OTs per second, whereas state-of-the-art OT extension protocols can generate
several million OTs per second [Roy22]. Additionally, BCMPR is built around group-based
primitives, making it not post-quantum secure, and relies on a new assumption they call
“Sparse-power DDH” (or SPDDH for short) which is only proven secure in the generic group
model.

3.1.1 Our contributions

In this chapter, we make several contributions, which we highlight here and describe in depth
in our technical overview of Section 3.2. The primary contribution of this chapter is QuietOT:
a novel framework for fast OT extension with a public-key setup. With QuietOT, given
only each other’s public key, two parties can generate an arbitrary amount of pseudorandom
“ListOTs,” a variant of OT which we introduce, which can be converted into pseudorandom
(resp. regular) OTs in one round and a small overhead in communication, e.g., using 4 bits/OT
(resp. 7 bits/OT) in one of our instantiations. The only difference between our approach
via ListOT and a standard PCF for OT is that the derandomization step incurs slightly
more communication (e.g., 7 bits instead of 3 bits). Unlike all prior public-key OT protocols,
QuietOT does not require public-key operations when generating OTs, making the concrete
performance one to six orders of magnitude faster compared to the state-of-the-art OT
protocols that offer a public-key setup. We show that the base OTs can be replaced with a
public-key setup under the standard Ring LWE assumption (with a superpolynomial modulus-
to-noise ratio), allowing parties to non-interactively derive a shared key from which they
can generate OT extensions. Alternatively, the public-key setup of QuietOT can be replaced
by a simple two-round setup using any black-box base OTs, yielding new constructions of
two-round OT extension.

We note that state-of-the-art OT extension protocols, such as SoftSpokenOT [Roy22],
remain significantly faster than QuietOT (e.g., about 7× faster in the regime where SoftSpo-
kenOT communicates 16 bits/OT). The core advantage of QuietOT over these alternatives
lies in its public-key setup: concretely, using QuietOT, two parties can execute the vast
majority of the computation before they even interact, given only each other’s public key.
The interactive phase that follows involves solely cheap, non-cryptographic operations (a
few XORs per OT). In contrast, using SoftSpokenOT or any state-of-the-art OT extension,
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the parties must first interact (to generate base OTs) before they can run the bulk of the
computation and interact again to complete the protocol; this can cause significant delays
during which both parties have to stay online. We believe that this precomputation feature
of QuietOT is highly desirable in the setting of on-demand pairwise secure computation over
a large network. As a bonus, QuietOT communicates less than SoftSpokenOT, and requires
only one round of interaction to perform an OT.

Under the hood, our framework combines any “Inner-Product Membership” weak PRF
(ipm-wprf) [BCM+24] with a Shiftable Constrained Pseudorandom Function (ShCPRF), a
new primitive that we introduce in Section 3.5 that extends the CPRF construction from
Chapter 2. Prior work [OSY21,BCM+24] requires using public-key operations for each OT,
translating to expensive group operations under either the Quadratic Residuosity (QR) or
DDH assumption (the construction of Orlandi et al. [OSY21], henceforth OSY, is mostly of
theoretical interest due to the large number of group exponentiations required). In contrast,
we show that an ShCPRF can be constructed unconditionally in the random oracle model
by using the construction from Chapter 2. In addition, because ipm-wprf are lightweight
symmetric-key primitives (i.e., they do not require public-key operations to evaluate), our
overall OT extension protocol is very efficient. We provide a comparison to related work in
Table 3.1.

OT/s
Max. Throughput

Bits/OT
Communication PKS† PQ Assumptions

IKNP 34,000,000 128 ✗ ✓ ROM

SoftSpokenOT (k = 2) 53,000,000 64 ✗ ✓ ROM

SoftSpokenOT (k = 8) 9,500,000 16 ✗ ✓ ROM

RRT 6,900,000 3 ✗ ✓ EC-LPN+ROM

OSY 1 3 ✓ ✗ QR+ROM

BCMPR 21,000 3 ✓ ✗ IPM-wPRF+SPDDH+ROM

QuietOT 1,200,000 7 ✓ ✓ IPM-wPRF+ROM

Table 3.1: An overview of OT extension protocols and their maximum throughput observed across
different hardware and parameter settings (full evaluation results provided in Section 3.8). PKS and
PQ indicate whether the construction has a public-key setup and is plausibly post-quantum secure,
respectively. For efficiency, nearly all OT extension protocols are instantiated in the Random Oracle
Model (ROM). Note that in these constructions, the random oracle assumption can be generically
replaced with a suitable correlation-robust hash function. †PKS not implemented.

Additional contributions. In addition to the main contribution of the QuietOT framework,
this chapter contributes:

• The first formal treatment of public-key OT when used in a secure multi-party com-
putation over a large network. Our definitions and analysis address several subtle
issues with using any public-key OT constructions (including BCMPR and OSY) in a
multi-party setting where security must be guaranteed with respect to an adversary
corrupting a subset of parties.
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• A definition and construction of shiftable CPRFs, a twist on CPRFs where the master key
holder can efficiently “shift” the constraint when evaluating the CPRF. This construction
plays a crucial role in our framework and may be of independent interest.

• An open-source, optimized implementation of the BCMPR protocol, which we evaluate
and compare to QuietOT in Section 3.8.

3.2 Technical Overview

In this section, we provide a detailed overview of our results. In Section 3.2.1, we start by
covering the state-of-the-art BCMPR framework for public-key OT. Then, in Section 3.2.2,
we cover the main ideas behind our QuietOT framework and the different instantiations
of it. In Section 3.2.3, we show how QuietOT implies two-round OT extension and full
pre-computability for either the sender or the receiver. In Section 3.2.4, we explain our
approach to non-interactive public-key setup under the RLWE assumption. In Section 3.2.5,
we overview our definitions of public-key setup with multi-instance security, which becomes a
crucial building block for applying public-key OT to a multi-party computation setting.

3.2.1 Background on the BCMPR framework

The BCMPR framework constructs a pseudorandom correlation function (PCF) for OT
correlations using an ipm-wprf (an “inner-product membership” weak PRF; more details
on this primitive are given later). In addition to the ipm-wprf requirement, they also
require the Sparse-Power DDH (SPDDH) assumption and instantiate their public-key setup
from the DCR assumption. In their PCF construction, the sender and receiver can compute
OT correlations on-demand: The sender outputs two pseudorandom bits (s0, s1) while the
receiver outputs (b, sb), where b ∈ {0, 1} is a pseudorandom choice bit. This correlation
can then be converted into a chosen-bit OT with 3 bits of communication in one round of
interaction using the transformation of Beaver [Bea95].

At the heart of the BCMPR framework is a Constrained PRF (CPRF) F = (F.KeyGen,
F.Eval, F.Constrain, F.CEval) with the constraint predicate set to a weak PRF1 fz that outputs
a pseudorandom bit. At a high level, a CPRF has two keys: a master key and a constrained key.
The constrained key only allows evaluating the PRF when the constraint predicate is satisfied.
Hence, the weak PRF f indicates if the input to F is constrained or not, making roughly half
the inputs to F constrained. It was known (somewhat folklore) that any CPRF with a weak
PRF as a constraint predicate can be used to construct a PCF for OT correlations [BGMM20].
However, prior to BCMPR, all existing CPRF constructions were either not sufficiently
expressive to evaluate a weak PRF as a predicate or not concretely efficient enough to result
in practical solutions [BV15,BTVW17,CC17,CVW18,PS18,AMN+18,CMPR23]. Therefore,
at the core of BCMPR is a construction of a CPRF just powerful enough to evaluate a
suitable weak PRF candidate as the constraint predicate while remaining concretely efficient
in practice. They realize such a CPRF by adapting the classical Naor–Reingold PRF [NR97].
In a nutshell, the BCMPR framework for OT correlations combines:

1A weak PRF is only pseudorandom on uniformly random inputs.
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• A CPRF supporting a special class of Inner-Product Membership (IPM) constraints
(the constrained key can evaluate the PRF on x if and only if ⟨z, x⟩ ∈ S, for some
constraint vector z ∈ Rn defined over a finite ring R and fixed set S partitioning the
ring elements)2, and

• Any weak PRF fz : {0, 1}n → {0, 1} having an evaluation function that can be described
as an inner-product membership predicate (which they call an ipm-wprf). That is,
fz(x) = 0 iff ⟨z, x⟩ ∈ S0 and fz(x) = 1 iff ⟨z, x⟩ ∈ S1, for a partitioning S0 ∪ S1 of the
finite ring R over which the inner product is defined, and a vector z ∈ Rn.

Building on the Naor–Reingold PRF, BCMPR constructs a CPRF supporting IPM predicates
in the Random Oracle Model (ROM) [BR93]. In particular, using any ipm-wprf (which can
be realized from a handful of assumptions), coupled with their CPRF construction supporting
IPM predicates, allows them to instantiate the following generic template for building a PCF
for OT correlations, which will serve as inspiration for our framework as well.

A general PCF template from CPRFs for IPM predicates. The template of BCMPR
uses a CPRF F with IPM constraints that evaluates an ipm-wprf fz as the predicate,
for a vector z ∈ Rn that we will call the wPRF key. The sender gets two master keys
(msk0,msk1) for F , while the receiver obtains two constrained keys (csk0, csk1). The master
keys can be used to evaluate the PRF on the entire domain. In contrast, the constrained
key can only be used to evaluate the PRF when the constraint predicate is satisfied. The
idea is to have the constrained key csk0 have fz as the predicate, and csk1 have the opposite
predicate 1− fz. Notice that given the two constrained keys, the receiver can only evaluate
the CPRF using one of the two keys for an input x (depending on the value of fz(x), which
is pseudorandom). Moreover, given the ipm-wprf key z, the receiver can determine which
of the two evaluations is constrained for an input x by evaluating the “predicate” fz(x). The
receiver can then compute and output the correlation (b, sb), consisting of the pseudorandom
bit b = fz(x) and the string sb = F.CEval(cskb, x). The sender, in contrast, only obtains
the master keys (msk0,msk1), which are independent of the ipm-wprf key z. As such, the
sender can only compute the strings s0 = F.Eval(msk0, x) and s1 = F.Eval(msk1, x), consisting
of the sender’s correlation (s0, s1), without learning the pseudorandom bit b computed by the
receiver.

Limitations of the general template. The core difficulty associated with the above
template (and the BCMPR framework by extension) is finding a CPRF with a predicate
class that is sufficiently powerful to evaluate fz. The most efficient construction to date
is the constrained Naor–Reingold PRF construction of BCMPR, which (1) requires a new
cryptographic assumption, (2) is not post-quantum secure and, (3) necessitates concretely
expensive group operations to evaluate, placing an upper limit on practical efficiency of
BCMPR (e.g., 21K correlations per second in our optimized implementation). In contrast,
OT extension protocols like SoftSpokenOT [Roy22] (which generalizes IKNP) use only
lightweight symmetric-key primitives, are post-quantum secure, and are incredibly fast (e.g.,
achieving several million OTs per second), but do not offer a public-key setup. Unfortunately,
improving the efficiency of the BCMPR framework hinges on developing more efficient
CPRF constructions for IPM predicates, which appears to be the weakest class of predicates

2We slightly abuse notation by interpreting the bit string x as a vector of bits.
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sufficiently powerful to evaluate any wPRF. Note that a pseudorandom function cannot have
a linear evaluation, and therefore inner-product equality predicates are inherently insufficient.

3.2.2 Our approach

Intuition. The starting point of our approach is the template construction of BCMPR. As
with BCMPR, in our framework, the receiver holds the key z ∈ Rn of an ipm-wprf and
we let the (pseudorandom) selection bit of the receiver be defined as the output fz(x) of
the wPRF f on a random input x. Recall that fz(x) = b iff ⟨z, x⟩ ∈ Sb (where S0, S1 are a
public partitioning of the inner-product range, associated with the ipm-wprf). The main
limitation of BCMPR is the reliance on a CPRF for a class of constraints that contains fz.
While they provide an optimized construction, it still requires public-key operations (group
exponentiation) for every evaluation, and hence for every OT instance.

At this point, we diverge significantly from the BCMPR framework by replacing their
CPRF with a far more efficient primitive. Our starting point is the CPRF construction from
Chapter 2, which uses only symmetric-key primitives. Concretely, evaluating the CPRF
involves computing an inner product and hashing the result; furthermore, the CPRF was
shown to be unconditionally secure in the ROM. However, the catch is that the CPRF
from Chapter 2 only handles inner-product predicates. That is, given a constraint z, the
constrained evaluation with csk on x matches the evaluation with the master key if and only
if ⟨z, x⟩ = 0 ∈ R. Observe that using this much weaker CPRF, the receiver is now only able
to evaluate F on all inputs where ⟨z, x⟩ = 03 (roughly 1

|Sb|
of all inputs assuming f(x) = b,

and where |Sb| ≈ |R|/2), which is too weak to instantiate the BCMPR template.

Shiftable CPRFs to the rescue. Our first key observation is that (a slight modification
of) the CPRF framework introduced in Chapter 2 enjoys an additional shiftability property.
Concretely, the CPRF evaluation with the master key msk can take an additional shift α as
input, and provides the following guarantee: the constrained evaluation F.CEval(csk, x) is
equal to F.Eval(msk, x, α) whenever ⟨z, x⟩ − α = 0. That is, the constraint is shifted by α.
Given such a shiftable CPRF for inner products, the sender can now compute F.Eval(msk, x, α)
for all possible shifts α ∈ S0 ∪S1. This yields two lists of values: L0 = (F.Eval(msk, x, α))α∈S0

and L1 = (F.Eval(msk, x, α))α∈S1 . Our next core observation is that the value F.CEval(csk, x)
computed by the receiver belongs to exactly one of the two lists, and furthermore, the index b
of the list Lb it belongs to is simply fz(x). That is, the receiver knows a pseudorandom value
v and pseudorandom “selection bit” b = fz(x) such that v ∈ Lb. Additionally, by using the
constraint z, the receiver can determine the index i in Lb in which v is located (i.e., such
that v = Lb[i]).

Oblivious transfer from ListOT. So far, we have seen that given a shiftable CPRF for
inner-product predicates, the sender and the receiver can generate many instances of the
following “correlation:” the sender gets as output two (pseudorandom) lists (L0, L1), and
the receiver obtains (v, b, i) where v = Lb[i], and b is pseudorandom from the viewpoint of
the sender. Importantly, i is not pseudorandom, which prevents this from being a true OT
correlation. We call “ListOT” this weaker variant of the OT correlation. The name is inspired

3We follow the convention of letting P (x) = 0 when the predicate P is satisfied.
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from list decoding [Eli91], where a decoding algorithm for a code is allowed to output a list of
code words from which the word can be decoded.4 Hence, for ListOT, the sender outputs two
lists of messages, L0, L1, and the receiver outputs a bit b, value v, and an index key i, such
that v is located at Lb[i]. (Later, for ease of notation, L0 and L1 will be treated as key-value
stores/dictionaries.)

While the pseudorandom ListOT instances are not correlations in the strict technical
sense (because the distribution of i depends on the secret wPRF key), it is not too hard to
see that it still suffices to instantiate a random OT using some additional communication.
To see this, observe that given OT inputs (m0,m1), the sender simply sends (L0[j]⊕m0)j∈S0

and (L1[j]⊕m1)j∈S1 to the receiver. The receiver recovers mb by unmasking Lb[i]⊕mb using
v = Lb[i].5

We now explain how we construct efficient ShCPRFs by adapting the framework from
Chapter 2 building CPRFs for inner-product predicates from RKA-secure PRFs [Bih94] in
the standard model (or in the random oracle model).

Constructing ShCPRFs. We make the observation that in all existing CPRF constructions
for inner-product predicates [DKN+20, BCM+24], the master key holder can efficiently
compute the set of all possible pseudorandom values evaluated under the constrained key csk.
We will focus on the CPRF construction from Chapter 2, instantiated unconditionally using
a hash function H modeled as a random oracle. In this construction, the master key msk
consists of a random vector z0 of length n, with elements from some sufficiently large field
F.6 For a constraint vector z ∈ Fn, the constrained key is defined as z1 = z0 −∆ · z, where
∆ ∈ F \ {0} is random. Simplifying slightly,7 the evaluation and the constrained evaluation
algorithms are defined as H(⟨z0, x⟩ , x) and H(⟨z1, x⟩ , x), respectively. Note that when
⟨z, x⟩ = 0, it holds that H(⟨z0, x⟩ , x) is equal to H(⟨z1, x⟩ , x), which guarantees the master
key and constrained key evaluations agree. In contrast, when ⟨z, x⟩ ̸= 0, then H(⟨z1, x⟩ , x)
is equal to H(⟨z0, x⟩ − ∆ ⟨z, x⟩ , x), which is independent of H(⟨z0, x⟩ , x) due to ∆. In
particular, we observe that when ⟨z, x⟩ ≠ 0, using z0 and ∆ allows the master key holder to
evaluate all possible constrained evaluations by computing H(⟨z1, x⟩+∆α, x), for all possible
inner products α ∈ {⟨z, x⟩ | x ∈ {0, 1}n} associated with the constraint class given by z. We
point to Section 3.4 for more details on this ShCPRF construction. Abstractly, we define the
master key evaluation algorithm F.Eval(msk, x, α) to take a shift α as an additional input
while leaving the remaining CPRF algorithms unchanged.

Putting things together: A “PCF” for ListOT. Using the ShCPRF construction
sketched above, coupled with an ipm-wprf fz with partitioning S0 ∪ S1, the sender with
the master secret key msk computes the two lists, L0 and L1, corresponding to b = 0 and
b = 1, respectively, as L0 = (F.Eval(msk, x, α))α∈S0 , L1 = (F.Eval(msk, x, β))β∈S1 , using a
random x. Importantly, note that given the constrained key csk for a constraint vector

4We note that ListOT is not related to “list two-party computation” [COSW23], which defines list OT as
a security definition for the standard oblivious transfer functionality.

5When generating (pseudo)random OTs, this simple approach can be further improved by letting m0 and
m1 be the first element of L0 and L1 respectively, which allows communicating two elements less, for a total
of |S0|+ |S1| − 2 bits of communication. Concretely, with our most communication-efficient instance, this
translates to only 4 bits of communication per random OT.

6Our actual ShCPRF construction is defined using a ring extension for efficiency.
7The full construction has an extra additive term to handle the all-zero input x = 0n.
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z, the receiver obtains one value in Lb, where b = fz(x). All other values, in both lists,
remain pseudorandom from the viewpoint of the receiver. At this stage, our framework can
be instantiated using any choice of ShCPRF and any choice of ipm-wprf. We choose to
instantiate the ShCPRF in the random oracle model, as it offers the most concretely-efficient
solution. The ipm-wprf can be realized from several assumptions, as detailed in BCMPR.
Indeed, many wPRFs fit the ipm-wprf framework, including the learning with rounding
(LWR)-based wPRF [BPR12], the Goldreich–Applebaum–Raykov (GAR) [Gol11,AR16], and
several other low-complexity wPRF candidates, including the Boneh, Ishai, Passelègue, Sahai,
and Wu (BIPSW) [BIP+18], and LPN-based candidates [BCG+20a]. (Bui et al. [BCM+24]
provide an overview of these different candidates and others.) The BIPSW wPRF candidate
is especially well-suited to this framework given that the evaluation (defined in Equation 3.1)
is essentially just a rounded inner product computed in Z6:

fz(x) = ⌊⟨z, x⟩ mod 6⌉2 . (3.1)

Note that when fz(x) = 0, then it holds that ⟨z, x⟩ (mod 6) ∈ {0, 1, 2} and when fz(x) = 1
it holds that ⟨z, x⟩ (mod 6) ∈ {3, 4, 5}. By instantiating the ShCPRF to compute predicates
over an extension of Z6, we can achieve very efficient evaluations using the BIPSW ipm-wprf
(see Section 3.8 for our evaluation).

3.2.3 Two-round OT extension

Using our framework, we obtain a two-round OT extension protocol (i.e., the minimal number
of rounds needed without a public-key setup). Observe that the sender can independently
generate the ShCPRF master secret key, consisting of z0 and ∆, while the receiver can
independently generate the ipm-wprf key z. For the case where z ∈ {0, 1}n, we can use any
two-round string OT protocol repeated in parallel n times as follows. For i ∈ [n], the sender
sets mi,0 = z0i and mi,1 = z0i −∆. The receiver uses zi ∈ {0, 1} as its choice bit to retrieve
mi,zi = z0i −∆zi, and in this way can recover csk := z0 −∆z using n parallel calls to the
two-round OT functionality (indeed, because ∆ is the same across messages, any correlated
OT protocol [ALSZ13] is sufficient). In the general case, when z ∈ Rn, we can use any
two round “reverse” vector oblivious linear evaluation (VOLE) protocol [ADI+17,BCG+19a],
which directly generalizes correlated OT to work over a ring R. In reverse VOLE, the sender
inputs (b, x) ∈ Rn ×R and the receiver inputs a ∈ Rn. The sender gets no output while the
receiver obtains ax+ b. By letting the sender input (z0,∆) and the receiver input −z, we
immediately have that the receiver obtains z1 = z0 −∆z. See Section 3.10 for more details.

Two-round OT extension is known to be impossible under black-box symmetric-key
primitives [GMMM18] making our use of an ipm-wprf a rather weak assumption to
circumvent the impossibility result of Garg et al. [GMMM18] (in fact, an IPM-PRG suffices).
In contrast, protocols like IKNP and SoftSpokenOT inherently require three rounds of
interaction due to their unconditional instantiations in the random oracle model, and all
previous two-round OT extensions (with the exception of Beaver [Bea96], which is not
black-box and not concretely efficient) required variants of the LPN assumptions [BCG+19a,
YWL+20,BCG+22,RRT23].

Precomputability. A nice feature of our two-round setup is the ability for one party to
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precompute all correlations before even knowing the identity of the other party. To see this,
note that the receiver can precompute all choice bits just using the ipm-wprf key z without
needing to know the constrained key. Additionally, the receiver can sample a uniformly
random constrained key z1 for the ShCPRF and use it to generate ahead-of-time all its ListOT
triples (b, i, v). Later, once the identity of the sender is known, the sender can engage with
the receiver in a two-round OT protocol to compute the master key z0 = z1 +∆z from the
“constrained key” z1. Similarly, the sender can alternatively generate all its ListOT instances
(L0, L1) without needing to know the identity of the receiver by locally sampling ∆ and z0.
We provide details on precomputability and more motivation for the notion in Section 3.10.1.

3.2.4 Public-key Setup from Ring LWE

We present a non-interactive distributed setup protocol from RLWE. To the best of our
knowledge, this forms the first distributed setup protocol for PCF for ListOT based on a
plausibly post-quantum assumption. The goal of this protocol is for the sender with input ∆
and receiver with input z to distributively derive keys z0 (part of the master secret key) and
z1 (the constrained key), which can be viewed as additive shares of ∆ · z in a ring R.

Parameters. In order to rely on the security of RLWE, the receiver will “encode” the bits of
z ∈ Rn into the coefficients of an element z of a suitable polynomial ring P . The protocol is
executed over P and then, at the end of the protocol, the sender and receiver each “decode”
their result back into the ring R to obtain vectors z0 and z1, by parsing each polynomial as
a vector of n coefficients (and disregarding any extra coefficients).

Assume that R = Zt is an integer ring, and let q := n · t ·B · 2ω(log λ) (B is some bound
on the noise that we compute later). We define P := Zq[X]/(Xη + 1), where η is a power of
2 that is larger than n. Let χ = χ(P) be a suitable noise distribution over P, such that for
e0, e1

R← χ, it holds that ∥e0e1∥∞ ≤ B/3, with overwhelming probability.
The protocol proceeds in two phases as follows. During the public-key generation phase,

the sender and receiver each broadcast a public key, which is used by the other party in the
ShCPRF evaluation key derivation phase.

Step 1: Generating public keys. Fix random a0, a1 ∈ P as part of the public parameters.
To generate public keys, the sender and receiver proceed as follows. These public keys can
then be posted to a bulletin board or broadcasted.

Sender
1: Sample secret s0

R← χ.
2: Sample error e0

R← χ.
3: Set pkS = ∆ · a0 + s0a1 + e0.

Receiver
1: Encode q

t
· z as z ∈ P .

2: Sample secret s1
R← χ.

3: Sample errors e1, e
′
1

R← χ.
4: Set pkR = (z + s1a0 + e1, s1a1 + e′1).

Step 2: Deriving ShCPRF keys. To derive a master key msk and constrained key csk,
respectively, the sender and receiver use the other party’s public key to proceed as follows.
(Here and throughout, we overload rounding ⌈·⌋t notation to include “rounding” a polynomial
coefficient-by-coefficient.)
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Sender
1: Compute z0 := ⌈⟨pkR, (∆, s0)⟩⌋t.
2: Decode z0 ∈ P as z0 ∈ Rn.
3: Set msk := (z0,∆).

Receiver
1: Compute z1 := ⌈pkS · s1⌋t.
2: Decode z1 ∈ P as z1 ∈ Rn.
3: Set csk := z1.

Correctness. The inner products computed in the key derivation phase are, in fact, noisy
additive shares of ∆ · z ∈ P , since we have that

⟨pkR, (∆, s0)⟩ − (pkS · s1)
= ∆ · z +∆ · a0s1 +∆ · e1 + s0a1s1 + s0e

′
1 −∆ · a0s1 − s0a1s1 − e0s1

= ∆ · z +∆ · e1 + s0e
′
1 − e0s1︸ ︷︷ ︸

noise

≈ ∆ · z.

Note that ∆ ∈ Zt has low norm, so we can bound the magnitude of the noise term
∆ · e1 + s0e

′
1 − e0s1 by B. Hence, by a standard rounding lemma [DHRW16, BKS19],

z0 − z1 = ⌈⟨pkR, (∆, s0)⟩⌋t − ⌈pkS · s1⌋t = ∆ · z mod t. After parsing as vectors over Rn, we
have z0 − z1 = ∆ · z.

Security. Pseudorandomness of the public keys follows from the RLWE assumption with short
secrets (i.e., normal form RLWE).8 In the sender public key, the RLWE sample s0a1 + e0
masks ∆ · a0 and thus the secret key ∆. Similarly, in the receiver public key, the RLWE
sample s1a0+e1 masks z and thus the secret key z. For a complete description of our protocol,
its parameters, and proof of security, we refer to Section 3.7.5.

3.2.5 Multi-instance security

An immediate application of QuietOT (and public-key OT schemes in general [OSY21,
BCM+24]) is for efficient large-scale MPC. At a high level, with QuietOT, parties can, using
just the public keys of all other parties, create pairwise OT channels for the purpose of
running a secure computation (e.g., as in the GMW protocol [GMW87]). This application
was also described in prior public-key OT constructions [OSY21,BCM+24] but was never
formalized. We make the rather subtle observation that existing definitions [OSY21,BCM+24]
for public-key OT only require one-time security—i.e., privacy for the sender or receiver is
not considered when the same public keys are reused with different parties.

To address this gap and properly define public-key OT, we formalize the notion of “multi-
instance security” in Section 3.7. In a nutshell, our definition captures a setting where
parties (re)use a long-term secret (that depends on the public-key) and an ephemeral secret
that is generated for each new session. We then prove that our public-key setup satisfies
multi-instance security.

8Normal form RLWE is a standard variant of RLWE where the secret is sampled from the noise
distribution instead of uniformly. It is known to be as hard as regular RLWE and is often used for practical
schemes [LPR13,ACC+18,dCJV21,MW22].
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3.3 Preliminaries

3.3.1 Notation

We let N denote the set of natural numbers, Z denote the set of integers, and G denote a
finite group. We let R denote a finite ring. We denote by poly(·) the set of all polynomials
and by negl(·) any negligible function. We occasionally abuse notation and let poly denote a
fixed polynomial.

Sampling and assignment. We let x
R← S denote a uniformly random sample drawn from a

set S. We let x← A denote assignment from a randomized algorithm A and x := y denote
initialization of x to the value of y (which may be the output of a deterministic algorithm).

Vectors and matrices. We denote a vector v using bold lowercase letters and a matrix A
using bold uppercase letters. The i-th coordinate of a vector v is denoted by v[i] (we will
also occasionally abuse notation and write v[i] to look up a value associated with key i in a
key-value list). The i-th bit of a bit-string s is denoted by si. For a ring Rn, we define ∆ · α
for α ∈ Rn as the coordinate-wise scalar product.

Efficiency and indistinguishability. By an efficient algorithm A we mean that A is modeled by
a (possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. We write
D0 ≈c D1 to mean that two distributions D0 and D1 are computationally indistinguishable
to all efficient distinguishers D and D0 ≈s D1 to mean that D0 and D1 are statistically
indistinguishable.

Rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer.
For integers q > p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as
⌊v⌉p = ⌊(p/q) · v⌉.
Party identifiers. We identify parties with letters A and B, and use σ ∈ {A,B} to refer to a
party. We will slightly abuse notation by letting σ, for some σ ∈ {A,B}, refer to the party
identifier in the singleton set {A,B} \ {σ}.

3.3.2 Cryptographic definitions

Here, we recall the cryptographic definitions that we will use throughout the chapter. In
Section 3.3.2.1, we define the notion of an ipm-wprf. In Section 3.3.2.2, we cover the
definition of Ring LWE and the basics of modular rounding.

3.3.2.1 Inner-Product Membership PRF.

We define the notion of a weak PRF (wPRF)9 that can be evaluated using the “inner-product
membership” formalism introduced by Bui et al. [BCM+24].

Definition 3.3.1 (Inner-Product Membership wPRF (IPM-wPRF) [BCM+24]). Let λ be the
security parameter and R = R be a finite ring. Let S0 = S

(λ)
0 be a (polynomially-sized) subset

of Rλ, and set S1 := R \ S0. Then, f := {fλ : Kλ ×Xλ → {0, 1}}λ∈N is an inner-product

9A weak PRF is pseudorandom on uniformly random inputs.
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membership weak PRF (IPM-wPRF) family with respect to the partitioning (S0, S1), if it
satisfies the following three properties:

(1) Kλ = Xλ = Rn
λ for some n = n(λ),

(2) its evaluation can be expressed as an inner product membership, i.e., for each λ ∈ N,
z ∈ Kλ, x ∈ Xλ, we have that

fz(x) =

{
0, if ⟨z,x⟩ ∈ S0

1, otherwise (i.e., ⟨z,x⟩ ∈ S1),

where ⟨·, ·⟩ is the standard (simple) inner product on Rn, and

(3) it achieves the standard notion of a secure (weak) PRF [KL07].

3.3.2.2 Ring learning with errors and rounding.

We recall the standard ring learning with errors (RLWE) assumption of Lyubashevsky et
al. [LPR10] and its normal form.

Definition 3.3.2 (The Ring LWE assumption [LPR10]). Let λ be a security parameter. Let
η = η(λ), q = q(λ) ∈ N be polynomial in λ. Define the polynomial ring P = Zq[X]/(Xη + 1)
and let χ = χ(λ) be an error distribution over P. The RLWEη,q,χ assumption states that for
any t = t(λ) ∈ poly(λ), it holds that

(a, s · a+ e) ≈c (a,u),

where s
R← P , a R← P t, e

R← χt,u
R← P t. The “normal form” RLWEη,q,χ assumption states that

this holds even when s
R← χ, and is implied by the original formulation [LPR13, Lemma 2.24].

Modular rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest
integer. For integers q > p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as
⌊v⌉p = ⌊(p/q) · v⌉.

Rounding lemma. We recall the following “rounding lemma” [DHRW16,BKS19,CZ22]:

Lemma 3.3.1 (Rounding of Noisy Secret Shares). Let (t, q) be two integers such that t
divides q. Fix any z ∈ Zq and let (z0, z1) be any two random elements of Zq subject to
z0 + z1 = (q/t) · z + e mod q, where e is such that q/(t · |e|) ≥ λω(1). Then, with probability at
least 1− (|e|+ 1) · t/q ≥ 1− λ−ω(1), it holds that ⌊z0⌉t + ⌊z1⌉t = z mod t, and the probability
is over the random choice of (z0, z1) ∈ Zq × Zq.

3.3.3 Oblivious transfer

We define oblivious transfer functionality in Figure 3.1. The sender inputs two messages m0

and m1, while the receiver inputs a choice bit b ∈ 0, 1. The functionality then ensures that
the receiver learns only their chosen message mb (and learns no information on the other
message m1−b), and the sender learns nothing about the choice bit b.
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Functionality FOT

Parameters. String length k.

Parties. The functionality interacts with a sender S, receiver R.

Procedure.
1: Wait for input (m0,m1) ∈ {0, 1}k from S.
2: Wait for input b ∈ {0, 1} from R.
3: Output mb to the R and ⊥ to S.

Figure 3.1: Oblivious transfer ideal functionality FOT.

3.3.3.1 RKA-secure PRFs from random oracles

We recall the definition of RKA-secure PRFs from Chapter 2. In this section, we include, for
completeness, a proof of the (folklore) fact that when H is modeled as a random oracle, the
function Fk(x) = H(k, x) (for a suitable choice of the domain of k) is an RKA-secure PRF
for affine relations.

Lemma 3.3.2. Let m = m(λ), n = n(λ), ℓ(λ) ∈ poly(λ) and let R be a ring. Let H :
Rm×Fn

2 → Fℓ
2 be a hash function, modeled as a random oracle. Then, the family of functions

F = {x 7→ H(k, x)}k∈Rm is an RKA-secure PRF for the family Φ of all affine relations
Φ = {ϕα,β : k 7→ αk + β}α∈R∗,β∈Rm. More precisely, any Φ-restricted adversary A against the
RKA security of F , making at most qe evaluation queries and qr random oracle queries, has
advantage at most

AdvrkaA (λ) ≤ qr · qe
minα∈R∗ |α · Rm|

.

Proof. Let Qe denote the set of evaluation queries (ϕ, x) of A, and let Qr denote the set of
random oracle queries of A. Let us denote by Bad the following event during an execution of
the experiment ExprkaA,b(λ) (with b = 0 or b = 1): At the end of the experiment, the challenger
computes (ϕ(k), x) for each (ϕ, x) ∈ Qe and raises a flag Bad if (ϕ(k), x) ∈ Qr. If no flag Bad
is raised, the challenger returns a flag Good.

Conditioned on the event Good, every answer R(ϕ, x) (where R : Φ×Fn
2 → Fℓ

2 is a random
function) of the evaluation oracle to an evaluation query (ϕ, x) issued by A in ExprkaA,1(λ) is
sampled as a fresh random element independent of A’s view. In turn, it is distributed exactly
as H(ϕ(k), x), because the latter is a fresh uniform random element when A never queries
(ϕ(k), x)—i.e., it is distributed exactly as in ExprkaA,0(λ). In other words,

Pr[ExprkaA,0(λ) = 1 | Good] = Pr[ExprkaA,1(λ) = 1 | Good].
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This implies

AdvrkaA (λ) =
∣∣Pr[ExprkaA,0(λ) = 1]− Pr[ExprkaA,0(λ) = 1]

∣∣
= Pr[Bad] ·

∣∣Pr[ExprkaA,0(λ) = 1 | Bad]− Pr[ExprkaA,1(λ) = 1 | Bad]
∣∣

≤ Pr[Bad].

Now, fix a query (ϕ, x) ∈ Qe, and let ϕ : k 7→ α · k + β. Define U := {u ∈ Rm | ∃v ∈
Fn
2 , (u, v) ∈ Qr}. The probability, over the random choice of k, that (ϕ(k), x) ∈ Qr is at

most the probability that there exists u ∈ U such that α · k = u − β. Since α · k is a
uniformly random element from the ideal α · R, this happens with probability at most
qr/|αR| ≤ qr/minα∈R∗ |αRm|. The lemma then follows by a union bound over all queries in
Qe. ■

3.4 Shiftable CPRFs

In this section, we start by defining the notion of Shiftable CPRFs in Section 3.4.1. Then, in
Section 3.4.2, we construct ShCPRFs for inner-product predicates by adapting the framework
from Chapter 2.

3.4.1 Defining shiftable CPRFs

For simplicity, we restrict the definition to 1-key (rather than multi-key) ShCPRFs and
selective security, which is the definition that is satisfied by our construction. The definition
overlaps significantly with the definition of (non-shiftable) CPRFs [BW13,KPTZ13,BGI14]
but using the classic PRF-style “real-or-random” security game, where all evaluations are
either computed using the master key or using a truly random function.

Remark 12 (On the choice of security game). By using the real-or-random security definition,
we manage to get a tight reduction when proving security of our constructions. In contrast,
prior work that uses CPRFs to construct PCFs [CMPR23,BCM+24] has a polynomial loss in
security in their security proofs, proportional to the number of PCF evaluations, which was
an artifact of the original CPRF definition that uses the find-then-guess formulation.

Remark 13 (Relation to shift-hiding shiftable functions (SHSF)). SHSF are an extension
to CPRFs introduced by Peikert and Shiehian [PS18]. In a SHSF, the constrained CPRF
evaluation computes F.Eval(msk, x) + f(x), for a hidden “shift” function f embedded into the
constrained key. In contrast, our notion of Shiftable CPRFs only allows the master key holder
to shift the constraint when evaluating the CPRF (using the master key) and does not affect
the constrained key.

Definition 3.4.1 (Shiftable Constrained Pseudorandom Functions). Let λ ∈ N be a security
parameter. A Shiftable Constrained Pseudorandom Function (ShCPRF) with domain X = Xλ,
range Y, and a finite set of shifts S that supports constraints represented by the class of
circuits C = {Cλ}λ∈N, where Cλ : X × S → {0, 1}, consists of the following four algorithms.
We highlight the parts that are specific to shiftable CPRFs.
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• KeyGen(1λ)→ msk. The randomized key generation algorithm takes as input a security
parameter λ. It outputs a master secret key msk.

• Eval(msk, x, α)→ y. The deterministic evaluation algorithm takes as input the master
secret key msk, an input x ∈ X , and a shift α ∈ S. It outputs y ∈ Y.

• Constrain(msk, C)→ csk. The randomized constrain algorithm takes as input the master
secret key msk and a constraint circuit C ∈ C. It outputs a constrained key csk.

• CEval(csk, x)→ y. The deterministic constrained evaluation algorithm takes as input
the constrained key csk and an input x ∈ X . It outputs y ∈ Y.

We let any public parameters PP be an implicit input to all algorithms. An ShCPRF must
satisfy the following correctness, security, and pseudorandomness properties. We let F̃ = F̃λ

denote the set of all functions from X × S to Y.

Correctness. For all security parameters λ, all constraints C ∈ C, and all inputs x ∈ X ,
there exists an efficiently computable α ∈ S such that C(x, α) = 0 (authorized), and for all
α ∈ S where C(x, α) = 0 it holds that:

Pr

[
Eval(msk, x, α) = CEval(csk, x) :

msk← KeyGen(1λ)

csk← Constrain(msk, C)

]
= 1− negl(λ),

where the probability space is over the randomness used in KeyGen and Constrain.

(1-key, selective) Security. An ShCPRF is (1-key, selectively)-secure if for all efficient
adversaries A, the advantage of A in the following security experiment ExpshcprfA,b (λ) is negligible
in λ. Here, b denotes the challenge bit.

1. Setup: On input 1λ, the challenger

• runs A(1λ) who outputs a constraint C ∈ C,
• computes msk← KeyGen(1λ) and csk← Constrain(msk, C),

• samples a uniformly random function R
R← F̃λ, and

• sends csk to A.

2. Evaluation queries: A adaptively sends arbitrary inputs x ∈ X and shifts α ∈ S to
the challenger. For each pair (x, α), if C(x, α) = 0, then the challenger returns ⊥.
Otherwise, the challenger proceeds as follows:

• If b = 0, it computes y := Eval(msk, x, α) and returns y.

• If b = 1, it computes y := R(x, α) and returns y.

3. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvshcprfA (λ) is defined as

AdvshcprfA (λ) :=
∣∣∣Pr[ExpshcprfA,0 (λ) = 1]− Pr[ExpshcprfA,1 (λ) = 1]

∣∣∣ ,
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where the probability is over the randomness of A and KeyGen.

Pseudorandomness. An ShCPRF is said to be pseudorandom if for all efficient adversaries
A, it holds that∣∣∣∣∣ Pr

msk←KeyGen(1λ)
[AEval(msk,·,·)(1λ) = 1]− Pr

R
R←F̃λ

[AR(·,·)(1λ) = 1]

∣∣∣∣∣ = 1− negl(λ).

Remark 14 (The requirement for the pseudorandomness property). We note that while the
pseudorandomness property is implicit in standard CPRF definition (which has a polynomial
loss in security) [BW13], in the real-or-random style definition for CPRFs (as in Defini-
tion 3.4.1), this property is not immediately satisfied, since the challenger outputs ⊥ when
given an unconstrained query. Hence, we require the separate pseudorandomness property to
capture the requirement that the function being constrained is indeed a standard PRF.

3.4.2 Constructing shiftable CPRFs

In this section, we adapt the framework from Chapter 2 constructing CPRFs for inner-product
predicates from RKA-secure PRFs. We make the observation that the construction can be
easily adapted to fit the shiftable CPRF definition (Definition 3.4.1). In the process, we
additionally generalize the construction from Chapter 2 to work over a small ring as opposed
to a large field, which makes it integrate better with an IPM-wPRF as the predicate.

The CPRF framework from Chapter 2, in a nutshell. The CPRF framework from
Chapter 2 is parameterized by a security parameter λ, finite field F of order at least 2λ, and
a vector length parameter n ≥ 1. The master secret key msk consists of a random vector
z0 ∈ Fn. The constrained key csk for a constraint z ∈ Fn is then defined as z1 := z0 −∆z,
with ∆ ∈ F \ {0} a random non-zero scalar. The main insight behind the framework of
Chapter 2 is that for an input x ∈ Fn, when ⟨z,x⟩ = 0 (i.e., when the constraint is satisfied),
then the inner product ⟨z0,x⟩ is equal to ⟨z1,x⟩. This fact can be used to derive identical
PRF keys k and k′ under both msk and csk:

k = ⟨z0,x⟩ = ⟨z1,x⟩ −�����∆ ⟨z,x⟩ = ⟨z1,x⟩ = k′.

In contrast, when ⟨z,x⟩ ≠ 0, the ∆ ⟨z,x⟩-term makes k ̸= k′. Moreover, because ∆ is
uniformly random over F \ {0} (where F has order at least 2λ), z1 cannot be used to recover
z0, even with knowledge of the constraint z. The evaluation of the CPRF is then defined
as Fk0+k(x) (resp. Fk0+k′(x) for the constrained evaluation), where k0 is a “zero” PRF key
used to handle the case where x = 0n. One caveat, however, is that the derived PRF keys
are highly correlated, which necessitates choosing F to be a suitable RKA-secure PRF. In
Chapter 2, we show that when the PRF F is RKA-secure for affine key-derivation functions
(Definition 2.3.6), then the CPRF instantiated with the PRF F is secure. (We note that a
random oracle H : F × Fn → {0, 1}∗ is RKA-secure PRF for all non-trivial key-derivation
functions, as we prove in Section 3.3.3.1.)

Adding shiftability. We make the simple observation that if we make the master secret key
msk also contain ∆, then the we can easily turn the above framework into a shiftable CPRF
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ShCPRF for Inner-Product Predicates

Public Parameters. Security parameter λ, finite ring R of order ℓ, integers m such
that m ≥ λ, vector length n ≥ 1, and an RKA-secure PRF family F : Rm ×Rn → Y for
affine key-derivation functions.

ShCPRF.KeyGen(1λ):

1 : k0
R← Rm, ∆

R← Rm \ {0}

2 : Z0
R← Rm×n

3 : msk := (k0,Z0,∆)

ShCPRF.Eval(msk,x, α):
1 : parse msk = (k0,Z0,∆)

2 : k := k0 + Z0x−∆ · α
3 : return Fk(x)

ShCPRF.Constrain(msk, z):
1 : parse msk = (k0,Z0,∆)

2 : Z1 := Z0 −∆z⊤

3 : return csk := (k0,Z1)

ShCPRF.CEval(csk,x):
1 : parse csk = (k0,Z1)

2 : k := k0 + Z1x

3 : return Fk(x)

Figure 3.2: ShCPRF framework for inner-product predicates based on RKA-secure PRFs.

as follows. Specifically, when ⟨z,x⟩ ≠ 0, the constrained key computes k′ = ⟨z0,x⟩ −∆ ⟨z,x⟩.
The master key holder, with knowledge of ∆, can compute k = ⟨z0,x⟩ −∆ · α = k′, where
α = ⟨z,x⟩. This is enough to satisfy the correctness property of Definition 3.4.1 (Shiftable
CPRFs). In particular, here the constraint predicate C(x, α) is 0 if ⟨z,x⟩ − α = 0 and 1
otherwise.

Moving to the ring setting. We require instantiating the ShCPRF with a small ring R
(e.g., R = Z6) for efficiency purposes. However, to ensure each derived key is still at least
λ-bits, we must extend the small ring to a sufficiently large ring R′. As such, we replace the
large field F with a large R′ = Rm, where m ≥ λ to guarantee λ bits of security (we prove
the security of this modification in Lemma 3.3.2). Doing so, however, makes the vectors z0
and z1 (now sampled in (R′)n) better denoted as matrices from Rm×n. While this induces
notational changes, the CPRF construction itself remains almost identical to the one in
Chapter 2. In particular, for a constraint z ∈ Rn, we now have CPRF keys k,k′ ∈ Rm

(as opposed to k, k′ ∈ F above) derived for an input x ∈ Rn as k = Z0x = Z1x + (∆z⊤)x
which is equal to k′ = Z1x, when the constraint ⟨z,x⟩ = 0 ∈ R. We present our ring-based
ShCPRF framework in Figure 3.2 and prove security in Section 3.4.3 and Section 3.11.1.

To state more exactly the special type of Shiftable CPRF we obtain, we have the following
definition.

Definition 3.4.2 (Shiftable CPRFs for Inner-Product Predicates). Let R = Rλ be a finite
ring. Let ShCPRF be a Shiftable CPRF with domain X = Rn for an n = n(λ), range R, and
finite set of shifts S = R that supports constraints represented by a class of circuits {Cλ}λ∈N,
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such that Cλ = {Cz : z ∈ Rn}, where the Cz : X × S → {0, 1} are given via

(x, α) 7→

{
0, if ⟨z,x⟩ − α = 0,

1, otherwise.

Then, we identify the constraint circuit Cz with z, i.e., we just write that the constraint as a
vector z, and call ShCPRF a (ring-based) Shiftable CPRF for inner-product predicates.

3.4.3 Security analysis

Here, we analyze the security of the ShCPRF framework using the proof template of The-
orem 2.5.1 from Chapter 2. We adapt it in several key locations to handle the shiftability
property and operations in the ring R.

Theorem 3.4.1. If F is a family of RKA-secure pseudorandom functions with respect to
affine related-key derivation functions Φaff, as defined in Definition 2.3.6, then Figure 3.2
instantiated with F is a (1-key, selectively-secure) ShCPRF for inner-product constraint
predicates.

Proof. Deferred to Section 3.11.1. ■

3.5 PCFs for ListOT: Framework

In this section, we formalize our PCF for ListOT framework using the Shiftable CPRF
framework from Section 3.4. As mentioned in Section 3.2, ListOT does not fulfill the
definition of a “correlation” as defined by Boyle et al. [BCG+19b]. Therefore, we cannot use
existing definitions of a pseudorandom correlation function (PCF), since the correlation is
only partially defined. In particular, the problem is that the output of the receiver in ListOT
has an additional lookup key i that depends directly on the wPRF key used to compute the
pseudorandom bit b, which cannot be efficiently sampled given just the output of the sender.
We sidestep these issues by adapting the standard definition of a PCF [BCG+20a] to work
with the “partial correlation” that is ListOT. In Section 3.5.1, we define the notion of a PCF
for ListOT. Then, in Section 3.5.2, we describe our general framework for constructing a PCF
for ListOT. Finally, in Section 3.5.3, we explain how a PCF for ListOT is used to instantiate
QuietOT.

3.5.1 Defining PCFs for ListOT

Here, we give a formal definition of (weak) PCF for ListOT. For convenience, we use of the
following distribution of lists notation.

Definition 3.5.1 (Distribution of Lists). Let λ be a security parameter, Y be a finite set,
and I be an arbitrary finite index set. We denote by Dlist

Y (I) the distribution that outputs a
list (vi)i∈I , where each vi

R← Y is independently sampled at random.
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Definition 3.5.2 (Pseudorandom Correlation Function for ListOT). Let λ be a security
parameter and λ ≤ n = n(λ) ∈ poly(λ) be an input length. A Pseudorandom Correlation
Function (PCF) for ListOT with domain X = Xλ is defined by a pair of algorithms PCF =
(KeyGen,Eval) with the following functionality:

• KeyGen(1λ)→ (KS, KR). The randomized key generation algorithm takes as input the
security parameter λ. It outputs a pair of keys (KS, KR).

• Eval(σ,Kσ, x)→ yσ. The deterministic evaluation algorithm takes as input σ ∈ {S,R},
a key Kσ, and input x ∈ X . It outputs a string yσ ∈ {0, 1}∗, where

– if σ = S then yσ = (L0, L1) for two lists L0, L1; otherwise

– if σ = R then yσ = (b, v, α) for a bit b ∈ {0, 1}, a list entry v ∈ L0 ∪ L1, and a
lookup key α.

We will use PCF.EvalS(KS, x) and PCF.EvalR(KR, x) as shorthand for the Eval algorithm used
by the sender and receiver, respectively. We leave any public parameters PP as an implicit
input to all algorithms.
A PCF = (KeyGen,Eval) is a (weak) PCF for ListOT with domain X = Xλ, if the following
correctness, sender security, and receiver security properties hold. In each case, the adversary
is given access to N(λ) ∈ poly(λ) samples.

Pseudorandomness. For all efficient adversaries A, and all N ∈ poly(λ), there exists a
negligible function negl such that for all sufficiently large λ,

AdvprA,N(λ) =
∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣ ≤ negl(λ),

where ExpprA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 3.3.

Correctness. Moreover, we want that for any λ ∈ N it holds that:

Pr

 v ̸= Lb[α] :

(KS, KR)← PCF.KeyGen(1λ)

x
R← Xλ

(L0, L1) := PCF.EvalS(KS, x)

(b, v, α) := PCF.EvalR(KR, x)

 ≤ negl(λ),

i.e., that the (relevant) entry v is at position α of list Lb with a probability that is overwhelming
in λ.

Sender Security. For all efficient adversaries A, there exists a negligible function negl such
that for all sufficiently large λ,

AdvSsecA,N(λ) =
∣∣Pr[ExpSsecA,N,0(λ) = 1]− Pr[ExpSsecA,N,1(λ) = 1]

∣∣ ≤ negl(λ),

where ExpSsecA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 3.4.

Receiver Security. For all efficient adversaries A, there exists a negligible function negl
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ExpprA,N,0(λ):

(KS, KR)← PCF.KeyGen(1λ)

foreach i ∈ [N ]:
xi

R← Xλ

foreach σ ∈ {S,R} :
yiσ := PCF.Eval(σ,Kσ, xi)

parse yiS = (Li
0, L

i
1), yiR = (bi, vi, αi)

b′ ← A(1λ, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

ExpprA,N,1(λ):
foreach i ∈ [N ]:

xi
R← Xλ

Li
0

R← Dlist
Y (S0), Li

1
R← Dlist

Y (S1)

bi
R← {0, 1}

b′ ← A(1λ, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

Figure 3.3: (Partially) Pseudorandom outputs of a PCF for ListOT. The distribution Dlist
Y (·) is

defined in Definition 3.5.1.

ExpSsecA,N,0(λ) :

(KS, KR)← PCF.KeyGen(1λ)
foreach i ∈ [N ]:

xi
R← Xλ

(Li
0, L

i
1) := PCF.EvalS(KS, xi)

b′ ← A(1λ, KR, (xi, L
i
0, L

i
1)i∈[N(λ)])

return b′

ExpSsecA,N,1(λ):
(KS, KR)← PCF.KeyGen(1λ)
foreach i ∈ [N ]:

xi
R← Xλ

(bi, vi, αi) := PCF.EvalR(KR, xi)

Li
0

R← Dlist
Y (S0), Li

1
R← Dlist

Y (S1)
Set Li

bi
[αi] := vi

b′ ← A(1λ, KR, (xi, L
i
0, L

i
1)i∈[N(λ)])

return b′

Figure 3.4: Sender security game of a PCF for ListOT. The distribution Dlist
Y (·) is defined in

Definition 3.5.1.

such that for all sufficiently large λ,

AdvRsecA,N(λ) =
∣∣Pr[ExpRsecA,N,0(λ) = 1]− Pr[ExpRsecA,N,1(λ) = 1]

∣∣ ≤ negl(λ),

where ExpRsecA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 3.5.

3.5.2 Framework: PCF for ListOT from IPM-wPRFs

In Figure 3.6, we describe the framework for constructing a PCF for ListOT by combining a
Shiftable CPRF with any ipm-wprf.

Theorem 3.5.1. Let n = n(λ) ∈ poly(λ) and R be a finite ring of order q, with extension
parameter m ≥ λ. Let ShCPRF = (KeyGen,Eval,Constrain,CEval) be a shiftable CPRF for
inner-product predicates with domain Rn, and f : Rn ×Rn → {0, 1} a weak PRF family for
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ExpRsecA,N,0(λ) :

(KS, KR)← PCF.KeyGen(1λ)
foreach i ∈ [N ]:

xi
R← Xλ

(bi, vi, αi) := PCF.EvalR(KR, xi)

b′ ← A(1λ, KS, (xi, bi)i∈[N(λ)])
return b′

ExpRsecA,N,1(λ):
(KS, KR)← PCF.KeyGen(1λ)
foreach i ∈ [N ]:

xi
R← Xλ

bi
R← {0, 1}

b′ ← A(1λ, KS, (xi, bi)i∈[N(λ)])
return b′

Figure 3.5: Receiver security game of a PCF for ListOT.

inner-product membership with partitioning S0 ∪ S1 = R. Then, PCF = (KeyGen,Eval) from
Figure 3.6 is a PCF for ListOT.

Proof. Deferred to Section 3.11.2. ■

3.5.3 Realizing QuietOT from a PCF for ListOT

To generate random OT correlations, the sender and receiver use the PCF for ListOT
to generate pseudorandom ListOT instances. We use the template of Beaver [Bea95] for
converting a random ListOT instance into a chosen-bit OT protocol. We describe this
transformation in Figure 3.7.

Proposition 3.5.1. Let PCF = (KeyGen,Eval) be a PCF for ListOT. Then, the protocol
given in Figure 3.7 securely realizes the OT functionality.

Proof. The OT functionality is defined in Section 3.3.3. By the pseudorandomness property of
the PCF for ListOT we have that L0 and L1 are pseudorandom lists and b′ is a pseudorandom
bit if x (input to the PCF) is uniformly random. For an arbitrary choice bit b ∈ {0, 1} we
consider the two possible cases to prove correctness.

• Case 1: b = 0. In this case, c = b′ and so L′0 = Lb′ ⊕m0 and L′1 = L1−b′ ⊕m1. It then
follows that the receiver outputs (L′0[α]⊕m0)⊕ v, which equals m0 by the correctness
property of the PCF.

• Case 2: b = 1. In this case, c = 1−b′ and so L′0 = L1−b′⊕m0 and L′1 = Lb′⊕m1. It then
follows that the receiver outputs m1 = (L′1[α]⊕m1)⊕v, since we have v = Lb′ [α] = L′1[α]
by the correctness property of the PCF.

Note that in both cases, the equality holds with overwhelming probability, because correctness
of the PCF holds with overwhelming probability (Definition 3.5.2).
Sender security follows directly from the sender security of the PCF which guarantees that
(1) the receiver only obtains Lb′ [α] and (2) all other values in both lists are pseudorandom
from the viewpoint of the receiver and therefore guarantees that the receiver only obtains mb.
Receiver security follows from the fact that b′ is a pseudorandom bit (by receiver security
of the PCF) and therefore a pseudorandom mask for the receiver’s choice bit b. Therefore,
the sender learns nothing. ■
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PCF for ListOT

Public Parameters.

- Key length n = n(λ) ∈ poly(λ).

- Finite ring R of order q, with extension parameter m ≥ λ.

- IPM-wPRF family f : Rn ×Rn → {0, 1} with partitioning S0 ∪ S1 = R.

- An injective input mapping map : Xλ → Rn.

- An ShCPRF for inner-product predicates ShCPRF = (KeyGen,Eval,Constrain,CEval)
with domain Rn

PCF.KeyGen(1λ).
1: msk← ShCPRF.KeyGen(1λ)

2: z
R← Rn. ▷ ipm-wprf key

▷ Note that z can also be sampled from a non-uniform distribution over Rn.
3: csk← ShCPRF.Constrain(msk, z)

4: KS := msk, KR := (csk, z).
5: return (KS, KR)

PCF.EvalS(KS, x).
1: parse KS = msk.
2: x := map(x).
3: foreach b ∈ {0, 1} and α ∈ Sb:

1: y := ShCPRF.Eval(msk,x, α).
2: Lb[α] = y.

4: return (L0, L1).

PCF.EvalR(KR, x).
1: parse KR = (csk, z).
2: x := map(x).
3: v := ShCPRF.CEval(csk,x)

4: b := fz(x), α := ⟨z,x⟩ ∈ R.
▷ Note that v = Lb[α] in the sender-computed list.

5: return (b, v, α).

Figure 3.6: Framework for a PCF for ListOT from any ShCPRF and ipm-wprf.
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QuietOT from a PCF for ListOT

Sender(KS ,m0,m1, x) Receiver(KR, b, x)

(L0, L1) := PCF.EvalS(KS , x) (b′, v, α) := PCF.EvalR(KR, x)

c = b⊕ b′

L′0 := Lc ⊕m0

L′1 := L1−c ⊕m1
L′0, L

′
1

Output ⊥ Output L′b[α]⊕ v

Figure 3.7: QuietOT using a (weak) PCF for ListOT. Note that x (input to the PCF known by
both the sender and receiver) is uniformly random, as specified in Definition 3.5.2.

3.6 PCFs for ListOT: Instantiations

In this section, we instantiate the framework from Section 3.5 using either the BIPSW or GAR
IPM-wPRF candidate, coupled with the “RKA-PRF” Fk(x) := H(k, x) for a hash function H
modeled as a random oracle. For the sake of completeness, we prove in Section 3.3.3.1 that Fk

is indeed an RKA-PRF for all affine relations x 7→ αx+β with α ∈ R∗ and β ∈ Rm, as long as
minα(|α ·Rm|) ≥ 2λ. Looking ahead, both our instantiations will satisfy minα(|α ·Rm|) = 2m,
and we will therefore set m = λ.

These two instantiations result in our concretely efficient constructions (see Section 3.8).
We also describe other instantiations from different assumptions (in particular, replacing the
random oracle using an RKA-secure PRF), which have interesting theoretical implications
but do not currently result in concretely efficient constructions.

3.6.1 BIPSW IPM-wPRF instantiation

Our main instantiation is based on the BIPSW wPRF candidate, which can be easily viewed
as an IPM-wPRF. For a key z ∈ Zn

6 with n = n(λ) ∈ poly(λ), and x ∈ Zn
6 , the BIPSW wPRF

is defined as: fz(x) = ⌊⟨z,x⟩ mod 6⌉2, where ⌊α⌉2 = 0 for all α ∈ {0, 1, 2} and ⌊α⌉2 = 1 for
all α ∈ {3, 4, 5}. For a partitioning of Z6 consisting of S0 := {0, 1, 2} and S1 := {3, 4, 5}, we
get that ⟨z,x⟩ mod 6 ∈ Sb ⇐⇒ fz(x) = b.

We instantiate the framework using the ring R = Z6 and set m ≥ λ (see Lemma 3.3.2).
We interpret {0, 1} as elements of Z6 in the natural way (mapping 0 to the additive identity
and 1 to the multiplicative identity of Z6) and define map to be the canonical embedding
from {0, 1}n to Zn

6 . The full construction is presented in Figure 3.8 and closely follows the
general framework from Figure 3.6. We use the specific ShCPRF construction of Figure 2.1
with the random oracle H as the RKA-secure PRF and explicitly work over the ring Z6.
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PCF for ListOT from the BIPSW IPM-wPRF

Public Parameters.

- Integers n = n(λ) ∈ poly(λ), m ≥ λ and domain Xλ = {0, 1}n.
- BIPSW IPM-wPRF family f : Zn

6 × Zn
6 → {0, 1} with partitioning:

S0 := {α ∈ Z6 | α < 3} and S1 := Z6 \ S0.

- Input mapping map : Xλ → Rn is the canonical embedding of {0, 1}n in Zn
6 .

- The ShCPRF ShCPRF = (KeyGen,Eval,Constrain,CEval) from Figure 3.2, where the
RKA-secure PRF family F : Rm × Rn → Y is instatiated by a random oracle H,
cf. Section 3.3.3.1.

Construction.
(PCF.KeyGen, PCF.EvalR, PCF.EvalS) are identical to Figure 3.6 using R = Z6.

Figure 3.8: PCF for ListOT from the BIPSW ipm-wprf.

3.6.2 GAR IPM-wPRF instantiation

Unlike for the BIPSW wPRF, converting the GAR wPRF into an ipm-wprf is more
challenging. For completeness, we describe how Bui et al. [BCM+24] express the evaluation
function as an IPM and discuss concrete parameters that we use for our instantiation, which
differ from the parameters used to instantiate BCMPR.

The GAR construction. In a nutshell, the GAR construction (when instantiated with
the XOR-MAJ predicate [AL16, CDM+18]) has a key K ∈ {0, 1}n and takes as input a
string x that is parsed as a tuple of disjoint sets (Xxor, Xmaj) ⊂ [n]2 such that |Xxor| = k
and |Xmaj| = ℓ, for integers k = k(λ), ℓ = ℓ(λ). The evaluation of fK is then computed as:
(
⊕

i∈Xxor
K[i])⊕MAJ((K[j])j∈Xmaj

), where MAJ outputs the majority bit.

The GAR construction as an IPM-wPRF. Converting this evaluation into an inner-
product membership can be done as follows. View the evaluation as two separate components:
an XOR component and a MAJ component. For each index i ∈ Xxor, let ei be the one-
hot vector of length n with 1 in its i-th coordinate. First, interpret K as zxor ∈ Zn

2

and as zmaj ∈ Zn
ℓ by mapping 0 to 0 ∈ Z2 (resp. Zℓ) and 1 to 1 ∈ Z2 (resp. Zℓ)).

Then, compute vxor =
∑

i∈Xxor
⟨zxor, ei⟩. Similarly, for each index j ∈ Xmaj, let ej be the

corresponding one-hot vector. Then, compute vmaj =
∑

j∈Xmaj
⟨zmaj, ej⟩. Observe that

vmaj ≥
⌈
ℓ
2

⌉
⇐⇒ MAJ((zmaj[j])j∈Xmaj

) = 1. We define R = Z2 × Zℓ, which intuitively allows
for computing the “XOR” and “MAJ” components in separate subrings. Therefore, we can
view f as an ipm-wprf with partition:

S0 =
{
(u, v) ∈ R | (u = 0 ∧ v >

⌊
ℓ
2

⌋
) ∨ (u = 1 ∧ v ≤

⌊
ℓ
2

⌋
)
}

and S1 = R \ S0.

Parameters. We follow the parameter selection process of Bui et al. [BCM+24], which
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builds upon the state-of-the-art cryptanalysis of Goldreich’s PRG from [AL16, CDM+18,
YGJL21,Üna23]. To achieve λ bits of security with a key of length n = λδ and a bound
n1+e on the number of queries, the analysis of Bui et al. [BCM+24] suggests to use the
XOR-MAJ predicate with ℓ1 = 2 · e + 1 terms in the XOR, and ℓ2 = (2δ/(δ − 1)) · e + 1
terms in the MAJ. Concretely, we set e = 2 to get a stretch n3 (looking ahead, we will
choose n = 211, hence this corresponds to generating up to 233 OTs) and δ = 7/5 (hence
δ/(δ − 1) = 7/2). This implies that we can set ℓ1 = 5 and ℓ2 = 15. With these parameters,
we must set ℓ = ℓ2 + 1 = 16 to ensure no wraparound when computing the MAJ predicate
on the sum modulo ℓ of the ℓ2 entries in the corresponding subset. While this analysis
indicates that a seed size of n ≥ 128δ = 892 suffices, we set n = 2048 which allows us to more
efficiently parse uniformly random inputs x into the index sets Xxor and Xmaj, and generate
a larger number λδ = 233 of oblivious transfers. This results in an extremely conservative
parameter set: The estimated bit security of this parameter set, using the state-of-the-art
cryptanalysis [AL16,CDM+18,YGJL21,Üna23], is 2232.

Remark 15 (On the recent attack of Fu et al. [FLLL24]). Very recently, the work of Fu
et al. [FLLL24] introduced a new attack on Goldreich’s PRG that, in particular, breaks the
parameters chosen in BCMPR using about 225 calls to a Gaussian elimination routine (a
reasonable estimate of the runtime is of the order of 245 operations). This attack exploits
the fact that, given enough equations, one can guess that a subset of d seed bits will be zero,
and filter for equations where the MAJ component includes all these d bits. Then, because
a MAJ predicate applied to ℓ2 values, of which d are zero, is highly likely to yield zero, the
corresponding XOR-MAJ equation can be viewed as a noisy linear equation. This noisy linear
equations can then be solved using information set decoding algorithms.

While the attack completely breaks the BCMPR parameters, it performs very poorly in
our setting due to our choice of a very small ℓ2 and a very large n. Concretely, to obtain at
least n “filtered” equations, their attack requires that m ·

(
n−d
ℓ2−d

)
/
(
n
ℓ2

)
> n, which in our case

implies d ≤ 3. Using ℓ2 = 15, fixing d = 3 bits of MAJ to zero yields a “noise rate” of 19%,
and the runtime of ISD with this noise rate is extremely large (e.g., on the order of 2660 using
Prange’s algorithm [Pra62], when n = 2048).

3.6.3 Other instantiations

While we focus on the BIPSW and GAR ipm-wprf constructions when instantiating our
framework, several other instantiations are possible. First, we can instantiate the framework
using a different ipm-wprf candidate. While BIPSW and GAR appear to be the most
efficient candidates to fit the ipm-wprf template, future wPRF candidates or improved
parameters for the LWR wPRF resulting from tighter reductions for the LWR problem, could
lead to new instantiations. For example, with the VDLPN wPRF candidate [BCG+20a]
(which can be cast as an ipm-wprf [BCM+24]) and whose concrete security is beginning to
be analyzed [CD23], we could potentially have an additional practical instantiation.

Additionally, our framework is not restricted to the random oracle model (albeit, assuming
a random oracle can lead to the most practical instantiations, as is the case for other OT
extension protocols). As with prior OT extension protocols, we can replace the random oracle
with a suitable correlation-robust hash function [IKNP03]. However, we can even go one step
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PCF for ListOT from the GAR IPM-wPRF

Public Parameters.

• Integers n = n(λ) ∈ poly(λ) and m ≥ λ and R = Z2 × Zℓ.

• GAR IPM-wPRF family f : {0, 1}n×{0, 1}w → {0, 1} with parameters w0, w1, w =
w(w0, w1), where w0, w1, w ∈ N, and partitioning:

S0 =
{
(u, v) ∈ R | (u = 0 ∧ v >

⌊
ℓ
2

⌋
) ∨ (u = 1 ∧ v ≤

⌊
ℓ
2

⌋
)
}

and S1 = R \ S0.

• Input mapping map : {0, 1}poly(n) → Rn where each uniformly random input
x ∈ {0, 1}poly(n) is interpreted as a tuple (xxor, xmaj) ∈ {0, 1}n × {0, 1}n subject
to HW(xxor) = w0 and HW(xmaj) = w1, where HW(·) denotes the Hamming weight
of the input. (xxor, xmaj) is interpreted as (xxor,xmaj) ∈ Rn in the natural way (by
interpreting 0 and 1 as elements of R).

• The ShCPRF ShCPRF = (KeyGen,Eval,Constrain,CEval) from Figure 3.2, where
the RKA-secure PRF family F : Rm ×Rn → Y is instatiated by a random oracle
H, cf. Section 3.3.3.1.

Construction.
(PCF.KeyGen, PCF.EvalR, PCF.EvalS) are as described in Figure 3.6 using the ring R =
Z2 × Zℓ and input mapping map defined above.

Figure 3.9: PCF for ListOT from the GAR ipm-wprf.
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further. Note that because the security relies on the security of the ShCPRF, and the CPRF
construction from Chapter 2 relies only on a suitable RKA-secure PRF (a property inherited
by our construction of shiftable CPRFs), we can instantiate it using other assumptions such
as DDH, DCR, or VDLPN. We discuss these (currently purely theoretical) instantiations in
Section 3.10.3.

3.7 Public-Key Setup

We define the notion of a public-key setup for our PCF for ListOT. These definitions provide
the necessary foundations to apply public-key OT to an MPC setting (e.g., where parties
may engage in pairwise OT extensions). While the application of public-key OT to MPC
was mentioned in several prior works [OSY21, BCM+24], they did not provide a formal
treatment of this application. We find that the standard definition of public-key OT only
guarantees “one-instance” security, and does not address the many subtleties that arise when
the existing constructions are applied to a multi-party setting where an adversary can corrupt
multiple parties. Unfortunately, this makes existing public-key OT constructions potentially
insecure if used in such contexts. Here, we lay down the foundations necessary for providing
“ℓ-instance”-secure public-key OT, and prove that our main framework satisfies this stronger
definition.

3.7.1 ℓ-instance updatability of shiftable CPRFs

Here, we upgrade the ShCPRF definition from Section 3.5 to provide a notion of updatability,
allowing two parties to generate an ShCPRF key from “partial” keys.

Definition 3.7.1. Let ShCPRF = (KeyGen,Eval,Constrain,CEval) be a shiftable CPRF with
domain X = Xλ and range Y that supports constraints represented by the class of circuits
C = {Cλ}λ∈N (cf. Definition 3.4.1). We say the ShCPRF is updatable, if the key generation
algorithm KeyGen outputs a master secret key msk of the form (ltsk, esk), where ltsk is a
long-term secret key, esk is an ephemeral secret key, and there exists an efficient Update
algorithm with the following syntax:

• Update(ltsk, csk∗, C)→ esk′. The deterministic update algorithm takes as input a long-
term master secret key ltsk, a constrained key csk∗, and a constraint C. It outputs an
updated ephemeral master secret key esk′.

Moreover, we require that correctness also holds with respect to msk′ = (ltsk, esk′) and csk∗, if
csk∗ is properly formatted. More formally, we have:

Updatable Correctness. For all security parameters λ, all constraints C ∈ C, all inputs
x ∈ X , all properly formatted csk∗, and all α ∈ S with C(x, α) = 0 (authorized), it holds:

Pr

 Eval(msk′, x, α) = CEval(csk∗, x) :

(ltsk, esk)← KeyGen(1λ)

esk′ := Update(ltsk, csk∗, C)

msk′ := (ltsk, esk′)

 = 1− negl(λ),
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Multi-instance Updatable Security. For every polynomial ℓ = ℓ(λ) ∈ poly(λ), an ShCPRF
is (1-key, selectively, ℓ-instance)-updatably secure if for all efficient adversaries A, the
advantage of A in the following security experiment Expmi-shcprf

A,b (λ) is negligible in λ. Here, b
denotes the challenge bit.

1. Setup: On input 1λ, the challenger

• runs A(1λ) and receives ℓ constraints Ci ∈ C and the (possibly corrupted) con-
strained keys csk∗i , for all i ∈ [ℓ],

• computes (ltsk, esk)← KeyGen(1λ) and esk′i := Update(ltsk, csk∗i , Ci),

• sets mski := (ltsk, esk′i), and

• samples a uniformly random function R
R← F̃λ, where F̃λ denotes the set of all

functions from [ℓ(λ)]×Xλ × S to Y.

2. Evaluation queries: A adaptively sends arbitrary inputs x ∈ X , shifts α ∈ S,
and index i ∈ [ℓ] to the challenger. For each triple (x, α, i), if Ci(x, α) = 0, then the
challenger returns ⊥. Otherwise, the challenger proceeds as follows:

• If b = 0, it computes y := Eval(mski, x, α) and returns y.

• If b = 1, it computes y := R(i, x, α) and returns y.

3. Guess: A outputs its guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage Advmi-shcprf
A (λ) is defined as

Advmi-shcprf
A (λ) :=

∣∣∣Pr[Expmi-shcprf
A,0 (λ) = 1]− Pr[Expmi-shcprf

A,1 (λ) = 1]
∣∣∣ ,

where the probability is over the randomness of A and KeyGen.

Pseudorandomness. Define the following stateful oracle Omi-eval:

Oracle Omi-eval

Initialize. Sample mski ← KeyGen(1λ), for all i ∈ [ℓ].

Evaluation. On input (x, α, i), return Eval(mski, x, α).

An ShCPRF is said to be multi-instance pseudorandom if for all efficient adversaries A, it
holds that ∣∣∣∣∣Pr[AOmi-eval(·,·,·)(1λ) = 1]− Pr

R
R←F̃λ

[AR(·,·,·)(1λ) = 1]

∣∣∣∣∣ ≤ 1− negl(λ),

where the left probability is over the randomness of KeyGen, and F̃λ is the set of all functions
from [ℓ]×Xλ × S to Y.
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Updatability for the Ring-based ShCPRF for Inner Products

Public Parameters.

- Security parameter λ.

- Finite ring R of order ℓ.

- Integers m such that m ≥ λ.

- Vector length n ≥ 1.

- RKA-secure PRF family F : Rm ×Rn → Y for affine RKA key-derivation functions.

ShCPRF.KeyGen(1λ):

1 : ltsk := ∆
R← Rm \ {0}

2 : esk := (Z0,k0)
R← Rm×n ×Rm

3 : return msk := (ltsk, esk)

ShCPRF.Update(ltsk, csk, z):
1 : parse ltsk =: ∆

2 : parse csk := (k′
0,Z1)

3 : Z′
0 := Z1 +∆z⊤

4 : return esk′ = (Z′
0,k

′
0)

The remaining algorithms (ShCPRF.Constrain, ShCPRF.Eval, ShCPRF.CEval), are as de-
fined in Figure 3.2. Note that due to the now slightly different format of msk, the
algorithms ShCPRF.Constrain and ShCPRF.Eval defined in Figure 3.2 need to be adapted
to parse msk accordingly.

Figure 3.10: A modified version of the KeyGen, and the additional Update algorithm for the
ring-based shiftable CPRF framework from Figure 3.2.

3.7.2 Constructing ℓ-instance updatably-secure shiftable CPRFs

We now describe a simple modification of the ShCPRF construction from Section 3.4 and prove
that it satisfies updatable correctness and ℓ-instance updatable security. The construction is
given in Figure 3.10.

Theorem 3.7.1. If F is a family of RKA-secure pseudorandom functions with respect to
affine related key derivation functions Φaff, as defined in Definition 2.3.6, then for every
polynomial ℓ(λ) ∈ poly(λ), Figure 3.10 instantiated with F is a (1-key, updatably, selectively,
ℓ-instance)-secure ShCPRF for inner-product predicates.

Proof. Deferred to Section 3.11.3. ■

3.7.3 Defining public-key PCFs for ListOT

In this section, we introduce the notion of public-key PCFs for ListOT. Our definition is
geared towards our main application: non-interactive setup of pairwise OT channels over
a large-scale network. Crucially for this application, our security notions incorporate the
definition of ℓ-instance security, which says (informally) that if a user uses the same public
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key pk to establish an OT channel with ℓ different parties, then security is maintained even
against an adversary corrupting all ℓ parties.

Definition 3.7.2 (ℓ-Instance Public-Key Pseudorandom Correlation Function for ListOT).
Let λ be a security parameter and λ ≤ n = n(λ) ∈ poly(λ) be an input length. A Public-Key
Pseudorandom Correlation Function (pkPCF) for ListOT is defined by a triple of algorithms
pkPCF = (Gen, KeyDer, Eval) with the following functionality. We leave the public parameters
PP as an implicit input to all algorithms.

• pkPCF.Gen(1λ, σ) → (pkσ, skσ). The randomized key generation algorithm takes as
input the security parameter λ and a party index σ. It outputs a public and private key
pair (pkσ, skσ).

• pkPCF.KeyDer(σ, skσ, pkσ̄)→ Kσ. The deterministic key derivation algorithm takes as
input a party identifier σ ∈ {S,R} (where σ̄ denotes the other party’s identifier), a
secret key skσ, and a public key pkσ̄. It outputs a key Kσ. We assume this algorithm is
deterministic.

• pkPCF.Eval(σ,Kσ, x) → yσ. The deterministic evaluation algorithm takes as input
σ ∈ {S,R}, a key Kσ, and input x ∈ X . It outputs a string yσ ∈ {0, 1}∗, where

– if σ = S then yσ = (L0, L1) for two lists L0, L1, and

– if σ = R then yσ = (b, v, α) for a bit b ∈ {0, 1}, a list entry v ∈ L0 ∪ L1, and a
lookup key α.

We will use pkPCF.EvalS(KS, x) and pkPCF.EvalR(KR, x) as shorthand for the pkPCF.Eval
algorithm used by the sender and receiver, respectively.
A public key PCF pkPCF = (Gen,KeyDer,Eval) is a (weak) ℓ-instance public-key PCF for
ListOT, if the following correctness, ℓ-instance sender security, and ℓ-instance receiver
security properties hold. In each case, the adversary is given access to N(λ) ∈ poly(λ)
samples.

• Pseudorandomness. For all efficient adversaries A, and all N ∈ poly(λ), there exists
a negligible function negl such that for all sufficiently large λ,∣∣∣Pr[ExppkprA,N,0(λ) = 1]− Pr[ExppkprA,N,1(λ) = 1]

∣∣∣ ≤ negl(λ),

where ExppkprA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 3.11.

• Correctness. We want that for any λ ∈ N the following probability is negligible in λ:

Pr

 v ̸= Lb[α] :

(pkσ, skσ)← pkPCF.Gen(1λ, σ) for σ ∈ {S,R}
Kσ := pkPCF.KeyDer(σ, skσ, pkσ̄) for σ ∈ {S,R}

x
R← Xλ

(L0, L1) := pkPCF.EvalS(KS, x)

(b, v, α) := pkPCF.EvalR(KR, x)

,

108



ExppkprA,N,0(λ):
for σ ∈ {S,R}:
(pkσ, skσ)← pkPCF.Gen(1λ, σ)

for σ ∈ {S,R}:
Kσ := pkPCF.KeyDer(σ, skσ, pkσ̄)

for i = 1 to N(λ):
xi

R← X
for σ ∈ {S,R} :
yiσ := pkPCF.Eval(σ,Kσ, xi)

parse yiS = (Li
0, L

i
1), yiR = (bi, vi, αi)

b′ ← A(pkS, pkR, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

ExppkprA,N,1(λ):
for σ ∈ {S,R}:
(pkσ, skσ)← pkPCF.Gen(1λ, σ)

for i = 1 to N(λ):
xi

R← X
Li
0

R← Dlist
Y (S0), L

i
1

R← Dlist
Y (S1)

bi
R← {0, 1}

b′ ← A(pkS, pkR, (xi, L
i
0, L

i
1, bi)i∈[N(λ)])

return b′

Figure 3.11: (Partially) Pseudorandom outputs of a public-key PCF for ListOT.

i.e., that the (relevant) entry v is at position α of list Lb with a probability that is
overwhelming in λ.

• ℓ-Instance Sender Security. For all efficient adversaries A, there exists a negligible
function negl such that for all sufficiently large λ,∣∣∣Pr[ExppkSsecA,N,S,0(λ, ℓ(λ)) = 1]− Pr[ExppkSsecA,N,S,1(λ, ℓ(λ)) = 1]

∣∣∣ ≤ negl(λ),

where ExppkSsecA,N,S,b(λ, ℓ(λ)), for b ∈ {0, 1}, is as defined in Figure 3.12.

• ℓ-Instance Receiver Security. For all efficient adversaries A, there exists a negligible
function negl such that for all sufficiently large λ,∣∣∣Pr[ExppkRsecA,N,R,0(λ, ℓ(λ)) = 1]− Pr[ExppkRsecA,N,R,1(λ, ℓ(λ)) = 1]

∣∣∣ ≤ negl(λ),

where ExppkRsecA,N,S,b(λ, ℓ(λ)), for b ∈ {0, 1}, is as defined in Figure 3.13.

3.7.4 Constructing public-key PCFs for ListOT

In this section, we provide a construction of public-key PCFs for ListOT. In a nutshell, our
construction is exactly the construction of PCF for ListOT (Figure 3.6) instantiated with an
ℓ-instance updatable shiftable CPRF, enhanced with a distributed public-key setup protocol
PKS = (Gen,KeyDer) to generate the ShCPRF keys. Formally, we define a distributed
public-key setup protocol as follows:

Definition 3.7.3 (Distributed Public-Key Setup Protocol). A distributed, corruptible public-
key setup protocol PKS is parameterized by an updatable, shiftable CPRF ShCPRF = (KeyGen,
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ExppkSsecA,N,0 (λ, ℓ(λ)) :

(pkS, skS)← pkPCF.Gen(1λ, S)
for i = 1 to ℓ,
(pkiR, sk

i
R)← pkPCF.Gen(1λ, R)

Ki
S := pkPCF.KeyDer(S, skS, pk

i
R)

Ki
R := pkPCF.KeyDer(R, skiR, pkS)

for j = 1 to N(λ):
xi,j

R← X
(Li,j

0 , Li,j
1 ) := PCF.EvalS(Ki

S, xi,j)

corr := ((pk1R, sk
1
R), . . . , (pk

ℓ
R, sk

ℓ
R))

b′ ← A(pkS, corr, (xi,j, L
i,j
0 , Li,j

1 )i∈[ℓ],j∈[N ])
return b′

ExppkSsecA,N,1 (λ, ℓ(λ)):
(pkS, skS)← pkPCF.Gen(1λ, S)
for i = 1 to ℓ,
(pkiR, sk

i
R)← pkPCF.Gen(1λ, R)

Ki
S := pkPCF.KeyDer(S, skS, pk

i
R)

Ki
R := pkPCF.KeyDer(R, skiR, pkS)

for j = 1 to N(λ):
xi,j

R← X
(bi,j, vi,j, αi,j) := PCF.EvalR(Ki

R, xi,j)

Li,j
0

R← Dlist
Y (S0), L

i,j
1

R← Dlist
Y (S1)

Set Li,j
bi,j

[αi,j] := vi,j

corr := ((pk1R, sk
1
R), . . . , (pk

ℓ
R, sk

ℓ
R))

b′ ← A(pkS, corr, (xi,j, L
i,j
0 , Li,j

1 )i∈[ℓ],j∈[N ])
return b′

Figure 3.12: ℓ-instance sender security game of a pkPCF for ListOT.

Eval, Constrain, CEval, Update) with constraint class C, and consists of the following algo-
rithms. We leave the public parameters PP as an implicit input to all algorithms.

• PKS.Gen(1λ, σ,mσ) → (pkσ, skσ). The randomized key generation algorithm takes as
input a party identifier σ ∈ {S,R}, a message mσ where mσ is a long-term secret key
ltsk if σ = S and a constraint C ∈ C if σ = R. It outputs a public-secret key pair.

• PKS.KeyDer(σ, skσ, pkσ) → Kσ. The deterministic key derivation algorithm takes as
input a party identifier σ ∈ {S,R}, the corresponding secret key skσ, and the other
party’s public key pkσ. It outputs an evaluation key Kσ.

We say PKS = (Gen,KeyDer) is a distributed corruptible public-key setup if the following
one-message protocol realizes the ideal functionality described in Figure 3.14:

1. Each sender and receiver runs PKS.Gen and broadcasts the resulting public key.

2. Each sender (resp. receiver) uses the public key of each receiver (resp. sender) and its
own secret key to derive a shared updatable ShCPRF key using PKS.KeyDer.

Theorem 3.7.2. Let n = n(λ) ∈ poly(λ) and R be a finite ring of order q, with extension
parameter m ≥ λ. Let ShCPRF = (KeyGen,Eval,Constrain,CEval,Update) be an ℓ-instance
updatable ShCPRF for inner-product predicates with domain Rn, and f : Rn ×Rn → {0, 1}
a weak PRF family for inner-product membership with partitioning S0 ∪ S1 = R. Let
PKS = (Gen,KeyDer) be a distributed public-key setup protocol for ShCPRF. Let pkPCF =
(Gen,KeyDer,Eval) denote the PCF from Figure 3.6 (parameterized by ShCPRF), where the
algorithm PCF.KeyGen is replaced by the distributed public-key setup algorithms:

• pkPCF.Gen(1λ, σ). Takes as input a security parameter and party identifier σ ∈ {S,R},
and
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ExppkRsecA,N,0 (λ, ℓ(λ)) :

(pkR, skR)← pkPCF.Gen(1λ, R)
for i = 1 to ℓ,
(pkiS, sk

i
S)← pkPCF.Gen(1λ, S)

Ki
R := pkPCF.KeyDer(R, skR, pk

i
S)

Ki
S := pkPCF.KeyDer(S, skiS, pkR)

for j = 1 to N(λ):
xi,j

R← X
(bi,j, vi,j, αi,j) := pkPCF.EvalR(Ki

R, xi,j)

corr := ((pk1S, sk
1
S), . . . , (pk

ℓ
S, sk

ℓ
S))

b′ ← A(pkR, corr, (xi,j, bi,j)i∈[ℓ],j∈[N ])
return b′

ExppkRsecA,N,1 (λ, ℓ(λ)):
(pkR, skR)← pkPCF.Gen(1λ, R)
for i = 1 to ℓ,
(pkiS, sk

i
S)← pkPCF.Gen(1λ, S)

Ki
R := pkPCF.KeyDer(R, skR, pk

i
S)

Ki
S := pkPCF.KeyDer(S, skiS, pkR)

for j = 1 to N(λ):
xi,j

R← X
bi,j

R← {0, 1}
corr := ((pk1S, sk

1
S), . . . , (pk

ℓ
S, sk

ℓ
S))

b′ ← A(pkR, corr, (xi,j, bi,j)i∈[ℓ],j∈[N ])
return b′

Figure 3.13: ℓ-instance receiver security game of a pkPCF for ListOT.

– if σ = S, samples (ltsk, esk)← ShCPRF.KeyGen(1λ) and sets mσ := ltsk,

– if σ = R, samples a random constraint z over Rn and sets mσ := z.

Outputs (pkσ, skσ)← PKS.Gen(1λ, σ,mσ).

• pkPCF.KeyDer(σ, skσ, pkσ̄) := PKS.KeyDer(σ, skσ, pkσ̄).

Then, pkPCF is an ℓ-instance secure public-key PCF for ListOT.

Proof. We consider each property in turn.

Pseudorandomness. We prove pseudorandomness via a sequence of hybrids.

• Hybrid H0. This hybrid consists ExppkprA,N,0(λ) from Figure 3.11, where pkPCF.KeyGen,
pkPCF.KeyDer and pkPCF.Eval are as defined in Theorem 3.7.2.

• Hybrid H1. In this hybrid, we rely on the simulator SPKS for PKS. SPKS sends an empty
message to FPKS on behalf of the ideal functionality, and receives no output. Then,
it emulates the distribution of (pkS, pkR). By security of the PKS scheme, H0 ≈c H1.
Note that in this hybrid, the distribution of (pkS, pkR) is independent of z and msk.

• Hybrid H2. In this hybrid game, we replace each pseudorandom bit bi, sampled in H1

using the ipm-wprf f , with truly random bits sampled uniformly at random. The
proof that H2 ≈c H1 reduces to the pseudorandomness of f and is identical to the proof
between hybrids H1 and H0 from the pseudorandomness proof of Theorem 3.5.1.

• Hybrid H3. In this hybrid, for all i ∈ [N(λ)], the lists Li
0, L

i
1 are sampled uniformly

from Dlist
Y (S0) and Dlist

Y (S1), respectively, where the distribution Dlist
Y (·) is defined in

Definition 3.5.1 and consists of uniformly random samples from Y. The proof that
H3 ≈c H2 reduces to the pseudorandomness of ShCPRF and is identical to the proof
between hybrids H2 and H1 in the pseudorandomness proof of Theorem 3.5.1.
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Functionality FPKS

Parameters. The ideal corruptible functionality FPKS is parameterized by an updat-
able shiftable CPRF ShCPRF = (KeyGen,Eval,Constrain,CEval,Update) that supports
constraints in a constraint class C.

Parties. An adversary A, senders S1, . . . , Sℓ, and receivers R1, . . . , Rℓ.

Procedure.
The functionality aborts if it receives any incorrectly formatted message.

Generation phase (one time).
1: Receive a message containing a long-term secret key and an index (ltski, i) from every

sender Si for all i ∈ [ℓ].
2: Receive a message containing a constraint and an index (Cj, j) from receiver Rj , for all

j ∈ [ℓ].
3: Send ready to A.

Key derivation phase (repeatable).
1: Receive a message (keyder, j) from a sender Si and a message (keyder, i) from a receiver

Rj, for some i, j ∈ [ℓ].
2: Receive a message from A which is either empty, contains an ephemeral master secret

key esk, or contains a constrained key csk.
3: If A sent an empty message (i.e., the sender Si and receiver Rj are both honest), then

sample esk uniformly as in KeyGen and compute csk← Constrain((ltski, esk), Cj).
4: If A sent esk (i.e., the sender Si is corrupted), then compute csk ←

Constrain((ltski, esk), Cj).
5: If A sent csk (i.e., receiver Rj is corrupted), then compute esk := Update(ltski, csk, Cj).
6: Output (esk, j) to Si and (csk, i) to Rj.

Figure 3.14: Corruptible ideal functionality for the distributed public key setup.
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We observe that H3 is identical to ExppkprA,N,1(λ), which concludes the proof of pseudoran-
domness.

Correctness. This is similar to the correctness proof of Theorem 3.5.1. Observe that the entry
v output by PCF.EvalR(KR, x) is computed as v := ShCPRF.CEval(csk,x), where x := map(x)
and csk is computed as in the key derivation phase of FPKS via csk← ShCPRF.Constrain(msk, z)
for a constraint z ∈ Rn, if the adversary A is honest, or is a properly formatted csk as output
by A, in which case esk′ := Update(ltsk, csk, z). In the first case (A is honest), correctness
follows exactly as in the proof of Theorem 3.5.1, using the correctness of ShCPRF. Similarly,
for the second case (with a properly formatted csk given by A), we make use of the updatable
correctness of ShCPRF. Hence, using α = ⟨z,x⟩, the entry v is equal to Eval(msk′, x, α),
where msk′ := (ltsk, esk′) with (ltsk, esk) ← KeyGen(1λ). Then, for the (unique) b′ ∈ {0, 1}
with α ∈ Sb′ , we have that, with overwhelming probability, Lb′ [α] = v. As before, b′ = b by
the property of the ipm-wprf which guarantees that b := fz(x) = 0 iff ⟨z,x⟩ ∈ S0 and
fz(x) = 1 iff ⟨z,x⟩ ∈ S1.

Sender Security. We have a sequence of hybrids.

• Hybrid H0. This consists of ExppkSsecA,N,0 (λ) defined in Figure 3.12, where pkPCF.KeyGen,
pkPCF.KeyDer and pkPCF.Eval are as defined in Theorem 3.7.2. In particular, we note
that pkPCF.EvalS internally runs the updatable ShCPRF ShCPRF = (KeyGen,Eval,
Constrain,CEval,Update).

• Hybrid H1. In this hybrid, for each i ∈ [ℓ(λ)] and for each j ∈ [N(λ)], the call to
ShCPRF.Eval(mski,x, α) inside of the algorithm pkPCF.EvalS is replaced with a call to
ShCPRF.CEval(cski,x) whenever (x, α) is authorized (i.e., ⟨zi,x⟩ − α = 0), where cski
is part of KRi

in the ExppkSsecA,N,0 (λ) experiment.

Claim. H1 ≈s H0.

Proof. By the updatable correctness of updatable ShCPRFs, we have that for all
authorized (xi,j, α) pairs, ShCPRF.Eval(mski,xi,j, α) = ShCPRF.CEval(cski,xi,j), with
overwhelming probability. □

• Hybrid H2. In this hybrid, we rely on the simulator SPKS for PKS. SPKS simulates
pkS and extracts the constrained keys (cskj)j≤ℓ computed by the ℓ corrupted receivers
from (pkS, sk

j
R). It sends cskj to FPKS on behalf of A for each corrupted receiver Rj.

Note that from this game onward, the updated master secret keys mskj are not known
anymore, which will allow us to invoke the multi-instance updatable security of ShCPRF
in the next hybrid.

• Hybrid H3. In this hybrid, the lists Li,j
0 , Li,j

1 are sampled uniformly at random from
Dlist
Y (S0),Dlist

Y (S1), respectively. Then, for each (i, j) where (xi,j, αi,j) is an autho-
rized pair, find the bi,j ∈ {0, 1}, such that αi,j ∈ Sbi,j , and overwrite Li,j

bi,j
[αi,j] :=

CEval(cski,xi,j).

Claim. H3 ≈c H2.
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Proof. This follows from the ℓ-instance updatable security of ShCPRF; the proof proceeds
essentially as the proof between H3 and H2 in the sender security proof of Theorem 3.7.2.

□

Observe that H3 is exactly the experiment ExppkSsecA,N,1 (λ) experiment defined in Figure 3.12,
which concludes the proof of sender security.

Receiver Security. We have a sequence of hybrids.

• Hybrid H0. This hybrid consists of the ExppkRsecA,N,0 (λ) experiment defined in Figure 3.13,
where pkPCF is as defined in Theorem 3.7.2.

• Hybrid H1. In this hybrid, we rely on the simulator SPKS for PKS. SPKS simulates pkR
and extracts the ephemeral keys (eskj)j≤ℓ computed by the ℓ corrupted senders from
(pkR, sk

j
S). It sends eskj to FPKS on behalf of A for each corrupted sender Sj . Note that

from this game onward, the constraint z is not known anymore, which will allow us to
invoke the wPRF security in the next hybrid.

Claim. H1 ≈c H0.

Proof. This follows directly from the receiver security property of the PKS scheme,
since pkR is computationally indistinguishable from uniform. □

• Hybrid H2. In this hybrid, we sample a uniformly random function R from the set of
all functions from Xλ to {0, 1}, and generate bi,j := R(xi,j).

Claim. H2 ≈c H1.

Proof. The only difference between H2 and H1 is that bi,j = fz(xi,j) in H1, and
bi,j = R(xi,j) in H2. As the xi,j’s are uniformly random (and pkR is simulated without
using z), any distinguisher between H2 and H1 immediately yields a distinguisher for
the wPRF f , contradicting the pseudorandomness of fz. □

• Hybrid H3. In this hybrid, each bit bi,j is sampled uniformly at random: bi,j
R← {0, 1}.

Note that this hybrid is exactly ExppkRsecA,N,1 (λ).

Claim. H3 ≈s H2.

Proof. Since R is a truly random function, H3 and H2 are perfectly indistinguishable
conditioned on all xi,j’s being distinct. By a straightforward union bound, since all
xi,j’s are sampled randomly from X , the condition is satisfied except with probability
at most (N · ℓ)2/|Xλ|, which is negligible in λ because |Xλ| is exponential in λ. □

This concludes the proof of receiver security, and the proof of Theorem 3.7.2. ■
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3.7.5 Public-key setup from Ring LWE

Protocol. Here, we first informally describe the distributed public-key setup protocol
(Gen,KeyDer). See Figure 3.15 for a formal construction.

Public-Key Setup for Ring-based PCF for ListOT

Public Parameters. Security parameter λ, finite ring R = Zt, vector length n ≥ 1,
integer m such that m ≥ λ, polynomial ring P = Zq[X]/(Xη + 1), noise distribution χ
over P , and random a0, a1 ∈ P .

Gen(1λ, S, ltsk =: ∆):

1 : s10, . . . , s
m
0

R← χ

2 : skS := (∆, s10, . . . , s
m
0 )

3 : e10, . . . , e
m
0

R← χ

4 : foreach i ∈ [m] :

5 : pkiS := ∆i · a0 + si0a1 + ei0

6 : k0
R← Rm

7 : return (pkS := (k0, (pk
i
S)i≤m), skS)

KeyDer(S, skS, pkR):
1 : parse skS = (∆, s10, . . . , s

m
0 )

2 : foreach i ∈ [m] :

3 : zi0 :=
〈
pkR,

(
∆i, s

i
0

)〉
4 : parse zi0 ∈ P as z̃i0 ∈ Zn

q

5 : round zi0 =
⌈
z̃i0
⌋
t
∈ Zn

t

6 : esk = (k0,Z0 = (zi0)i≤m)

7 : return KS := (∆, esk)

Gen(1λ, R, Cz):
1 : parse z ∈ Rn from Cz

2 : s1
R← χ

3 : skR := (z, s1)

4 : let z ∈ P have coeffs.
q

t
· (z∥0η−n)

5 : e1, e
′
1

R← χ

6 : pkR := (z + s1a0 + e1, s1a1 + e′1)

7 : return (pkR, skR)

KeyDer(R, skR, pkS):
1 : parse skR = (z, s1), pkS := (k0, (pk

i
S)i≤m)

2 : foreach i ∈ [m] :

3 : zi1 := pkiS · s1
4 : parse zi1 as z̃i1 ∈ Zn

q

5 : round zi1 =
⌈
z̃i1
⌋
t
∈ Zn

t

6 : csk := (k0,Z1 := (zi1)i≤m)

7 : return KR := (csk, z)

Figure 3.15: A distributed public-key setup protocol for the ring-based updatable ShCPRF for
inner products. Note that when parsing elements of P as vectors in Zn

q , we ignore the last η − n
coefficients.

We assumeR = Zt and work over a polynomial ring P = Zq[X]/(Xη+1) (we will define the
RLWE parameters η, q later). The public parameters include random a0, a1 ∈ P . In the public-
key generation phase, the sender samples ∆ from Rm \ {0}, m secrets s10, . . . , sm0 from a noise
distribution, and noise e10, . . . , em0 . It publishes as its public key pkS = (∆i ·a0+si0a1+ei0)i∈[m],
along with k0, which it samples randomly from Rm.

The receiver samples z, a secret s1 from the noise distribution, and noise e1, e
′
1. It encodes

q
t
· z in a polynomial z ∈ P and publishes as its public key pkR = (z + s1a0 + e1, s1a1 + e′1).
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In the evaluation-key derivation phase, the sender computes, for each i ∈ [m], the rounded
inner product ⌈⟨pkR, (∆i, s

i
0)⟩⌋t10 and parses the resulting m polynomials as a matrix in Zm×n

t

(ignoring the last η − n coefficients when parsing polynomial ring elements as vectors). The
receiver computes, for each i ∈ [m], the rounded product

⌈
pkiS · s1

⌋
t
and, as before, parses

the result as a matrix in Zm×n
t .

Concrete parameters. We rely on the RLWE assumption (with a superpolynomial modulus-
to-noise ratio) in the polynomial ring P = Zq[X]/(Xη + 1) for some η a power of 2. We use
the normal form (see Definition 3.3.2), where the secret is drawn from the noise distribution
rather than uniformly. This is a standard choice in practical RLWE-based schemes with
hardness supported by security reductions [LPR13,ACC+18,dCJV21,MW22].

We use a standard choice of error distribution—a discrete Gaussian with standard deviation
σ = 3.2. When applying the rounding lemma (Lemma 3.3.1) to prove correctness of our
protocol, note that the failure probability of rounding an element of Zq to an element of
R = Zt will grow with t·B

q
, where B is a bound on the magnitude of the error term in the

derived polynomials (that depends on χ and η). To ensure correctness with overwhelming
probability, i.e., that with probability at least 1− 240, the sender and receiver correctly round
all n ·m coefficients, we will set q = t ·B · n ·m · 240.

We need that η ≥ n (for values of n chosen for both the BIPSW and GAR instantiations),
and following post-quantum security standards for normal form RLWE [ACC+18], the choice
of η = 212 can support up to a 103-bit modulus q, which is more than sufficient for our choice
of q.

Public key size. The sender’s public key consists of m elements of P , as well as k0 ∈ Rm, so
we can bound the key size by m · (η · log q + log t) bits. The sender’s public key is roughly
5.5 MB in size for the BIPSW ipm-wprf and GAR ipm-wprf. However, the receiver’s
public key only consists of 2 elements of P , which makes it roughly 85 kB in size.

Theorem 3.7.3. The distributed public-key setup protocol PKS = (Gen,KeyDer) defined in
Figure 3.15 securely implements the corruptible ideal functionality represented in Figure 3.14
with respect to the ring-based updatable ShCPRF framework defined in Figures 3.2 and 3.10.

Proof. Deferred to Section 3.11.4. ■

3.8 Implementation and Evaluation

Implementation. We implement QuietOT in C with roughly 1,200 lines of code for the
BIPSW and GAR implementations combined. Our implementation is open source [SS24c].

We additionally implement the BCMPR silent OT protocol in C in roughly 600 lines of
code using the P-256 elliptic curve implementation available in the OpenSSL library [Ope24].
For OSY, we estimate their runtime by benchmarking the dominant cost of their construction:
computing λ = 128 modular exponentiations in a 3200-bit RSA group. To heuristically
instantiate the random oracle H(·), we use fixed-key AES, operating with 128-bit inputs, and
truncate the output to a single bit (such an instantiation is shown to be correlation-robust

10Recall that we write ⌈·⌋t to denote “rounding” a polynomial coefficient-by-coefficient.
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in the ideal cipher model [GKWY20]). To generate pseudorandom inputs for the PCF, we
stretch a short seed (common to both the sender and receiver) using AES in CTR mode.
Our implementations make use of several optimizations, which are described further in
Section 3.8.1. We use the state-of-the-art implementation of existing OT extension protocols
(IKNP, SoftSpokenOT, RRT) available in libOTe [RR20] to compare to other OT extension
protocols. In order to provide a fairer comparison to existing OT extension protocols, we do
not include the base OT costs required in SoftSpokenOT and IKNP.

Environment. We run our benchmarks on an AWS c5.metal and t2.small instances,
and on an Apple M1 Pro laptop computer, using a single core. Because network latency
and bandwidth can fluctuate leading to high variance, our benchmarks take into account
only the processing time required by the sender and receiver. We compare the network
overhead between each protocol using the “bits/OT” measure, which provides an objective
and consistent comparison between protocols, avoiding network-specific or implementation
differences.11

Parameters. We fix the security parameter λ = 128. For BIPSW, we set n = 768 and
pre-compute inner products with CPRF keys in blocks of 16 bits (this is an optimization
we describe in Section 3.8.1). We operate over the ring Z6, which allows us to use CRT
decomposition and pack 128 elements of Z2 into one machine word. For GAR, we set n = 2048,
ℓ1 = 5 and ℓ2 = 15. This allows us to work over the ring R = Z2 × Z16. The choice of
n = 2048 is very conservative but allows us to sample indices in {1, . . . , 2048} efficiently
without rejection sampling. In turn, this improves concrete performance by allowing us
to efficiently generate inputs for the wPRF (all we require is checking that the sampled
set of random indices consist of distinct elements). SoftSpokenOT has a tunable tradeoff
between communication and computational efficiency parameterized by k. For a given k,
SoftSpokenOT requires λ/k communication but increases computation by a factor of 2k/k.
Small values of k (e.g., k = 4) provide a good tradeoff in practice, resulting in 32 bits/OT at
an increase of 4× in computation.

Communication costs and comparison. QuietOT with BIPSW as the ipm-wprf
requires 7 bits of communication per chosen-bit OT. For random choice bits, communication
is only 6 bits since the receiver does not need to send its masked bit. Moreover, for random
OT (when the sender inputs are also random), the messages m0 and m1 can be set to the
first elements of L0 and L1, respectively, reducing communication to |S0|+ |S1| − 2 (or 4 bits
when using the BIPSW ipm-wprf). QuietOT with GAR as the ipm-wprf requires 33 bits
of communication per chosen-bit OT. However, the same logic above reduces communication
to 32 bits/OT when the choice bit is random and 30 bits/OT for random OT. QuietOT
beats SoftSpokenOT on communication (for reasonable choices of k) when instantiated with
BIPSW and remains on-par with SoftSpokenOT in terms of communication when instantiated
with GAR. Silent OT protocols (i.e., RRT, BCMPR, OSY) have an optimal 3 bits/OT of
communication and 2 bits/OT when the receiver’s choice bit is random. This makes QuietOT
roughly 2-10× worse in terms of communication when compared to silent OT.

Computational costs and comparison. The state-of-the-art OT extension protocol is
11The libOTe implementation is evaluated on localhost, and therefore is somewhat limited by the kernel

when transferring data making IKNP slower than SoftSpokenOT.
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|pksender| |pkreceiver| OT/s
(M1 Pro)

OT/s
(c5.metal)

OT/s
(t2.small)

Bits/OT

IKNP 2,592,000 34,174,000 12,264,000 128
SoftSpokenOT (k = 2) 2,732,000 52,676,000 33,121,000 64
SoftSpokenOT (k = 4) 1,636,000 44,443,000 27,504,000 32
SoftSpokenOT (k = 8) 249,000 9,500,000 5,891,000 16
SoftSpokenOT (k = 16) 2,000 76,000 49,000 8
RRT 1,230,000 6,856,000 2,492,000 3
OSY 50 kB 1 kB 0.6 0.5 0.3 3
BCMPR (BIPSW) 63 kB 72 kB 15,000 12,000 8,000 3
BCMPR (GAR) 33 kB 38 kB 21,000 17,000 11,000 3
QuietOT (BIPSW) 5.4MB 84 kB 1,165,000 561,000 362,000 7
with AVX512 support N/A 1,265,000 N/A 7
QuietOT (GAR) 5.6MB 88 kB 1,198,000 526,000 336,000 33

Table 3.2: OTs per second on a single core generated by the sender. Note that libOTe is not
optimized for M1 since the AVX instructions are not available on M1 processors, hence we report
these numbers in gray. The GAR ipm-wprf cannot benefit from AVX due to limited bit-slicing
opportunities. Setup costs are excluded.

SoftSpokenOT. To provide an apples-to-apples comparison of the computational costs while
fixing the communication overhead in SoftSpokenOT, we could set k = 18 and k = 4 in
SoftSpokenOT, leading to 7.1 bits/OT and 32 bits/OT, respectively. However, SoftSpokenOT
becomes very inefficient with large k which does not make the comparison fair when QuietOT
is instantiated using BIPSW. Comparing to SoftSpokenOT with small k and QuietOT (when
instantiated with either BIPSW or GAR) shows that QuietOT is roughly one to two orders of
magnitude slower. However, we stress that SoftSpokenOT benefits a lot more from advanced
hardware instructions than QuietOT, potentially making QuietOT outshine SoftSpokenOT
on weak(er) devices. This is evidenced by QuietOT outperforming the SoftSpokenOT
implementation on the M1 (where AVX512 is not available). Unfortunately, since the libOTe
implementation is not optimized for performance when AVX is disabled, performing a head-
to-head comparison difficult. Comparing QuietOT to BCMPR (state-of-the-art public-key
OT protocol) shows that QuietOT is up to 100× faster in terms of computation while only
increasing communication by a few bits.

Public key size. Our public key setup has public keys that are roughly 20 to 60 times larger
compared to the public keys in BCMPR and OSY. This is primarily due to the parameters
required for the RLWE assumption (see Section 3.7.5). However, as a consequence, we obtain
plausible post-quantum security. In practical terms, however, the average web page size is
roughly 2MB as of 2023 [IS22], making the overall key size very reasonable for use on the
Internet. Additionally, we note that this is the sender ’s public key size—the receiver’s public
key in our construction is only around 90 kB, which could be beneficial to some applications.
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3.8.1 Optimizations in the implementation

Our implementation makes use of several optimizations which we detail here.

Optimizing the BIPSW instantiation. We make several observations allowing us to
concretely optimize the BIPSW instantiation from Figure 3.8.

Working over the CRT decomposition. All computations over R = Z6 can be computed over
the CRT decomposition Z2×Z3 ≃ Z6. This enables applying the following two optimizations:

• Bit-sliced arithmetic in Z2. We can pack the m elements of Z2 into ⌊m/64⌋ machine
words (on 64-bit word processors). This allows parallelizing the Z2 component of all
operations over Rm by using a single machine instruction for each batch of ⌊m/64⌋
elements of Rm.

• Bit-sliced arithmetic in Z3. While we can also pack the Z3 elements into ⌊2m/64⌋
machine words (using two bits for each element of Z3 on a 64-bit machine), such a packing
requires computing operations in Z3 over the bit-sliced representation. Fortunately, this
very problem was explored in WAVE [BCC+23, Appendix B.1], where they provide an
efficient bit-sliced representation for computing fast bit-sliced arithmetic over Z3. In
particular, each arithmetic operation in Z3 requires using only 7 machine instructions.

Our implementation in C. Concretely, we pack ring elements into uint128_t types in C
(which represent two 64-bit machine words). This allows us to pack the 128 Z2 elements into
one uint128_t type and pack the high and low order bits of the 128 Z3 elements into two
uint128_t types. We can then perform bit-sliced arithmetic over this packed representation.

Preprocessing inner products. A separate optimization, which we find also applies to the
construction of BCMPR when instantiated with the BIPSW ipm-wprf, is to preprocess
the inner products over small chunks of the key. When using the BIPSW wPRF, each
matrix-vector product Z0x can be equivalently written as a sum of smaller matrix-vector
products. More precisely, let x = (x1, . . . ,xn/t) such that |xi| ∈ {0, 1}t (we assume that t
divides n) and let Z0 = (Z01, . . . ,Z0n/t). Then, by preprocessing all possible 2t matrix-vector
products associated with the i-th column block matrix Z0i and storing the results, we can
efficiently look up the result for any input block xi, saving a factor t in computation at a
cost of 2t in extra storage.

Optimizing the GAR instantiation. Unfortunately, we find fewer ways to optimize the
GAR instantation compared to our BIPSW instantiation. In particular, the GAR instantiation
does not benefit from preprocessing opportunities that we identify for our BIPSW instantiation.
However, we note that we can still take advantage of bit-sliced operations to compute the m
operations over Z2 in parallel. Performing bit-sliced arithmetic over Z16 (when ℓ = 16), in
contrast, is more challenging.

Fast arithmetic over Z16. We found it to be more efficient to not pack the Z16 elements
and instead just use one byte for each of the 128 elements of Z128

16 . This allows us to sum
modulo 16 by first computing the sum over the integers and then using a bit-mask to reduce
modulo 16. In particular, we can sum two elements of Z16 via integer addition (summing two
bytes) followed by a bit-wise AND with 0b00001111, which zeroes-out the carry bit. This
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optimization makes summation modulo 16 fast, mitigating the impact of not being able to
perform bit-sliced arithmetic for the Z16 elements.

General optimization: Compressing hash inputs via universal hashing. In the
ring element representations of both the BIPSW and GAR instantiations, we end up with a
tightly packed representation of the Z2 elements but only a “loosely-packed” representation
of the Z3 elements (resp. Z16 elements). The naive approach would be to feed the entire
bit-string representation of the ring elements (the ShCPRF key) and input x into the random
oracle, which is heuristically instantiated using fixed-key AES [GKWY20]. However, this
would require breaking up the input string into blocks of 128 bits and then xoring all the
resulting AES outputs together. While this solution does not introduce noticeable slowdowns
for the BIPSW instantiation,12 it is not ideal for the GAR instantiation. For the GAR
implementation, this approach would require packing all the elements of Z128

16 into four
AES blocks, which is inefficient since the packing itself is slow (recall that each element
is represented as a byte for fast arithmetic operations). However, we additionally need
to pack the ShCPRF input x, which would lead to even more overheads. To avoid these
inefficiencies, we instead choose to compress the representation of the ring elements and input
x into tightly packed λ-bit strings by using a universal hash, which acts as a randomness
extractor for the input to the random oracle. Specifically, we can make use of the leftover
hash lemma [HILL99] to extract λ ≈ 128 bits from the representation of the ring elements.
This allows us to then only perform one AES call, using the compressed 128-bit representation
as input. We do the same for the ShCPRF input x and the Z128

2 block, leading to a total of
three independent AES calls that we then truncate and XOR together. The standard LHL
bound requires 128 + 2κ bits of entropy to extract 128-bits that are statistically close to
uniform in the worst-case [HILL99], where κ is a statistical security parameter. However,
the generalized LHL bound of Barak [BDK+11] allows us to do better. Specifically, they
prove that when extracting randomness to use as a key for a weak PRF (we assume that
our ShCPRF takes uniformly random inputs and thus is a weak PRF)13 the LHL bound
can be improved to 128 + κ, which saves a factor of two in the entropy loss. Therefore, we
can increase the ring dimension m to 128 + 64 to ensure the universal hashing produces a
near-uniform 128 bit key for the ShCPRF, with ≥ 64-bits of statistical security. As for the
input x, universal hashing provides 128-bits with even more statistical security since under
our concrete parameter choice for GAR, we already have 308 bits of entropy in the input
x, which already give more than 64-bits of statistical security under the basic LHL bound.
Finally, to further improve efficiency, we use an almost-universal (as opposed to perfectly
universal) hash function, which results in faster implementations while only sacrificing a few
bits of statistical security [BDK+11]. In our implementation of the GAR instantiation, we
use the open-source Polymur [Pet24] almost-universal hash function for this purpose.

12In particular, we only need ≈ 80 bits for the Z3 components (which can be represented with two 128-bit
blocks), leaving 96 bits “on the table” into which we can pack the ShCPRF input string. This leads to only
three AES calls to instantiate the random oracle.

13We can view the inputs to the ShCPRF as having ≥ 128 bits of entropy—even if they are potentially
non-uniform—since the input to the ShCPRF in our framework is itself an input to a weak PRF.
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3.9 Application to Large-Scale MPC

We consider an application where a large number of parties are interacting over a network.
Each individual party is associated with a role (sender or receiver) and is identified by its
public key. At any time, a pair of parties (S,R) with respective key pairs (pkS, skS) and
(pkR, skR) can engage in a secure computation protocol, which reduces to a large number
N of oblivious transfers [GMW87]. Both parties derive PCF keys for ListOT via KeyDer,
compute N ListOTs, and use them in N instances of the OT protocol from Figure 3.7. In this
setting, we note that the ℓ-instance security notions of public key PCFs for ListOT captures
the following security properties:

Sender security. Consider a sender S with key pair (pkS, skS) interacting with ℓ corrupted
receivers (R1, . . . , Rℓ) with public keys (pkR1

, . . . , pkRℓ
). The sender has N · ℓ message pairs

(mi,j
0 ,mi,j

1 )i≤N,j≤ℓ. The sender and the receivers agree on N · ℓ uniformly random inputs
(xi,j)i≤N,j≤ℓ.

• Key derivation. The sender S sets Kj
S := pkPCF.KeyDer(S, skS, pkRj

), for all j ∈ [ℓ].

• Oblivious transfers. For every i ≤ N, j ≤ ℓ, S computes

(Li,j
0 , Li,j

1 ) := pkPCF.EvalS(Kj
S, xi,j).

For every j ≤ ℓ, upon receiving (ci,j)i≤N from Rj, S replies with (Li,j
ci,j
⊕mi,j

0 , Li,j
1−ci,j ⊕

mi,j
1 )i≤N (following Figure 3.7).

To argue security in this setting, consider the following sequence of hybrids.

• Hybrid H0. This hybrid is the protocol described above.

• Hybrid H1. In this hybrid game, a simulator S (who is given the random tapes of
the receivers R1, · · · , Rℓ, samples the lists (Li,j

0 , Li,j
1 ) exactly as in ExppkSsecA,N,1 (λ, ℓ(λ))

from Figure 3.12, and plays the role of the sender exactly as in H0 afterwards. In this
experiment, for any i ≤ N and j ≤ ℓ, the simulator S first samples (Li,j

0 , Li,j
1 ) uniformly

at random and then sets Li,j
bi,j

[αi,j ] := vi,j , where (bi,j, vi,j, αi,j) := pkPCF.EvalR(Ki
R, xi,j)

(note that S can reconstruct the keys Kj
R from the tapes of the receivers). Importantly,

for every (i, j), the list Li,j

b̄i,j
remains truly random.

Claim. H1 ≈c H0.

Proof. This claim follows directly from the ℓ-instance sender security property of the
public key PCF (cf. Figure 3.12). □

• Hybrid H2. In this hybrid game, the simulator S first samples pkS, reconstructs all
keys Kj

R using pkS by deriving skjR from the tape of the receiver Rj, and computes
(bi,j, vi,j, αi,j) := pkPCF.EvalR(Ki

R, xi,j). For all i ≤ N, j ≤ ℓ it sends bi,j to the OT
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functionality, and obtains m
(i,j)
bi,j

. Finally, S samples (Li,j
0 , Li,j

1 ) uniformly at random,
and sets Li,j

ci,j
[αi,j] := vi,j ⊕m

(i,j)
bi,j

. For j = 1 to ℓ, S sends (Li,j
ci,j

, Li,j
c̄i,j)i≤N to Rj.

Claim. H2 ≈ H1.

Proof. Note that the change in H2 is purely syntactic, because all values in Lc̄i,j and
all values Lci,j [k] for k ̸= αi,j are uniformly and independently random.

This concludes the proof of sender security.

Receiver security. Conversely, consider a receiver R with key pair (pkR, skR) interacting
with ℓ corrupted senders (S1, · · · , Sℓ) with public keys (pkS1

, · · · , pkSℓ
). The receiver has

N · ℓ selection bits (bi,j)i≤N,j≤ℓ. The senders and the receiver agree on N · ℓ uniformly random
inputs (xi,j)i≤N,j≤ℓ.

• Key derivation. R sets Kj
R := pkPCF.KeyDer(R, skR, pkSj

), for all j ∈ [ℓ].

• Oblivious transfers. For every i ≤ N, j ≤ ℓ, R computes

(b′i,j, vi,j, αi,j) := pkPCF.EvalR(Kj
R, xi,j).

For every j ≤ ℓ, the receiver sends ci,j := bi,j ⊕ b′i,j to Sj . Upon receiving (Li,j
0 , Li,j

1 )i≤N
from Sj, R outputs mi,j := Li,j

bi,j
[αi,j]⊕ vi,j.

The security analysis is straightforward: The simulator samples the bits bi,j uniformly at
random, as in the experiment ExppkRsecA,N,1 (λ, ℓ(λ)) from Figure 3.13. The simulated game is
indistinguishable from the honest game by the ℓ-instance receiver security of pkPCF. In this
simulated game, ci,j = bi,j ⊕ b′i,j perfectly masks bi,j, and receiver security follows.

3.10 Precomputability and Two-Round OT Extension

In this section, we discuss additional features offered by our framework and instantiations.
In particular, we describe how our framework offers precomputability for either the sender or
the receiver, with an efficient “synchronization” protocol using standard building blocks. We
additionally discuss several other features offered by our framework, such as two-round OT
extension and theoretical instantiations in the standard model.

Tool: Vector Oblivious Linear Evaluation (VOLE). As a building-block for precom-
putability and two-round OT extension, we first describe Vector OLE [NP06, IPS09] and
“reverse” VOLE (reVOLE) [BCG+19b]. We define the ideal functionalities for these primitives
in Figure 3.16, when generalized to matrix inputs (this generalization follows immediately
from standard VOLE and reVOLE). At a high level, matrix-VOLE allows the receiver to
obtain A+ bx⊤ as output (the sender gets no output), when the sender inputs (A,b) and
the receiver inputs x. In contrast, matrix-reVOLE allows the receiver to obtain A+ bx⊤ as
output, when the sender inputs (A,x) and the receiver inputs b. Using any matrix-VOLE
(or matrix-reVOLE) protocol, we obtain precomputability for the sender and receiver via
simple building blocks (VOLE and reVOLE).
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Parameters. Finite ring R and integers m,n ≥ 1.

Parties. The functionality interacts with a sender S and a receiver R.

Ideal functionality FVOLE:
1: Wait for input (A,b) ∈ Rm×n ×Rm from S.
2: Wait for input x ∈ Rn from R.
3: Compute C := A+ bx⊤, and output C to R and ⊥ to S.

Ideal functionality FreVOLE:
1: Wait for input (A,x) ∈ Rm×n ×Rn from S.
2: Wait for input b ∈ Rm from R.
3: Compute C := A+ bx⊤, and output C to R and ⊥ to S.

Figure 3.16: Ideal functionalities for matrix-VOLE (FVOLE) [NP06, IPS09].

3.10.1 Precomputability

Here, we describe how either the sender or receiver can precompute all their inputs ahead
of time, without needing to know the identity of the other party. Our definition for pre-
computability is inspired by the blueprint laid out by Couteau, Meyer, Passelègue, and
Riahinia [CMPR23].14 Moreover, we explain how VOLE or (reVOLE) can be used to
efficiently synchronize the parties after one of the parties precomputes their OT messages.

Remark 16. The definition of precomputability in [CMPR23, Def. 7] has a couple downsides
which we address with Definition 3.10.1. In particular, their definition does not rule out a
“trivially precomputable” scheme where KeyGen0 outputs both the keys (and the other party’s
key would be fixed by having it as part of the auxiliary information passed to KeyGen1).
In this case, the first party has both keys and we do not get meaningful security for the
applications when using this setup. Additionally, their definition provides no formalization of
the interactive “synchronization” protocol, which we resolve by defining the ideal functionality
used by the parties to agree on common keys (without changing the first party’s key) following
one party’s precomputation.

Definition 3.10.1 (Precomputable PCF for ListOT). Let λ be a security parameter and
λ ≤ n = n(λ) ∈ poly(λ) be an input length. Let PCF = (KeyGen,Eval) be a PCF for
ListOT. We say that PCF is sender precomputable if there exist efficient algorithms KeyGenS,
KeyGenRevS, and an interactive key generation protocol KGR between the sender S and a
receiver R, with the following syntax:

• KeyGenS(1
λ) → KS. The randomized key generation algorithm takes as input the

security parameter. It outputs a key KS.

• KeyGenRevS(KS)→ r. The deterministic reversal algorithm takes as input a sender’s
key, and outputs the sampling randomness r ∈ {0, 1}∗. (This is used to formalize a
notion of oblivious sampleability of the key.)

14Note that simultaneous precomputability is not possible [CMPR23].
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Parties. The functionality interacts with a sender S and a receiver R.

Ideal functionality FKG,R:
1: Wait for input KS from S.
2: Wait for input (“KeyGen”) from R.
3: Compute KR := KeyDerR(KS), where KeyDerR is an algorithm that computes a fitting

receiver’s key (i.e., such that the distribution of (KS, KR) is identical to the output of
PCF.KeyGen(1λ)) from a valid sender’s key KS. Then, output KR to R and ⊥ to S.

Figure 3.17: Ideal functionality for the protocol that securely establishes a fitting key for the other
party, after one party’s key has been generated ahead of time.

• KGR⟨S,R⟩ is an interactive protocol, where S has input KS (as output by the first
algorithm), and R has no input. After the protocol, R outputs a key KR, while S
outputs ⊥.

Importantly, we have that the keys generated by this process are identically distributed to
those generated by PCF.KeyGen. That is, we first require that the sender’s key is obliviously
sampleable (independently of the receiver’s key), a notion that is inspired by Canetti and
Fischlin [CF01]. Formally,

(1) Generating the sender’s key via KeyGenS is perfectly indistinguishable from the generating
it via PCF.KeyGen:{

KS | KS ← KeyGenS(1
λ)
}
≡
{
KS | (KS, KR)← PCF.KeyGen(1λ)

}
,

and

(2) the algorithm KeyGenRevS returns, for a sender’s key KS, the randomness that is used
to generate it using KeyGenS:{

(KS, r) | r
R← {0, 1}poly(λ);KS := KeyGenS(1

λ; r)
}

≈c

{
(KS, r)

∣∣∣∣∣ (KS, KR)← PCF.KeyGen(1λ)

r ← KeyGenRevS(KS)

}
.

Additionally, we require that KGR securely realizes the functionality FKG,R described in Fig-
ure 3.17.

Receiver precomputability. This is defined in the exact analogous way, where all instances
of S and R are exchanged. Hence, it asks for the existence of KeyGenR, KeyGenRevR, and an
interactive key generation protocol KGS that fulfills the respective analogous properties.

The main motivation of precomputability is that one party can locally generate a key and
use it to precompute all evaluations. Then, at a later point in time, another party can use
an interactive protocol that securely establishes a key that “fits” to the key that was used
by the first party for the precomputation. We now turn to describing how we can achieve
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precomputability for either the sender or the receiver.

Sender precomputability. KeyGenS simply outputs the ShCPRF master key, exactly as
in the construction. This gives us sender precomputability for Figure 3.6, because in the
construction, we have KS = msk = (k0,Z0) (an ShCPRF master key as defined in Figure 3.2)
which is sampled independently of the receiver’s key KR. Then, to obtain KR, the receiver
can invoke a matrix-VOLE protocol, defined in Figure 3.16, where the sender inputs (Z0,∆)
while the receiver inputs −z (note that ∆ ∈ Rm and z ∈ Rn). The receiver then obtains
Z1 = Z0 −∆z⊤ as output, which is distributed identically to Z1 in Figure 3.2. Note that k0,
which is common to both msk and csk, can simply be sent over by the sender. As such, the
receiver successfully derives KR = ((k0,Z1), z), which matches the expected receiver key.

Receiver precomputability. Showing that we also get receiver precomputability is slightly
more involved. First, note that we can let the receiver sample k0, Z1, and z uniformly,
which together form KR = ((k0,Z1), z). Therefore, we can define KeyGenR to output these
elements, which are distributed identically to the receiver’s key in the construction. Using
KR, the receiver can precompute all the OT messages for Figure 3.7.

Then, the challenge is finding a way for the sender (who has ∆) to obtain the “master key”
msk = (k0,Z0) where Z0 = Z1 +∆z⊤. This can be achieved by invoking a matrix-reVOLE
protocol, defined in Figure 3.16, where now the receiver (playing the role of the sender) inputs
(Z1, z) and the sender (playing the role of the receiver) inputs ∆ ∈ Rm. The sender obtains as
output Z0 = Z1 +∆z⊤, which is distributed identically to Z0 in Figure 3.2. Once more, the
receiver can simply send k0 to the sender. This allows the sender to recover KS = (k0,Z0),
as required.

Application: Fast OTs in a client-server model. To motivate the notion of precom-
putability, consider the following setting: a weak client will want to, at some point in the
future, run a secure two-party computation protocol with some servers, the identity of which
is yet unknown. During an idle period, the weak client generates its key Kσ ← KeyGenσ(1

λ),
for σ ∈ {S,R}, and precomputes a large number of ListOTs (either list pairs (L0, L1) if the
client has a sender role, or triples (b, v, α)). When the client decides on a server they want
to generate OTs with, a cheap distributed protocol is performed (by our above discussion,
this can be done with a single length-n VOLE or reVOLE with our construction) to provide
the key K1−σ to the server. The powerful server can then quickly compute its share of the
ListOTs on the fly, and engage in the two-party computation with the client. In a typical
scenario, the client could be a phone; at night, the phone automatically prepares ListOTs.
Then, whenever the phone holder decides to browse a website, the phone could enable a
two-party computation with the website (e.g., to securely get restaurant recommendations,
find matching profiles, or be served with a targeted ad) using only cheap computations on its
side (indeed, the bottleneck shifts entirely towards communication).

3.10.2 Two-round setup from two-round OT

In this section, we describe how our framework yields a protocol for two-round OT extension.
Since two-round OT is clearly optimal, two-round OT extension provides the best possible
performance one could hope for (in terms of rounds and use of symmetric vs. public-key
primitives). However, due to the impossibility result of Garg et al. [GMMM18], two-round OT
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extension is impossible to instantiate unconditionally in the ROM, and therefore necessitates
a non-black-box assumption. Here, we show that using any black-box two-round OT protocol,
we get a two-round key-derivation protocol for our PCF for ListOT from Figure 3.6. This then
allows us to build a two-round OT extension. Coupled with our instantiation of QuietOT in
the standard model (see Section 3.10.3), we show that any ipm-wprf suffices to achieve
two-round OT extension and circumvent the impossibility of Garg et al. [GMMM18] using a
broad family of Minicrypt primitives.

Lemma 3.10.1 (VOLE and reVOLE from OT). Two-round OT implies two-round VOLE
and reVOLE, as defined in Figure 3.16.

Proof. Two-round reverse VOLE can be constructed using n parallel calls to a two-round
OLE functionality (where the receiver inputs x ∈ Rn coordinate-by-coordinate and the
sender inputs A column-by-column and b). In turn, two-round OLE can be constructed
from O(m log2 |R|) parallel calls to a two-round OT functionality using the protocol of
Gilboa [Gil99] for ring Rm. The same holds for reVOLE, since reVOLE is trivially implied by
OLE [ALSZ15,ADI+17]. ■

Theorem 3.10.1 (Informal). There exists a two-round key derivation protocol for Figure 3.6
from any two-round OT protocol.

Proof. The proof follows from the protocols described in Section 3.10.1 and using Lemma 3.10.1.
Consider the PCF for ListOT framework of Figure 3.6. As shown in Section 3.10.1, using
a reVOLE protocol, the receiver can obtain KR with one call to the reVOLE functionality
by inputting −z and having the sender input (Z0,∆). Again, since k0 is common to both
the sender and receiver in Figure 3.6, it can be transmitted separately. By Lemma 3.10.1,
this reVOLE functionality can be instantiated using O(n · m log2(|R|)) parallel calls to a
two-round OT functionality, which implies that the receiver can derive KR in two rounds. ■

3.10.2.1 Two-round OT extension

Note that, just using z (the wPRF key) and the random xi, the receiver can precompute all
the OT messages sent to the sender in Figure 3.7, without needing to know csk (recall that
KR = (csk, z)). Specifically, by (1) computing all the bits destined for the sender in Figure 3.7
using z, and (2) executing the two-round key-derivation protocol from Theorem 3.10.1 in
parallel with Figure 3.7, the receiver obtains csk and all the information it needs to decode
the response messages received from the sender. A little more concretely,

Round 1: Receiver→ Sender. In the first round, the receiver, with choice bits b = (b1, . . . , bN ),
starts by computing all the bit masks b′ using the wPRF key z and x and sends c = b⊕ b′

to the sender in Figure 3.7. In addition, the receiver also sends the reVOLE message used to
derive csk in parallel with its choice bits.

Round 2: Sender → Receiver. The sender computes the lists L0 and L1 as in Figure 3.7, then
using the masked bits (ci ∈ c)i∈[N ] received from the receiver, it responds with its reVOLE
response message and lists (L′i,0, L

′
i,1)i∈[N ]. The receiver can then locally (1) reconstruct csk

from the reVOLE response message and (2) recover the messages exactly as in Figure 3.7.
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3.10.3 Instantiations of QuietOT in the standard model

An interesting feature of our PCF for ListOT framework (Figure 3.6) is that security (for
the sender) reduces entirely to the ShCPRF, as seen in the proof of Theorem 3.5.1. While
the simplest instantiation of the ShCPRF framework (Section 3.5) is using a random oracle,
any suitable RKA-secure PRF suffices. In particular, as was shown in Chapter 2, we
can use the VDLPN wPRF candidate of Boyle et al. [BCG+20a] to instantiate a (weak)
CPRF (in turn giving us a weak ShCPRF by extension). Coupled with the work of Bui et
al. [BCM+24], which shows that the VDLPN wPRF candidate is actually an ipm-wprf, we
can instantiate QuietOT solely based on the VDLPN assumption. Of course, using alternative
CPRF constructions supporting inner-product predicates based on DDH (cf. Chapter 2),
DCR [CMPR23], or LWE [DKN+20] is also an option. However, while such instantiations are
interesting when viewed from a theoretical lens, they do not lead to practical constructions
given their “public-key” nature.

Remark 17. We note that Applebaum, Harnik, and Ishai [AHI11] have shown that it is
possible to instantiate the IKNP OT extension protocol assuming RKA-secure PRFs, which
coupled with our framework, makes studying the relationship between RKA-security and OT
extension an interesting direction for future work.

Remark 18 (Generating random inputs). In practice, the inputs to the PCF (which are
used as inputs to the ipm-wprf) need to be uniformly random. The random oracle model
immediately implies a common random string available to both parties to use as inputs.
However, if we replace the random oracle with an RKA-secure PRF, then the parties need a
different way to obtain uniformly random inputs. One idea is to settle for pseudorandom
inputs and have both parties obtain a common seed for a PRG (or alternatively obtain a PRF
key), which they can expand into many (pseudo)random inputs x1, . . . , xN to generate N
correlations. Unfortunately, such an approach is only heuristically secure in the general case,
since there exist counter-examples to the security of wPRFs when evaluated using (public)
pseudorandomness [PS08]. However, for the BIPSW and VDLPN wPRF candidates, security
is believed to hold even when evaluated using public pseudorandomness, as shown in a recent
work of Brzuska et al. [BCE+24].

3.11 Deferred Proofs

3.11.1 Proof of Theorem 3.4.1

Proof. We prove correctness, security, and pseudorandomness in turn.

Correctness. Consider a constraint z ∈ Rn and input x ∈ Rn such that ⟨z,x⟩ = 0 (i.e, the
constraint is satisfied). It holds that k = k0+Z0x = k0+Z1x+(∆z⊤)x = k0+Z1x. Therefore,
the resulting k is identical in Eval and CEval of Figure 3.2 for the same input x. Correctness
then follows from the correctness of F . For shiftability correctness, for all ⟨z,x⟩−α ̸= 0, using
shift α, then k = Z0x−∆α = k = Z0x−∆α+∆ ⟨z, x⟩ −∆ ⟨z,x⟩ = Z1x+∆ ⟨z,x⟩ −∆α.
Therefore, when α = ⟨z,x⟩, the resulting k is identical in Eval and CEval of Figure 3.2 for
the same input x and correctness follows.
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(1-key, selective) Security. We prove security by a reduction to the RKA-security of F .
Our proof consists of a sequence of hybrid games.

• Hybrid H0. This hybrid consists of the (1-key, selective) ShCPRF security game defined
in Definition 3.4.1.

• Hybrid H1. In this hybrid, during setup, the challenger first samples the constrained
key and then samples the master key. Specifically, at the start of the game, given the
constraint z ∈ Rn, the challenger first samples a constrained key csk := (k0,Z1), where
k0

R← Rm and Z1
R← Rm×n. Then, the challenger computes the master secret key as

msk := (k0,Z0,∆), where ∆
R← Rm, Z0 := Z1+∆z⊤ and k0 is as in csk. The difference

between H0 and H1 is purely syntactic. In particular, it follows that the distribution of
msk and csk in H1 is identical to H0.

• Hybrid H2. In this hybrid game, the challenger does not sample ∆ anymore. Instead,
the challenger is given access to the following stateful oracle Orka:

Oracle Orka

Initialize. Sample ∆
R← Rm.

Evaluation. On input ϕ ∈ Φaff and x ∈ Rn, return Fϕ(∆)(x).

The challenger is then defined as follows.

1. Setup: On input 1λ, the challenger

– runs A(1λ) who outputs a constraint z;

– samples csk according to H1 by sampling k0
R← Rm, Z1

R← Rm×n;

– samples a uniformly random function R
R← F̃λ, where F̃λ is the set of all

functions with domain X × S and range Y ; and

– sends csk to A.

2. Evaluation queries: For each query (x, α) from A, if Cz(x, α) = 0, then the
challenger responds with ⊥. Otherwise, the challenger proceeds as follows:

– If b = 0, it computes a := ⟨z,x⟩ − α and b := k0 + Z1x, defines the affine
function ϕ : u 7→ au + b, queries Orka on input (ϕ,x), and forwards the
response y to A.

▷ We note that y is computed by Orka as Fk′(x) where
▷ k′ = a∆+ b ∈ Rm = (⟨z,x⟩ − α)∆ + b = ϕ(∆), for some ϕ ∈ Φaff .

– If b = 1, it computes y := R(x, α) and returns y,

Claim. A’s advantage in H2 is identical to A’s advantage in H1.
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Proof. The difference between H2 and H1 is again purely syntactic since each output is
computed identically in both games. However, note that the challenger now only has
access to ∆ via the oracle Orka. □

Claim. There does not exist an efficient A with greater than negligible advantage in H2

assuming F is an RKA-secure PRF with respect to affine related key derivation functions
Φaff .

Proof. Note that the challenger in H2 is already playing the role of a Φaff-restricted adversary
when querying the oracle Orka to answer the evaluation queries. The reduction to RKA
security of F is therefore immediate. □

This concludes the proof of (1-key, selective) security.

Pseudorandomness. We prove the pseudorandomness property by a reduction to the
RKA-security of F . Our proof consists of a sequence of hybrid games.

• Hybrid H0. In this hybrid, the adversary is given oracle access to Eval(msk, ·, ·).

• Hybrid H1. In this hybrid, the reduction emulates the answers of the oracle queries of
A as follows. It samples Z0

R← Rm×n and ∆
R← Rm \ {0}. In addition, the reduction

interacts with the following oracle Orka:

Oracle Orka

Initialize. Sample k0
R← Rm.

Evaluation. On input ϕ ∈ Φaff and x ∈ Rn, return Fϕ(k0)(x).

Given a query (x, α), the reduction defines ϕα : k 7→ k + Z0x − ∆ · α, and queries
Orka on input (ϕα,x), and forwards the response to A. Observe that the answers to
A’s queries in H1 are always equal to Eval(msk,x, α) for msk := (k0,Z0,∆), hence A’s
advantage in H1 is identical to A’s advantage in H0.

• Hybrid H2. In this hybrid, the answer of Orka on a query (x, α) is computed as
R(ϕα,x), where R is a uniformly random function from the set F̃λ of all functions from
Φaff ×S to Y . By the RKA-security of the PRF family, H1 and H2 are computationally
indistinguishable.

• Hybrid H3. In this hybrid, we sample a uniformly random function R
R← F̃λ, where F̃λ

is the set of all functions from Rn × S to Y , and all queries of A are answered with R.
Observe that for any two queries (x0, α0) and (x1, α1), it holds that (ϕα0 ,x0) = (ϕα1 ,x1)
iff (x0, α0) = (x1, α1), hence H3 is perfectly indistinguishable from H2.

This concludes the proof of pseudorandomness and the proof of Theorem 3.4.1. ■
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3.11.2 Proof of Theorem 3.5.1

Proof. We prove pseudorandomness, correctness, sender security, and receiver security in
turn.

Pseudorandomness. We prove pseudorandomness via the following two hybrid games.

• Hybrid H0. This hybrid consists of ExpprA,N,0(λ) from Figure 3.3, where PCF.KeyGen
and PCF.Eval are as defined in Figure 3.6 (PCF for ListOT framework).

• Hybrid H1. In this hybrid game, we replace each pseudorandom bit bi computed in H0

using the ipm-wprf f , with truly random bits.

Claim. H0 ≈c H1.

Proof. Suppose, towards a contradiction, that there exists an efficient A that dis-
tinguishes between H0 and H1 with non-negligible advantage ν(λ). Since the only
difference between H0 and H1 is that the pseudorandom bits in H0 are replaced with
uniformly random bits in H1, the reduction to the wPRF pseudorandomness of f is
immediate. (For this, note that z is independent of msk.) □

• Hybrid H2. In this hybrid, for all i ∈ [N(λ)], the lists Li
0, L

i
1 are sampled uniformly

from Dlist
Y (S0) and Dlist

Y (S1), respectively, where the distribution Dlist
Y (·) is defined in

Definition 3.5.1 and consists of uniformly random samples from Y .

Claim. H2 ≈c H1.

Proof. Suppose, towards a contradiction, that there exists an efficient A that distin-
guishes between H2 and H1 with non-negligible advantage ν(λ). We can then construct
an efficient B that contradicts the pseudorandomness property of the ShCPRF (Defini-
tion 3.4.1). Note that in Figure 3.6, the list entries of Li

0, L
i
1 are sampled as

si0 := ShCPRF.Eval(msk,xi, α0) and si1 := ShCPRF.Eval(msk,xi, α1),

for all α0 ∈ S0 and α1 ∈ S1, where xi := map(xi) ∈ Rn, and then assembled into the
two lists Li

0, L
i
1.

Given oracle access to O, which is either a random function R(·, ·) or the algorithm
ShCPRF.Eval(msk, ·, ·), we construct B as follows:

1. For all i ∈ [N(λ)],

– sample xi
R← Xλ and set xi := map(xi) ∈ Rn,

– query (xi, α0) to the oracle on all α0 ∈ S0 to get response sα0 ,

– query (xi, α1) to the oracle on all α1 ∈ S1 to get response sα1 ,

– sample bit bi uniformly at random.
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2. Then, assemble the lists Li
0, Li

1 and run A on input (1λ, (xi, L
i
0, L

i
1, bi)i∈[N(λ)]) and

output as it does.

Observe that the lists (Li
0, L

i
1)i∈[N(λ)] output by B are distributed identically to the lists

in Figure 3.6 if B is given oracle access to the ShCPRF, and distributed as uniformly
random lists when B is given oracle access to a random function. Therefore, the
distribution given to A is identical toH1 orH2, allowing B to win the pseudorandomness
game of the ShCPRF with the same advantage. □

We observe that H2 is already identical to ExpprA,N,1(λ), which concludes the proof of
pseudorandomness.

Correctness. Observe that v, as output by evaluating PCF.EvalR(KR, x), is computed as
v := ShCPRF.CEval(csk,x), where x := map(x) and csk ← ShCPRF.Constrain(msk, z) for
a random constraint z. Hence, by correctness of the ShCPRF, we know that there exists
a shift α ∈ S0 ∪ S1, such that x and α are authorized. More specifically, C(x, α) :=
⟨z,x⟩ − α = 0, and with overwhelming probability, v is equal to the list entry calculated
via ShCPRF.Eval(msk,x, α). (Note that α is calculated in PCF.EvalR exactly in this way.)
Hence, for the (unique) b′ ∈ {0, 1} with α ∈ Sb′ , we have that, with overwhelming probability,
Lb′ [α] = v. Finally, b′ = b by the property of the ipm-wprf which guarantees that
b := fz(x) = 0 iff ⟨z,x⟩ ∈ S0 and fz(x) = 1 iff ⟨z,x⟩ ∈ S1.

Sender Security. Informally, this follows from the fact that by the shiftable CPRF
security, for any (possibly not uniform)15 xi

R← X and given only csk for a constraint z, all
constrained values are pseudorandom to the adversary. However, for the given xi := map(xi),
it is authorized only exactly for this constraint z with shift αi (because S0 ∪ S1 = R and
αi = ⟨z,x⟩ ∈ R is the unique value such that ⟨z,x⟩ − αi = 0). More formally, we have a
sequence of hybrids.

• Hybrid H0. This hybrid consists of the ExpSsecA,N,0(λ) experiment defined in Figure 3.4,
where PCF = (KeyGen,EvalS,EvalR) are as defined in Figure 3.6 (PCF for ListOT
framework). In particular, we note that PCF.EvalS internally runs the ShCPRF ShCPRF
= (KeyGen,Eval,Constrain,CEval).

• Hybrid H1. In this hybrid, for each i ∈ [N(λ)], the call to ShCPRF.Eval(msk,x, α)
inside of PCF.EvalS is replaced with a call to ShCPRF.CEval(csk,x) whenever (x, α) is
authorized (i.e., ⟨z,x⟩ − α = 0), where csk is part of KR in ExpSsecA,N,0(λ).

Claim. H0 ≈s H1.

Proof. By the correctness of shiftable CPRFs, we have that for all authorized (xi, αi)
pairs,

ShCPRF.Eval(msk,xi, αi) = ShCPRF.CEval(csk,xi),

with overwhelming probability. □

15For example, in the GAR instantiation, the uniformly random input is mapped to a non-uniform vector
in the ring.
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• Hybrid H2. In this hybrid, the lists Li
0, Li

1 are sampled uniformly at random from
Dlist
Y (S0),Dlist

Y (S1). Then, for each i where (xi, αi) is an authorized pair, find the
bi ∈ {0, 1}, such that αi ∈ Sbi , and overwrite Lbi [αi] := ShCPRF.CEval(csk,xi).

Claim. H1 ≈c H2.

Proof. The claim follows directly from the security of the shiftable CPRF. Namely, let
A be an efficient adversary with a non-negligible advantage of distinguishing between
H1 and H2. Then, we define the following adversary B to the (1-key, selective) security
experiment ExpshcprfB (λ) for ShCPRF. When B is queried for a constraint, it samples a
random z

R← Rn (or via some distribution over Rn) and outputs it. When B is then
run with a key csk, it sets KR := (csk, z). Then, for each i ∈ [N(λ)], it samples an
xi

R← X , maps it via xi := map(xi), and computes the corresponding authorized shift,
denoted by αi (recall that there always exists an efficiently computable shift, by the
correctness property of ShCPRF). Then, for all b ∈ {0, 1} and all α ∈ Sb \ {αi}, it calls
its evaluation oracle with xi and shift α, and receives response yi,α. For the remaining
authorized entry pair (xi, αi) it computes yi,αi

:= CEval(csk,xi), as in the previous
hybrid. It then assembles these entries into the two lists Li

0, L
i
1, according to whether

the respective shift belongs to S0 or S1, and sends KR and (xi, L
i
0, L

i
1) to A. Finally, B

outputs what A outputs.

Observe that B is an efficient algorithm, making N · (|R| − 1) oracle queries. (Note
that for each query issued by the adversary, B needs to perform |R| − 1 queries to the
shiftable CPRF oracle.) Moreover, if B is given inputs from the real game ExpshcprfB,0 (λ),
then this perfectly simulates hybrid H1 for A, and if it is given inputs from the ideal
game ExpshcprfB,1 (λ), then this perfectly simulates hybrid H2 for A. As such, B has the
same advantage as A. □

Notice that H2 is distributed identically to ExpSsecA,N,1(λ), the experiment defined in
Figure 3.4, which concludes the proof of sender security.

Receiver Security. Receiver security follows from the fact that KS = msk and xi

are independent of the ipm-wprf key z, the xi are sampled uniformly at random,
and because f is a wPRF with range {0, 1}. Formally, we prove receiver security via a
sequence of hybrids.

• Hybrid H0. This hybrid consists of the ExpRsecA,N,0(λ) experiment defined in Figure 3.5,
where PCF = (KeyGen,EvalS,EvalR) are as defined in Figure 3.6.

• Hybrid H1. In this hybrid, we sample a uniformly random function R from the set of
all functions from Xλ to {0, 1}, and generate bi := R(xi).

Claim. H1 ≈c H0.

Proof. The only difference between H0 and H1 is that bi = fz(map(xi)) in H0, and
bi = R(xi) in H1. As the xi’s are uniformly random (and KS = msk is generated inde-
pendently of z), any distinguisher between H0 and H1 immediately yields a distinguisher
against the pseudorandomness of fz. □
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• Hybrid H1. In this hybrid, each bit bi is sampled uniformly at random: bi
R← {0, 1}.

Note that this hybrid is exactly ExpRsecA,N,1(λ).

Claim. H2 ≈s H1.

Proof. Since R is a truly random function, H2 and H1 are perfectly indistinguishable
conditioned on all xi’s being distinct. By a straightforward union bound, since all xi’s
are sampled randomly from X , the condition is satisfied except with probability at
most N2/|Xλ|, which is negligible in λ because |Xλ| is exponential in λ (we require this
for wPRF security anyway). □

This concludes the proof of receiver security and the proof of Theorem 3.5.1.
■

3.11.3 Proof of Theorem 3.7.1

Proof. We prove each property in turn.

Correctness. Correctness follows directly from the proof of Theorem 3.4.1 (correctness
proof of the non-updatable ShCPRF, cf. Section 3.11.1).

Updatable Correctness. Consider an arbitrary csk := (k′
0,Z1) ∈ Rm×Rm×n, a constraint

z ∈ Rn, and an input x ∈ Rn. Let α := ⟨z,x⟩. Given ltsk := ∆
R← Rm, we have

msk′ = (ltsk, esk′) with esk′ = (Z′
0 := Z1+∆z⊤,k′

0). Then, denoting kα := k′
0+Z′

0x−∆α, it
holds that kα = k′

0 + (Z1 +∆z⊤)x−∆α = k′
0 +Z1x+((((((((

∆(⟨z,x⟩ − α) = k′
0 +Z1x. Therefore,

Fkα(x) = ShCPRF.CEval(csk, z,x).

(1-key, selective, ℓ-instance) Updatable Security. We prove security by a reduction to
the RKA-security of F . Our proof consists of a sequence of hybrid games.

• Hybrid H0. This hybrid game consists of the (1-key, selective, ℓ-instance) updatable
security game. Specifically, at the start of the game, the challenger is given the
constraints zi and the constrained keys cski := (k0i,Z1i), where k0i ∈ Rm and Z1i ∈
Rm×n for all i ∈ [ℓ]. Then, the challenger computes the updated master secret key as
msk′i := (ltsk := ∆, eski := (k0i,Z0i)), where Z0i := Z1i +∆z⊤i with ∆

R← Rm.

• Hybrid H1. In this hybrid, we modify the updatable security game H0 as follows: given
(zi, cski)i≤ℓ, the challenger does not sample ∆ anymore and instead interacts with the
oracle Orka from the proof of Theorem 3.4.1. Similarly to the proof of Theorem 3.4.1,
for evaluation query (x, α, i) from A with Czi(x, α) ̸= 0, the challenger computes
a := ⟨zi,x⟩ − α and b := k0i + Z1ix.

– If b = 0, the challenger queries Orka on input (ϕ,x), where ϕ : u 7→ au + b and
forwards the response to A.

– If b = 1, the challenger returns y := R(i,x, α).
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Observe that for each query (x, α, i), it holds that kα = k0i + Z1ix+∆(⟨zi,x⟩ − α) is
equal to ϕ(x) = ax+ b. Hence, the answers of the challenger to all queries issued by A
in H1 are computed identically to H0.

• Hybrid H2. This hybrid game consists of the RKA security game for F with respect to
affine related key derivation functions Φaff .

Claim. If there exists an efficient adversary A for H1 that wins with non-negligible
advantage, then there exists an efficient Φaff-restricted adversary B that wins the H2

game (RKA security game) with the same advantage as A.

Proof. The challenger in H1 is already playing the role of a Φaff-restricted adversary
when querying the oracle Orka to answer the evaluation queries. The reduction to RKA
security of F is therefore immediate. □

Pseudorandomness. The proof of pseudorandomness follows directly from the proof of
Theorem 3.4.1.

This concludes the proof of Theorem 3.7.1. ■

3.11.4 Proof of Theorem 3.7.3

Generation phase. For every corrupted sender Sk, the simulator reconstructs ltskk :=
∆ ∈ Rm (using their random tape) and sends (ltskk, k) on their behalf to FPKS. For every
corrupted receiver Rl, the simulator reconstructs the constraint Cl := z (using their random
tape) and sends (Cl, l) to FPKS on their behalf. We now emulate each key derivation phase
between a sender S := Sk and a receiver R := Rl.

Case 1: Both parties are honest. For each i ∈ [m], the sender computes zi0 :=
⌈⟨pkR, (∆i, s

i
0)⟩⌋t ∈ P, the receiver computes zi1 :=

⌈
pkiS · s1

⌋
t
∈ P and they each parse

the first n coefficients of their respective polynomial as vectors zi0, z
i
1 ∈ Zn

t . Observe that
⟨pkR, (∆i, s

i
0)⟩ and pkiS · s1 are in fact noisy additive shares of ∆i · z over P, since we have

that 〈
pkR,

(
∆i, s

i
0

)〉
− (pkiS · s1)

= ∆i · z +∆i · a0s1 +∆i · e1 + si0a1s1 + si0e
′
1 −∆i · a0s1 − si0a1s1 − ei0s1

= ∆i · z +∆i · e1 + si0e
′
1 − ei0s1︸ ︷︷ ︸

noise

≈ ∆i · z.

Recall that the coefficients of z are (q/t) · (z∥0η−n), while ∆i ∈ Zt (where t ≪ q), and
e1, s

i
0, e
′
1, e

i
0, s1 are all drawn from χ, which we take to be a discrete Gaussian with standard

deviation σ. By basic concentration inequalities, we have that B = 3 · (8σ)2 · η is a bound on
the magnitude of ∆ · e1 + si0e

′
1 − ei0s1 with overwhelming probability. Further, note that by

the normal form of RLWE, the public keys pkR and pkS are pseudorandom, so the shares
⟨pkR, (∆i, s

i
0)⟩ and pkiS · s1 are as well. Hence, by the rounding lemma (Lemma 3.3.1), since
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we set q = t ·B · n ·m · 240, the probability that a single component is rounded incorrectly is
at most 1

nm
· 2−40. Thus, by the union bound over all n ·m components of the shares, for all

i ∈ [m] we have that (after parsing the ring elements) zi0 − zi1 = ∆i · z ∈ Zn
t , with very high

probability.

Case 2: Sender S is corrupted. The view of the corrupted sender is (a0, a1, z + s1a0 +

e1, s1a1 + e′1), where a0, a1
R← P and s1, e1, e

′
1

R← χ. By the normal form of RLWE we have
that (a0, a1, s1a0 + e1, s1a1 + e′1) ≈c (a0, a1, u0, u1), where u0, u1

R← P. Hence, the simulator
emulates the view of the sender using a random pkR := (u0, u1)

R← P2. Eventually, the
simulator recovers skS = (∆, s10, . . . , s

m
0 ), computes esk := (k0,Z0) := KeyDer(S, skS, pkR) and

sends esk on behalf of the ideal adversary to the functionality. The output of R in the ideal
world is equal to (k0,Z0 −∆z⊤), which is identical to R’s output in the real world (by the
same analysis as for Case 1).

Case 3: Receiver R is corrupted. In each key derivation phase with a sender, the view of
the corrupted receiver is (a0, a1,k0, (∆i · a0 + si0 + ei0)i∈[m]), where a0, a1

R← P ,k0
R← Rm, and

for each i ∈ [m], si0, ei0
R← χ. By the normal form RLWE assumption, this is computationally

indistinguishable from (a0, a1,k0, (u
i)i∈[m]), where a0, a1

R← P and for each i ∈ [m], ui
R← χ,

via a straightforward hybrid argument. Hence, the simulator emulates the view of the
receiver using a random pkS := (k0, (u

i)i∈[m])
R← Rm×Pm. Eventually, the simulator recovers

skR = (z, s1), computes csk := (k0,Z1) := KeyDer(R, skR, pkS), and sends csk on behalf of
the ideal adversary to the functionality. The output of S in the ideal world is equal to
(k0,Z1 +∆z⊤), which is identical to S’s output in the real world (by the same analysis as for
Case 1).
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Part II

New Tools with Theoretical Applications
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Chapter 4

Distributed Point Functions with a
Non-Interactive Setup

Summary

Distributed point functions (DPFs) are a useful cryptographic primitive enabling a dealer to
distribute short keys to two parties, such that the keys encode additive secret shares of a
secret point function. However, in many applications of DPFs, no single dealer entity has
full knowledge of the secret point function, necessitating the parties to run an interactive
protocol to emulate the setup. Prior works have aimed to minimize complexity metrics of
such distributed setup protocols, e.g., round complexity, while remaining black-box in the
underlying cryptography.

We construct non-interactive DPFs (NIDPF), which have a one-round (simultaneous-
message, semi-honest) setup protocol, removing the need for a trusted dealer. Specifically,
our construction allows each party to publish a special “public key” to a public channel or
bulletin board, where the public key encodes the party’s secret function parameters. Using
the public key of another party, any pair of parties can locally derive a DPF key for the point
function described by the two parties’ joint parameter choices.

We realize NIDPF from an array of standard assumptions, including DCR, SXDH, QR,
and LWE. Each party’s public key is of size O(N2/3), for point functions with a domain of
size N , which leads to a sublinear communication setup protocol. The only prior approach to
realizing such a non-interactive setup required using multi-key fully homomorphic encryption
or indistinguishability obfuscation.

As immediate applications of our construction, we obtain “public-key setup” protocols
for several existing constructions of pseudorandom correlation generators and round-efficient
protocols for secure comparisons.
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4.1 Introduction

A point function, denoted by Pi,v, is a function that evaluates to a message v on input i,
and evaluates to zero on all other inputs j ̸= i in its domain. A distributed point function
(DPF) [GI14,BGI15] allows a trusted dealer to distribute short keys to two parties, where
the keys jointly encode a point function Pi,v for parameters (i, v) chosen by the dealer.
Individually, a DPF key does not reveal any information about the secret index i or message
v to the party. However, using their key, each party can locally “evaluate” the point function
on a public input x, to obtain an additive secret share of y := Pi,v(x).

DPFs are the backbone of many useful primitives and protocols relating to multi-party
computation (MPC). In particular, DPFs enable communication-efficient generation of cor-
related randomness in MPC protocols [BCGI18,SGRR19,BCG+19a,BCG+19b,BCG+20b,
BCG+20a,YWL+20,AS22,BCG+22,BBC+24], can be used to instantiate distributed oblivi-
ous RAM [Ds17,VHG23], privacy-preserving machine learning [RTPB22,YJG+23,JGB+24],
private database queries [WYG+17, DFL+20, DRPS22, SSLD22] and analytics [BBC+21,
MPD+24,MST24,RZCGP24], and mixed-mode secure computation [BGI19,BCG+21].

However, in many of these applications, there is no trusted dealer that can generate and
distribute the DPF keys to the parties. Instead, the trusted dealer is emulated by the parties
via a distributed key generation protocol [Ds17,BGIK22,VSH22,VHG23], which the parties
invoke to obtain their respective DPF keys. More concretely, in a distributed generation
protocol, each party holds a secret share of the parameters (i, v). After invoking the protocol,
the parties end up with DPF keys that correspond to the point function Pi,v, such that
neither party learns the parameters (i, v) in the process.

Early approaches to distributed key generation simply used generic secure computation,
resulting in protocols with at least two rounds of communication, while being non-black-box
in the underlying cryptographic primitives. It was shown by Doerner and shelat [Ds17]
how to achieve black-box distributed two-party key generation with logarithmically many
communication rounds. Later, the DPF construction of Boyle et al. [BGIK22] admitted a
5-round black-box protocol. In both approaches, the DPF key size is polylogarithmic in the
domain size N . If one instead relaxes the key size, e.g., to N1/2, these approaches can yield
black-box distributed generation protocols with round complexity as low as two sequential
calls to 1-out-of-N1/2 oblivious transfer, resulting in a small constant number of rounds (e.g.,
four rounds when using two-round OT).

At first glance, it is tempting to think that lower-bounds from the MPC literature [HLP11]
would set the minimum number of rounds required for a distributed DPF generation protocol to
two. However, upon closer inspection, we observe that because the parties obtain a key (which
in some DPF constructions can even be distributed pseudorandomly [BGI15,BGIK22]), a DPF
generation protocol is not subjected to the two-round lower bound because each key can be
efficiently simulated (indeed, this directly extends the model of public-key setup for oblivious
transfer from Chapter 3). In particular, we can hope to achieve a non-interactive generation
protocol mimicking non-interactive key exchange protocols like Diffie–Hellman [DH76]. Indeed,
spooky encryption [DHRW16] already gives such a protocol through the use of multi-key fully
homomorphic encryption (FHE) or indistinguishability obfuscation (iO). However, to date,
this has been the only known approach to realizing a “non-interactive” protocol (a protocol
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where each party only needs to read the other party’s public key to locally derive a joint
DPF key).

4.1.1 Our results

In this chapter, we put forth and study the notion of a “non-interactive” DPF, and demonstrate
constructions from new assumptions. This is motivated by the search for (round-efficient)
protocols for eliminating the dealer, that do not require heavy tools like multi-key FHE, and
can be instantiated from an array of standard assumptions.

Non-interactive DPFs. Our definition of a non-interactive DPF (NIDPF) enables two
parties to locally (non-interactively) derive DPF keys by simply reading each other’s pub-
lic keys from a bulletin board. More generally, this model is captured by a one-round,
simultaneous-message semi-honest protocol. A simultaneous-message communication pattern
captures the interaction of non-interactive key exchange protocols like Diffie–Hellman: (1)
two parties exchange messages simultaneously, then (2) each party can use the other party’s
message to locally derive a joint output (key). Such a model of communication is highly
desirable because the first message can be reused (i.e., the message of the first party can be
reused indefinitely with many different parties) and the parties do not need to be online at
the same time to participate.

The problem of generating DPF keys in a simultaneous-message protocol is much more
challenging compared to key exchange. This is due to the fact that a DPF setup requires
the total communication between parties (i.e., the size of the public keys) to be sublinear
in the domain of the point function. This requirement is generally challenging to achieve—
indeed, the only way we currently know of achieving such succinctness is via multi-key
FHE [DHRW16]. Moreover, this connection to “multi-key”-like primitives is inherent, as we
remark on later.

Constructing NIDPF. Our primary contribution is to show that, perhaps surprisingly, we
can rely on simple cryptography and assumptions to achieve the sublinearity requirements.
In particular, inspired by the recent work of Abram, Roy, and Scholl [ARS24], we show
that we can realize NIDPF schemes “directly,” without going through heavier primitives like
multi-key FHE. A NIDPF scheme immediately implies non-interactive key exchange, and thus
public-key encryption, which eliminates the possibility of using only lightweight symmetric-key
cryptography (e.g., one-way functions). However, we are able to realize NIDPFs from many
standard assumptions, including the decisional composite residuosity (DCR) assumption,
symmetric external Diffie–Hellman (SXDH) assumption, quadratic residuosity (QR) assump-
tion, the enhanced Diffie–Hellman (EDDH) assumption in class groups, and the learning with
errors (LWE) assumption. We summarize our results in Table 4.1 and Theorem 4.1.1.

Theorem 4.1.1 (Informal). Let N be a domain size. There exists a non-interactive DPF
(NIDPF) with a key size O(N2/3) and evaluation time O(N5/3) under either (1) the DCR
assumption, (2) the QR assumption, (3) the EDDH assumption and the uniformity assumption
in class groups, (4) the SXDH assumption, or (5) the LWE assumption with a superpolynomial-
modulus-to-noise ratio. Here, O(·) hides polynomial factors in the security parameter.
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Assumption Transparent Setup Key Size
[DHRW16,XW23] LWE / iO+DDH ✓ log(N)

LWE / RLWE ✓ N2/3

DCR / QR ✗ N2/3Theorems
4.5.1 & 4.5.2

SXDH⋆ / Class Groups+EDDH ✓ N2/3

Table 4.1: Summary of our instantiations of NIDPF with domains of size N . Constants and
polynomial factors (in the security parameter) are ignored in the asymptotic key size for readability.
See Section 4.3 for details on the cryptographic assumptions used. ⋆The SXDH-based construction
only supports random payloads (output messages).

As an independent contribution, we define a new abstraction that we call non-interactive
multiplication, which captures all existing “non-interactive” primitives from a recent line of
work. In particular, we identify a surprising (but rather obvious in retrospect) connection
between our abstraction and Homomorphic Secret Sharing (HSS). This connection results in
constructions of “succinct multi-key HSS” (restricted to a special class of computations) from
a variety of assumptions, including DDH, DCR, and the EDDH assumption in class groups.
To the best of our knowledge, the only prior approaches for such non-interactive computation
required using multi-key FHE techniques [DHRW16,XW23]. More concretely, our abstraction
allows us to adapt the recent result of Abram et al. [ARS24] constructing succinct (but not
multi-key) HSS for “special RMS” programs into a multi-key (i.e., non-interactive), albeit
restricted to a slightly weaker class of functions. Specifically, unlike with standard HSS,
our construction does not require a correlated setup between parties and only requires a
common reference string. Moreover, the additional succinctness property allows one party to
have a large input x while maintaining that the input share is succinct in the size of x. We
summarize this generalization of our techniques in Theorem 4.1.2 and provide more details in
Section 4.6.

Theorem 4.1.2 (Informal). Let HSS be an HSS scheme for the function class F and let P
be the set of constant-degree polynomials. There exists a succinct, multi-key HSS scheme for
computing functions of the form P (x, f(y)), where P ∈ P and f ∈ F , one party has a (large)
input x, and the other party has a (short) input y. Moreover, the total size of both parties’
input shares is o(|x|) +O(|y|), ignoring polynomial factors in the security parameter.

4.1.2 Applications

We describe two immediate applications of our NIDPF construction. The primary application
is replacing multi-round DPF setup protocols with a non-interactive “public key” setup. In
particular, many applications of DPFs require two parties, each holding a secret share of
an index t ∈ [N ], to generate DPF keys (through a secure setup protocol) that encode a
point function parameterized by t. Concretely, Alice and Bob hold shares tA, tB ∈ [N ], such
that tA + tB = t mod N , jointly generate DPF keys for the point function Pt,1. (We assume
additive secret sharing of the index t, following [BGIK22, BBC+24]; some protocols also
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consider bit-wise XOR secret shares of t, however, applications typically require working with
additive secret sharing, e.g., [BCG+20b,BCCD23,BBC+24].)

PCGs with a “public-key” setup. Pseudorandom Correlation Generators (PCGs) [BCGI18,
BCG+19a,BCG+19b,SGRR19,BCG+20a,BCG+20b,BCG+22,AS22,BBC+24] are a crypto-
graphic primitive enabling parties to generate long pseudorandom correlations given access
to short correlated seeds. In particular, to jointly generate long correlations, it suffices for
parties to first execute a secure computation protocol to jointly sample the short PCG seeds,
and then locally expand them into a large number of pseudorandom correlations. PCG
constructions exist for a variety of correlations, including oblivious transfer (OT), vector
olivious linear evaluation (VOLE), and Beaver triple correlations, and make heavy use of
DPFs. Indeed, the dominant cost of the setup protocol for these constructions is jointly
generating DPF keys [SGRR19,BCG+20b,AS22,BBC+24].

Interestingly, a recent line of work [OSY21,BCM+24] has shown that when it comes to
OT/VOLE correlations specifically, the parties do not need to engage in the initial interactive
setup protocol. Instead, two parties can non-interactively derive a pair of seeds that enables
them to expand their correlations locally. Such PCGs are said to have a “public-key setup”
protocol, which follows the same non-interactive communication pattern we motivated in
Section 4.1. However, to date, the only such “public-key PCG” constructions that exist are
for the OT/VOLE correlation [OSY21,BCM+24]. It has remained an open problem to realize
public-key PCGs for other correlation types (e.g., Beaver triple correlations), for which we
have constructions of PCGs from a variety of standard assumptions but no corresponding
public-key setup protocol. By instantiating the DPF in existing PCG constructions (for
further classes of correlations) with an NIDPF, it becomes possible to obtain a semi-honest
“public-key setup” protocol for the PCG.

We note that we fully resolve the open problem of building public-key correlation functions
(which imply PCGs) for many correlation types in Chapter 5 under the DCR assumption.
However, our NIDPF constructions are still of interest to building public-key PCGs, since
they can be realized from a wider range of assumptions and are more likely to provide a path
towards practical constructions.

Mixed-mode secure computation in one round. Recent works on mixed-mode secure
computation, beginning with the work of Boyle et al. [BCG+21], have demonstrated that the
round and communication complexity of MPC protocols can be improved by using DPFs to
help directly evaluate complex functions such as comparisons and equality of secret-shared
values, without needing to express the computations as Boolean or arithmetic circuits.

For example, consider the case of securely computing secret shares of an equality predicate
evaluated between a public threshold t and secret shared input x, in a two-party setting. The
idea, at a high level, is to have a trusted dealer distribute DPF keys to two parties for the
point function Pt+r,1 that evaluates to 1 on index t+ r, where r is uniformly random in the
domain. The dealer additionally distributes additive shares of r to the parties. The parties,
holding additive shares of a value x (assumed to be in the domain of the point function), can
publicly open the value y := x+ r by locally masking their shares of x with their shares of
r and broadcasting the result. Then, observe that by evaluating the DPF on input y, the
parties obtain shares of 1 if and only if x+ r = t+ r, which is the case if and only if x = t.

Because the DPF is “one-time-use” due to the masking term r, the efficiency gains obtained
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by such a protocol depend heavily on the efficiency of the DPF setup protocol used by the
parties to emulate the dealer. However, when using a NIDPF to replace the dealer, the parties
can simultaneously : (1) choose their own share ⟨r⟩σ of the random mask r, (2) broadcast
their masked share ⟨x⟩σ + ⟨r⟩σ, and (3) generate and send their NIDPF key message for the
point function Pt+r,1. This already enables the parties to locally compute additive shares of
the t-equality predicate on x, yielding a single (simultaneous) round protocol for the equality
predicate computation.

4.2 Technical Overview

In this section, we provide a detailed technical overview of our NIDPF construction. The
main building block we use in our construction is a novel abstraction we call non-interactive
multiplication (NIM), which we overview in Section 4.2.1, and which we view as a contribution
of independent interest. In Section 4.2.2, we provide an overview of our NIDPF construction.

4.2.1 Building block: Non-interactive multiplication

At a high level, a NIM allows two parties, Alice and Bob, each holding a ring element as
input, to obtain secret shares of the multiplication of their inputs by exchanging one message
simultaneously (or posting their message to a public bulletin board). The NIM abstraction
captures several primitives recently introduced in various contexts. In particular, NIM directly
implies non-interactive variants of OT [BM90], VOLE [OSY21,ADOS22,ARS24,BCM+24]
(including Chapter 3), and inner-products [CZ22], where parties obtain secret-shares of the
computation by exchanging one message simultaneously.

The NIM abstraction also captures the case where Alice and Bob have matrices as inputs,
and wish to compute secret shares of the matrix product. In particular, a NIM scheme for
matrix multiplication allows Alice with a matrix A and Bob with a matrix B to compute
additive secret shares of AB. Surprisingly, a NIM scheme for matrix multiplication can have
sublinear communication (in the size of one input matrix), using techniques developed in two
recent works that build succinct VOLE [ARS24,BCM+24]. This succinct NIM variant is the
main building block we use in Section 4.5 to construct NIDPFs. We obtain the following
instantiations of succinct NIM for matrix multiplication:

Theorem 4.2.1 (Informal; Implicit in [ARS24, BCM+24]). Let R be a ring and N, ℓ,m
be integer parameters. For ℓ = N2/3 and m = N1/3, there exists a succinct NIM scheme
computing shares of AB with O(N2/3) communication, for all matrices A ∈ Rℓ×m and
B ∈ Rm×m, if one of the following assumptions hold: (1) DCR, (2) QR, (3) an “enhanced”
DDH assumption in class groups, (4) LWE with a superpolynomial modulus-to-noise ratio, or
(5) SXDH in bilinear groups when the NIM output sharing is defined multiplicatively. In the
above, O(·) hides polynomial factors in the security parameter.

Our proof of Theorem 4.2.1 follows from ideas presented in the recent work of Abram et
al. [ARS24] in their construction of “succinct” Homomorphic Secret Sharing (HSS) [BGI16] and
a concurrent work of [BCM+24] constructing succinct non-interactive VOLE. In particular,
their constructions internally use the ability to multiply a matrix A by another matrix
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B := ∆ · I (where ∆ is a scalar and I is the identity matrix), with sublinear communication
in the size of A. However, in both these works, the primary goal was constructing a non-
interactive VOLE scheme. Non-interactive VOLE, in and of itself, neither implies NIDPFs nor
succinct NIM for matrix multiplication, and is overall a weaker primitive. In this chapter, we
show that their constructions not only generalize to any matrix B (of appropriate size)—while
still preserving sublinear communication—but also use it as a building block to construct
NIDPFs in Section 4.5.

Comparison to HSS. While at first glance, it may appear as though using HSS would
be sufficient to construct NIM, there are subtle yet important distinctions between these
primitives which make them very different. Concretely, we show in Section 4.4 that our NIM
abstraction implies a form of (2-party) multi-key HSS, in an analogous sense to multi-key
FHE, which is a stronger primitive compared to standard HSS.

In particular, the NIM abstraction has a universal setup that consists of a common
reference string used by everyone, which enables us to realize a truly “non-interactive” (or
multi-key) primitive, eliminating the requirement for multi-round setup protocols. In contrast,
HSS [BGI16,BCG+17], including succinct HSS [ARS24], requires a trusted setup process to
distribute evaluation keys to each party before any computation can be performed, and the
setup cannot be used in a computation involving other parties. In a network with many
parties, each pair of parties needs to generate a unique pair of HSS evaluation keys and can
only compute over inputs assigned to them, resulting in quadratic communication overheads.
Compare this with multi-key HSS (see Chapter 5) or spooky encryption [DHRW16], where
any pair of parties can compute a function “on the fly” over their joint inputs and without
needing to perform a joint setup process ahead of time to do so. As such, we view our NIM
abstraction as a potential stepping-stone to uncovering new constructions for efficient MPC.
Indeed, in Section 4.6, we generalize the ideas we use to realize our NIDPF constructions to
realize a form of multi-key HSS for a restricted class of computations, which may prove to
have additional applications.

4.2.2 Overview of the NIDPF construction

A NIDPF consists of a generation algorithm Gen and evaluation algorithm Eval. We let R
be a finite ring and the message space of the NIDPF. A party Alice, with point function
parameters (tA, vA), uses Gen to generate a public key pkA and a secret key skA. Bob does
the same with (tB, vB). Then, using the public key of the other party in conjunction with
their own secret key, Alice and Bob can locally derive a DPF key encoding the point function
with parameters (tA + tB, vA + vB). Importantly, the public keys generated by Alice and Bob
need to be short—sublinear in the truth-table size of the point function.

Similarly to some other DPF constructions (and all non-generic DPF key generation
protocols) [CBM15,Ds17,BGIK22], our construction of NIDPF is tailored to the “full-domain
evaluation” regime, where the parties obtain the output of the point function evaluated on all
inputs in the domain. We let N denote the domain size of the point function, and view the
point function evaluation on the entire domain (i.e., for every x ∈ [N ]) as being a one-hot
vector u ∈ RN , where u[t] = 1 and t is the special index.

For suitable choices of N , we can represent x ∈ [N ] by (i, j) where i = x (mod ℓ) and
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j = x (mod m) for some coprime integers ℓ,m ∈ [N ] such that N = ℓ ·m. Such a mapping
(à la Chinese Remainder Theorem) allows us to interpret the length-N vector u as a ℓ×m
matrix, while still preserving arithmetic modulo N via the residue number system. This
places a restriction on N , which ideally we would like to avoid. In Section 4.5.1, we sketch
an alternative approach that works for arbitrary (non-coprime) integers ℓ,m, but has a 2×
cost in efficiency.

At a high level, our approach to realizing our NIDPF construction is the following. Assume
that Alice parses her index tA ∈ [N ] as tA = (iA, jA) ∈ [ℓ] × [m] and Bob parses his index
tB as (iB, jB) ∈ [ℓ] × [m]. The goal is to have Alice and Bob derive secret shares of the
ℓ×m matrix, where the (iA + iB, jA + jB)-th entry is non-zero. In particular, note that this
matrix will be reinterpreted as the unit vector u with non-zero coordinate t = tA + tB ∈ [N ],
where t = iA + iB (mod ℓ) and t = jA + jB (mod m). This is equivalent to the full-domain
evaluation of the point function Pt,1.1

Our construction achieves this in two steps, which we overview next.

0...
1...
0

N

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

iA

jA

√
N

(a) Alice’s initial input vector
parsed as a matrix.

0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

iA

jA + jB

√
N

(b) Secret-shared matrix held by
the parties after Step I.

0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

iA + iB

jA + jB

√
N

(c) Secret-shared matrix held by
the parties after Step II.

Figure 4.1: Running example used in the overview of the NIDPF construction. The matrix
represents the full evaluation of the point function with a domain of size N , where the parameters
ℓ,m (as defined in Definition 4.4.1) are ℓ = m =

√
N , for simplicity.

Step I: Shifting the columns using NIM. Alice begins by defining a ℓ×m matrix A with
1 at entry (iA, jA) and zeros elsewhere. This is illustrated for the case where ℓ = m =

√
N in

Figure 4.1a. Then, the main idea is to obliviously “shift” this matrix by Bob’s input (iB, jB).
First, we observe that we can perform one dimension of this shift using a matrix mul-

tiplication: Bob defines the m × m cyclic shift matrix SjB that shifts each column of A
cyclically to the right by jB (wrapping around modulo m). Using NIM, Alice and Bob can
non-interactively compute shares of the matrix ASjB . Note that ASjB is a matrix where the
only non-zero entry is located at row iA and column jA+ jB. This is illustrated in Figure 4.1b
for our running example. By applying Theorem 4.2.1, we have that the communication
between Alice and Bob in this process is sublinear in N . Moreover, by the security of the
NIM scheme (see Section 4.4), Bob does not learn the value of (iA, jA) and Alice does not
learn the value of jB.

Finally, by interpreting the resulting shares back to a vector y, the parties obtain secret
shares corresponding to the full-evaluation of the point function PiA·m+jA+jB ,1. Unfortunately,

1For now, we assume that the point function outputs v = 1 at the special index i and later generalize to
arbitrary outputs.
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this is not quite what we want, since our goal is for the parties to obtain shares of the full-
evaluation corresponding to the point function P(iA+iB)·m+jA+jB ,1 ≡ PtA+tB ,1. In particular,
notice that following the cyclic shift, Alice still knows which row of the resulting matrix
contains the non-zero index, since the row index does not currently depend on Bob’s input
iB. To remedy this, we need a way for Bob to cyclically shift the rows of the resulting
secret-shared matrix by his secret index iB, which ideally could be done by multiplying the
result with another “shift matrix” parameterized by iB.

Sadly, multiplying by another shift matrix is not possible, since this would require a “NIM”
for the degree-3 computation SiB(ASjB), where SjB cyclically shifts the columns of A by jB
and SiB cyclically shifts the rows by iB. We do not know how to realize such a primitive
for degree-3 computations (even if we sacrifice the succinctness requirement) without going
through “high-end” tools like multi-key FHE [DHRW16].

However, we show that Bob can cyclically shift the rows using degree-2, secret-key HSS
(the weakest form of non-trivial HSS [BGI16], which can be instantiated from a wide range
of assumptions). In particular, our usage of HSS to let Bob cyclically shift the rows is only
possible after computing the NIM to cyclically shift the columns, as will become apparent
later. We stress that secret-key HSS alone cannot be used to directly build NIDPFs—for one,
the NIDPF abstraction directly implies public key encryption, while secret-key HSS (even for
higher degree computations) does not [DIJL23].

Step II: Shifting the rows with degree-2 HSS. Our idea is to compose degree-2 HSS
with NIM to allow Bob to obliviously cyclically shift the rows and columns of Alice’s matrix
A. This composition with HSS is inspired by the multi-party DPF construction of Abram et
al. [ARS24], where they use HSS to obliviously select an appropriate cyclic shift of a one-hot
vector by computing an inner product with all possible shifts. However, to apply this idea to
the non-interactive setting, there are several challenges we need to overcome.

The first challenge is that HSS schemes, even for degree-2 functions, require a trusted
setup process, which would prevent us from getting a non-interactive solution (the parties
would need to engage in a multi-round setup protocol).

The second challenge is that HSS does not enable computing degree-2 functions on
additive secret shares. Instead, typical HSS schemes (following [BGI16]) require parties to
have “memory shares” and “input shares” of the secret values in order to perform computations
over them. In particular, degree-2 HSS allows two parties to locally compute an additive
sharing of xy from an input share of a value x and memory share of a value y. At a very
high level, an input share of a message x ∈ R is just an encryption of x; and memory shares
of a message y ∈ R are additive shares of the tuple (x, x · sk), where sk ∈ Rk is the secret
key used to encrypt the input share (see Section 4.3.6 for additional background).

If the parties can somehow obtain memory shares of ASjB and input shares of an input
provided by Bob, then using HSS for computing degree-2 functions, we have the following
solution for cyclically shifting the rows. First, Bob defines the one-hot vector eiB representing
his row index iB and sends HSS input shares of eiB to Alice. Let T := ASjB which, for now,
we assume Alice and Bob hold memory shares of at the end of Step I. Then, the parties
locally define the list of ℓ “shifted” matrices T1, . . . ,Tℓ, such that Ti is the matrix T with
the rows cyclically shifted down by i. Finally, using HSS, the parties compute the following
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degree-2 equation to “obliviously select” TiB :

⟨eiB , (T1, . . . ,Tℓ)⟩ = TiB . (4.1)

Observe that this allows Alice and Bob to compute shares of the one-hot matrix with a
non-zero entry at index (iA + iB, jA + jB), as required. A similar idea underpins the multi-
party DPF construction of Abram et al. [ARS24]. However, their requirement for a trusted
setup makes their approach for obtaining the necessary compatible input and memory shares
inherently interactive. We make use of the following two ideas to avoid interaction:

Idea I: Bob generates the HSS setup. To avoid needing a trusted setup, we exploit the fact
that Bob knows the full input eiB , which means that he can act as the trusted dealer to
generate the HSS setup in our case. Moreover, we observe that secret-key HSS suffices, since
only Bob needs to encrypt his input eiB . This allows us to use the most basic form of HSS,
making it easy to instantiate from many standard assumptions, including a novel instantiation
we present in Section 4.5.3.1 from the SXDH assumption in bilinear groups.

Idea II: NIM outputs memory shares. To make the output of the NIM compatible with HSS,
we need a way for Alice and Bob to obtain memory shares of the matrix T rather than
additive shares. To achieve this, we use the following trick from prior work [CMPR23,ARS24]
to generate memory shares. Observe that if Bob multiplies his cyclic shift matrix SjB by
any scalar c ∈ R, the output of the NIM will be an additive share of c ·ASjB . This can be
generalized to computing sk⊗ASjB in the natural way. Then, the idea is to have Alice and
Bob engage in two copies of the NIM protocol simultaneously. In both cases Alice inputs A.
Bob, on the other hand, inputs the cyclic shift matrix SjB in one instance, and the scaled
matrix sk⊗ SjB in the other. Together, the NIM outputs produce an HSS memory share of
ASjB under Bob’s secret key. In parallel to this, Bob generates an HSS input share for his
vector eiB and an evaluation key ekA, which he sends to Alice. Then, using HSS, Alice and
Bob compute shares of the inner product from Equation 4.1.

Examining the communication costs. The communication is dominated by the NIM
encodings and the length of eiB , which is O(ℓ) (ignoring poly(λ) factors). Thus, the total
communication is O(ℓ+m2), which is sublinear in the domain size N using Theorem 4.2.1.
Moreover, because this whole protocol only requires one simultaneous exchange of information,
Alice and Bob can simply post their messages in the form of a public key, which aligns with
our design goals.

Arbitrary payload. The above overview captures a NIDPF construction where the non-zero
output (i.e., the payload) of the point function at the special index is the scalar 1 ∈ R.
However, to satisfy a more general definition, we need to allow Alice and Bob to also jointly
specify the payload v as the sum of their individual payloads vA and vB.

To achieve this, we observe that we can use the same “scaling trick” used by Bob to
compute the product with his secret key sk to allow either Alice or Bob to specify vA or vB
as the output. Specifically, it is enough for one of the parties (say Alice) to simply multiply
their input matrix by vσ before generating the NIM encoding. This enables a “half-chosen”
variant of the NIDPF, where only one of the two parties is allowed to specify the (secret)
payload.
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To generalize this to the case where the output is message v = vA + vB jointly defined
by the two parties, the parties can engage in two instances of the half-chosen protocol, in
parallel, and add the resulting shares together. We explain this further in Section 4.5.

4.2.2.1 Random-payload NIDPF from SXDH

In some applications of DPFs, the payload can be random and only determined by the random
coins of the generation algorithms.2 Here, we overview a construction of such a NIDPF under
the SXDH assumption in bilinear groups. In a nutshell, a bilinear group consists of a triple of
cyclic groups: G1, G2, and GT with an efficient map (pairing) e : G1 ×G2 → GT . Let g1, g2,
and gT be generators for G1, G2, and GT , respectively. Then, for all gx1 and gy2 , it holds that
e(gx1 , g

y
2) = gxyT ∈ GT . This feature enables computing the multiplication “in the exponent” of

the bilinear group.

Idea: Replacing Degree-2 HSS with a pairing. The main idea behind our NIDPF
construction in bilinear groups is to follow the template outlined in Section 4.2.2 but replace
Step II with a “multiplication in the exponent” using the pairing. We first construct a special
succinct NIM scheme from the DDH assumption (over any suitable cyclic group G), which
outputs the result of the matrix product “in the exponent” of the group G, restricting the
ring R to Zp. This variant of NIM is appealing since it allows us to use any DDH group G
to compute the matrix multiplication, but is limiting in that we cannot obtain the memory
shares required for the HSS computation in Step II of Section 4.2.2. However, we observe
that we don’t need to do so if we have a pairing! Specifically, we can instead replace the HSS
computation in Step II by computing the multiplication using the pairing, as sketched above.

More concretely, in our DDH-based succinct NIM variant, the parties obtain multiplicative
shares gRA and gRB , respectively, such that gRA · gRB = gAB (where the notation gM denotes
the matrix of group elements gmij for all entries mij ∈M). Therefore, by instantiating this
NIM scheme in the group G1 of a bilinear group, the parties obtain multiplicative shares of
gT1 , rather than additive shares of T (defined in Step II above). Nonetheless, the parties can
still define multiplicative shares of the vectors T1, . . . ,Tℓ “in the exponent” of g1, as before.
Then, Bob can encrypt his one-hot vector eiB with the aim of selecting the appropriate TiB .
However, instead of using HSS to do so, Bob simply uses ElGamal encryption in the group
G2 to compute:

(g
rj
2 , g

eiB,j

2 h
rj
2 ), ∀j ∈ [m],

where h2 := gsk2 is an ElGamal public key for an sk known to Bob, and each rj is uniformly
random. Since now we need DDH to hold in both G1 and G2, we must rely on the SXDH
assumption.

Given these ciphertexts, Alice and Bob compute the inner product from Equation 4.1 “in
the exponent” using the pairing and obtain multiplicative shares of the inner product in GT :

g
⟨eiB ,(T1,...,Tℓ)⟩
T = g

TiB
T . (4.2)

We can view this as replacing the HSS scheme used by Bob in the overview of Section 4.2.2 with

2Note that a secret sharing of the random payload can be derived non-interactively by each party summing
all entries of its length-N DPF evaluation vector.
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a “multiplicative HSS” scheme from pairings: i.e., where the HSS outputs are multiplicatively,
rather than additively, secret shared. However, as with the first scheme, Alice and Bob still
need to compute “memory shares” for this multiplicative variant of HSS. Memory shares now
take on the form (gT1 , g

sk·T
1 ), which can be obtained by having Bob scale his matrix by sk.

Converting from multiplicative to additive shares. Now the issue we face is the
following. The result in Equation 4.2 is a multiplicative sharing of the full-domain evaluation,
which does not correspond to the desired additive shares we need for the NIDPF. To solve
this problem, we need a way to “bring down” the exponent and convert it to additive
shares. One way to achieve this would be using the Distributed Discrete Logarithm (DDLog)
procedure [BGI16].

Using the DDLog algorithm, Alice and Bob can derive additive shares of TiB by applying
DDLog to each entry of gTiB

T . However, there is now a problem of correctness for the resulting
output shares of the NIDPF. Specifically, DDLog has a 1/poly(λ) error (in which case it
outputs a uniformly random value in {0, 1, . . . ,M}), which would translate to a 1− 1/poly(λ)
correctness for the output shares of the NIDPF. Having a (non-negligible) correctness error
is undesirable, and prevents applying the resulting NIDPF in many contexts. We show how
to sidestep this problem by making an important observation regarding use of the DDLog
procedure, which we explain next.

Random payload. Surprisingly, we show that the error can in fact be avoided entirely
when constructing a NIDPF with a random payload (i.e., a NIDPF which outputs a random
message at the special index). In particular, we observe that existing constructions of DDLog
have no error when given multiplicative shares of the identity element g0 [BGI16,DKK20].
Inspired by this observation, we show that we can obtain a NIDPF with random payloads.
We observe that TiB is a one-hot matrix, and so has only one non-zero entry. By having the
parties set their payload share to a uniformly random scalar, they can further ensure the
non-zero value of TiB has high (pseudo)entropy to both parties. Thus, we can simply use a
PRF FK with outputs in ZM to generate additive shares from the multiplicative shares. To
see this, note that:

• for the multiplicative shares gx0 , gx1 of the non-zero entry gx0+x1 of TiB , FK(g
x0) −

FK(g
−x1) is a pseudorandom value in ZM (even given the PRF key K); however,

• for all multiplicative shares gx0 , gx1 such that gx0 ·gx1 = g0, we have FK(g
x0)−FK(g

−x1) =
0.

This means that parties obtain pseudorandom shares of zero on all entries except for the entry
with the non-zero value, where they obtain shares of some pseudorandom value. We provide
details on the DDLog algorithm and our NIDPF construction from SXDH in Section 4.5.

4.3 Preliminaries

In this section, we provide the necessary notational and cryptographic preliminaries that we
use our construction of NIDPF.

149



4.3.1 Notation

We let N denote the set of natural numbers, Z denote the set of integers, and G denote a
finite group. We let R denote a finite ring. We denote by poly(·) the set of all polynomials
and by negl(·) any negligible function. We occasionally abuse notation and let poly denote a
fixed polynomial.

Vectors and matrices. We denote a vector u using bold lowercase letters and let u[i] denote
the i-th coordinate of u. We denote matrices A with bold uppercase letters and let A[i, j]
denote the element of A located at the i-th row, j-th column.

Sampling and assignment. We let x
R← S denote a uniformly random sample drawn from a

set S. We let x← A denote assignment from a randomized algorithm A and x := y denote
initialization of x to the value of y (which may be the output of a deterministic algorithm).

Efficiency and indistinguishability. By an efficient algorithm A we mean that A is modeled by
a (possibly non-uniform) Turing Machine that runs in probabilistic polynomial time. We write
D0 ≈c D1 to mean that two distributions D0 and D1 are computationally indistinguishable
to all efficient distinguishers D and D0 ≈s D1 to mean that D0 and D1 are statistically
indistinguishable.

Rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer.
For integers q > p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as
⌊v⌉p = ⌊(p/q) · v⌉.
Party identifiers. We identify parties with letters A and B, and use σ ∈ {A,B} to refer to a
party. We will slightly abuse notation by letting σ, for some σ ∈ {A,B}, refer to the party
identifier in the singleton set {A,B} \ {σ}.

4.3.2 Additive secret sharing

We define the function ShareG(·) to be the (randomized) function that outputs a tuple of
additive shares in G, such that each share is individually uniformly random over G. For
simplicity, we will denote the tuple of additive shares of a secret s by (⟨s⟩0, ⟨s⟩1), such that
⟨s⟩0 + ⟨s⟩1 = s ∈ G.

4.3.3 Cryptographic assumptions

In this section, we present the cryptographic assumptions we build NIDPFs from, including
the DDH assumption, the SXDH assumption, and the NIDLS framework.

Definition 4.3.1 (Decisional Diffie–Hellman (DDH) Assumption). Let λ be a security
parameter. Let G be a cyclic group of prime order p = p(λ) ∈ poly(λ) with generator g. The
DDH assumption states that: (g, ga, gb, gab) ≈c (g, g

a, gb, gc), where a, b, c
R← Zp.

Definition 4.3.2 (Symmetric External Diffie–Hellman (SXDH) Assumption). Let (G1,G2,
GT , e) be a bilinear group, where G1,G2, and GT are cyclic groups of prime order p = p(λ) ∈
poly(λ), and e : G1×G2 → GT is a non-degenerate bilinear map. Let g1 and g2 be generators
of G1 and G2, respectively. The SXDH assumption states that the DDH assumption (cf.
Definition 4.3.1) holds in both G1 and G2.
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Definition 4.3.3 (Learning with Errors Assumption). Let χ denote a discrete Gaus-
sian noise distribution. Let n = n(λ),m = m(λ), and q = q(λ), all polynomial in λ.
The learning with errors (LWE) assumption states that (A,A⊤s + e) ≈c (A,u) where
A←$Zn×m

q , s←$Zn
q , e←$χm, and u←$Zm

q .

Definition 4.3.4 (Distributed Discrete Logarithm [BGI16]). Let λ ∈ N be a security
parameter and ϵ = ϵ(λ). Let G be an arbitrary cyclic group with generator g and let
1 ≤M ≪ |G| be an integer. Let crs := (G, g,M) be a common reference string. An efficient
algorithm DDLog solves the distributed discrete logarithm in G with ϵ-correctness, if for all
x ∈ ZM and every pair of elements hA, hB ∈ G such that hA · hB = gx,

Pr
[
⟨z⟩A − ⟨z⟩B = x : ⟨z⟩σ := DDLog(crs, hσ), ∀σ ∈ {A,B}

]
≥ ϵ(λ).

4.3.4 The NIDLS framework

The non-interactive discrete log sharing (NIDLS) framework [ADOS22] abstracts several
HSS constructions [OSY21,RS21]. The NIDLS framework defines a finite Abelian group
G = F ×H, where the discrete log problem is easy in F and assumed to be computationally
intractable in H. Essentially, this allows two parties to non-interactively compute secret
shares of a discrete log in F .

Definition 4.3.5 (NIDLS Framework [ADOS22]). The NIDLS framework consists of three
efficient algorithms (GGen,D,DDLog) with the following functionality:

• GGen(1λ) → crs := (G, F,H, g, p, t, aux). The randomized group generation algorithm
takes as input the security parameter and outputs a common reference string crs which
consists of:

- finite Abelian group G,

- subgroups F and H such that G = F ×H,

- generator g and order p of F ,

- positive integer t,

- and auxiliary information aux.

• D(1λ, crs) → (h, ρ). The randomized sampling algorithm takes as input the security
parameter and common reference string, and outputs a group element h ∈ G along with
some auxiliary information ρ.

• DDLog(crs, h)→ s. The deterministic distributed discrete log algorithm takes as input
a common reference string and a group element, and outputs an element s ∈ Zp.

The above functionality needs to satisfy the following properties:

Correctness. For all security parameters λ ∈ N and efficient adversaries A, there exists a
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negligible function negl such that

Pr

 ⟨s⟩A − ⟨s⟩B = m (mod p) :

crs := (G, F,H, g, p, t, aux)← GGen(1λ)

(hA,m)← A(1λ, crs)
hB := gm · hA

⟨s⟩A := DDLog(crs, hA)

⟨s⟩B := DDLog(crs, hB)

 ≥ 1−negl(λ).

Security. For all security parameters λ ∈ N, it holds that:

 (crs, h, ρ, hr)

∣∣∣∣∣∣∣
crs := (G, F,H, g, p, t, aux)← GGen(1λ)

(h, ρ)← D(1λ, crs)
r

R← [t]


≈s

 (crs, h, ρ, h′)

∣∣∣∣∣∣∣
crs := (G, F,H, f, p, t, aux)← GGen(1λ)

(h, ρ)← D(1λ, crs)
h′

R← ⟨h⟩

.

I.e., the group elements hr and h′ are statistically indistinguishable.

Known instantiations. The NIDLS framework has been instantiated in the Paillier group
under the DCR assumption, in class groups under a variant of the DDH assumption (see
below), and in the group of elements in Z∗n with a Jacobi symbol of 1 (under the quadratic
residuosity assumption), where n is the product of two large random safe primes. We refer
to [ADOS22,ARS24] for formal definitions of these instantiations.

To instantiate “ElGamal-like” encryption in class groups, we will need to use the Enhanced
DDH assumption [ARS24]. This assumption states that given the parameters of the NIDLS
group and ℓ + 1 group elements g0, . . . , gℓ sampled from D (along with the corresponding
auxiliary information ρ0, . . . , ρℓ), it is hard to distinguish between (gw0 , . . . , g

w
ℓ ) for a random

w and (f r0 · gw0 , . . . , f rℓ · gwℓ ) for random r0, . . . , rℓ ∈ Zq.

Definition 4.3.6 (The ℓ-ary Enhanced DDH Assumption [ARS24]). Let GGen and D be as
defined in Definition 4.3.5. The ℓ-ary Enhanced DDH (ℓ-EDDH) assumption in the NIDLS
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framework states that:
crs

h0, . . . , hℓ

ρ0, . . . , ρℓ

hw
0 , . . . , h

w
ℓ

∣∣∣∣∣∣∣∣∣∣
(G, F,H, g, q, t, aux)← GGen(1λ)

(hj, ρj)← D(1λ, crs), ∀j ∈ {0, 1, . . . , ℓ}
w

R← [t]


≈c


crs

h0, . . . , hℓ

ρ0, . . . , ρℓ

gr0 · hw
0 , . . . , g

rℓ · hw
ℓ

∣∣∣∣∣∣∣∣∣∣
(G, F,H, g, q, t, aux)← GGen(1λ)

(hj, ρj)← D(1λ, crs), ∀j ∈ {0, 1, . . . , ℓ}
w

R← [t]

rj
$← Zq,∀j ∈ {0, 1, . . . , ℓ}

.

4.3.5 Secret-key homomorphic secret sharing

Here, we provide the full definition of Homomorphic Secret Sharing (HSS).

Definition 4.3.7 (Secret-Key HSS; Adapted from [BGI16, BKS19, DIJL23]). Let λ be a
security parameter, R be a finite ring, and F be a class of ℓ input functions defined over
R. A (secret key) HSS scheme with message space R consists of six efficient algorithms
HSS = (Setup, Share,Eval,Output) with the following syntax:

• Setup(1λ)→ (sk, (ekA, ekB)). The randomized setup algorithm takes as input the security
parameter. It outputs a secret key sk and a pair of HSS evaluation keys (ekA, ekB).

• Share(sk, x)→ (JxKA, JxKB). The randomized share algorithm takes as input the secret
key sk and message x ∈ R. It outputs an input share of x.

• Eval(σ, ekσ, f, JxKσ)→ ⟨⟨y⟩⟩σ. The deterministic evaluation algorithm takes as input the
party identifier σ ∈ {A,B}, an evaluation key ekσ, function f ∈ F , and input shares
of x := (x1, . . . , xℓ). It outputs a memory share of y := f(x).

• Output(σ, ⟨⟨y⟩⟩σ)→ ⟨y⟩σ. The deterministic output algorithm takes as input the party
identifier σ ∈ {A,B} and a memory share of y. It outputs a share of y.

When Alg ∈ {Share,Output} is given as input vector of input (or memory) shares, it outputs
the vector obtained by evaluating Alg on each coordinate of the input vector independently.

The above algorithms must satisfy correctness and security:

Correctness. We say the HSS scheme is ϵ-correct, for some 0 < ϵ ≤ 1, if for all functions
f ∈ F , and for all vectors x ∈ Rℓ, it holds that:

Pr

 ⟨z⟩A − ⟨z⟩B = f(x) :

(sk, (ekA, ekB))← Setup(1λ)

(JxKA, JxKB)← Share(sk,x)

⟨⟨y⟩⟩σ := Eval(σ, ekσ, f, JxKσ)
⟨z⟩σ := Output(σ, ⟨⟨y⟩⟩σ)

 ≥ ϵ− negl(λ).
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Security. For every σ ∈ {A,B}, and all efficient adversaries A, there exists a negligible
function negl(·), such that for all λ ∈ N we have that:

Pr

 b′ = b :

(sk, (ekA, ekB))← Setup(1λ)

(x0,x1, st)← A(1λ, ekσ)
b

R← {0, 1}
(JxbKA, JxbKB)← Share(sk,xb)

b′ ← A(st, JxbKσ)

 ≤
1

2
+ negl(λ),

where for all b ∈ {0, 1}, xb ∈ Rℓ and k = k(λ) ∈ poly(λ).

4.3.6 Degree-2 homomorphic secret sharing

Here, we define the most minimal form of Homomorphic Secret Sharing (HSS), which will
be sufficient for our construction of NIDPFs. The definition is adapted from a more general
definition of secret-key HSS (cf. Definition 4.3.7) and is satisfied by existing HSS constructions
in the NIDLS framework and from lattice-based assumptions.

Definition 4.3.8 (Degree-2 Secret-Key HSS; Adapted from [BGI16,DIJL23]). Let λ be a
security parameter and R be a finite ring. A Degree-2 (secret key) HSS scheme with message
space R consists of four efficient algorithms HSS = (Setup, Share,Convert,Mult) with the
following syntax:

• Setup(1λ)→ (sk, (ekA, ekB)). The randomized setup algorithm takes as input the security
parameter and outputs a secret key sk and a pair of HSS evaluation keys (ekA, ekB).

• Share(sk, x)→ (JxKA, JxKB). The randomized share algorithm takes as input the secret
key sk and message x ∈ R. It outputs a pair of input shares of x.

• Convert(σ, ekσ, JxKσ) → ⟨⟨x⟩⟩σ. The deterministic conversion algorithm takes as input
the party identifier σ ∈ {A,B}, an evaluation key ekσ, and input share of x. It outputs
a memory share of x.

• Mult(σ, ekσ, JxKσ, ⟨⟨y⟩⟩σ) → ⟨z⟩σ. The deterministic multiplication algorithm takes as
input the party identifier σ ∈ {A,B}, an evaluation key ekσ, an input share of x, and a
memory share of y. It outputs a share of z.

When Alg ∈ {Share,Convert,Mult} is given as input a vector of input (or memory) shares,
it outputs the vector obtained by evaluating Alg on each coordinate of the input vector
independently.

The above algorithms must satisfy correctness and security:

Correctness. For all security parameters λ ∈ N, and for all messages x, y ∈ R, we say the
HSS scheme is ϵ-correct, for some 0 < ϵ ≤ 1 if there exists a negligible function negl(·) such
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that:

Pr

 ⟨z⟩A − ⟨z⟩B = xy :

(sk, (ekA, ekB))← Setup(1λ)

(JxKA, JxKB)← Share(sk, x)

(JyKA, JyKB)← Share(sk, y)

⟨⟨y⟩⟩σ := Convert(σ, ekσ, JyKσ), ∀σ ∈ {A,B}
⟨z⟩σ := Mult(σ, ekσ, JxKσ, ⟨⟨y⟩⟩σ)

 ≥ ϵ− negl(λ).

Security. For all security parameters λ ∈ N such that, for every σ ∈ {A,B}, and all efficient
adversaries A, there exists a negligible function negl(·),

Pr

 b′ = b :

(sk, (ekA, ekB))← Setup(1λ)

(x0,x1, st)← A(1λ, ekσ)
b

R← {0, 1}
(JxbKA, JxbKB)← Share(sk,xb)

b′ ← A(st, JxbKσ)

 ≤
1

2
+ negl(λ),

where for all b ∈ {0, 1}, xb ∈ Rℓ and k = k(λ) ∈ poly(λ).

4.3.6.1 Memory shares in HSS schemes

All existing HSS constructions in the NIDLS framework [ADOS22,ARS24], and direct con-
structions from DDH [BGI16,BCG+17] or lattice-based assumptions [BKS19], are constructed
using the following template. The HSS secret key sk is a vector of ring elements from the ring
R and corresponds to the decryption key of some additively-homomorphic encryption scheme
with message space R, supporting some form of linear (or nearly-linear) decryption. The
evaluation keys (ekA, ekB) are additive shares of the secret key sk. For degree-2 computations,
input shares are simply encryptions of the message x under sk, while memory shares consist
of additive shares of x and sk · x. Multiplication of an input share of x with a memory share
of y can then be computed as follows. First, using the homomorphism of the encryption
scheme, compute an encryption of the additive share of z = x · y by multiplying the encrypted
message with the additive share of y. Second, using the linear decryption property of the
encryption scheme, compute the decryption of the resulting ciphertext using the additive
share of y · sk to recover the additive share of z.

We formalize the property of “multiplication by a memory share,” which we will use in
our NIDPF construction. We note that several prior works (e.g., [CMPR23,ARS24]) make
use of such “multiplication by memory shares,” without explicitly formalizing the property.

Definition 4.3.9 (Multiplication by Memory Shares). Let HSS = (Input, Share,Eval) (cf.
Definition 4.3.7) with a finite ring R as the message space. We say an HSS scheme supports
multiplication by a memory share if the following three properties are simultaneously satisfied:

(1) The secret key of the HSS scheme is a vector sk ∈ Rk, for some k ∈ N.
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(2) A memory share ⟨⟨y⟩⟩σ for any message y ∈ R consists of an additive share of the tuple
(y, y · sk), defined over R.

(3) There exists an efficient, deterministic algorithm MultEval with the same syntax as Eval,
such that for all messages y ∈ R, all memory shares (⟨⟨y⟩⟩A, ⟨⟨y⟩⟩B) of y, all input shares
(JxKA, JxKB) of x ∈ R, and all functions f in the family of functions computable by
HSS, it holds that:

Pr

[
⟨z⟩A − ⟨z⟩B = y · f(x) :

⟨z⟩σ := MultEval(σ, ekσ, f, JxKσ, ⟨⟨y⟩⟩σ),
∀σ ∈ {A,B}

]
≥ 1− negl(λ).

In words, any computation evaluated by the HSS scheme can be “pre-multiplied” by a
value y given only a memory share of y.

We note that Definition 4.3.8 explicitly captures property (3) from Definition 4.3.9. Impor-
tantly to us, Definition 4.3.9 is satisfied by all existing HSS constructions, including HSS con-
struction from the DDH [BGI16,BCG+17,BGI17], DCR [OSY21,RS21], QR [OSY21,ADOS22]
(for degree-2 computations), class groups [ADOS22], and LWE [BKS19].

4.4 Non-Interactive Multiplication

In this section, we define the notion of non-interactive multiplication. As mentioned in
the technical overview, this definition captures the core ingredient used in several prior
works, including the non-interactive OT construction of [BM90], non-interactive VOLE
(e.g., [OSY21,ARS24,BCM+24]), and the notion of non-interactive inner-products [CZ22].
We believe that our abstraction is of independent interest and may aid in further studying
the applications of these primitives. Indeed, in Section 4.6, we show that we can bootstrap
the NIM abstraction to compute more expressive functions in a “non-interactive” manner.

Definition 4.4.1 (Non-Interactive Multiplication). Let λ be a security parameter and R
be a finite ring. A Non-Interactive Multiplication (NIM) scheme consists of five efficient
algorithms,

NIM = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}),

with the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string (CRS) crs.

• Encodeσ(crs, v)→ (peσ, stσ). The randomized encoding algorithm is parameterized by a
party identifier σ ∈ {A,B}. It takes as input the CRS crs and message v. It outputs a
public encoding peσ and secret state stσ.

• Decodeσ(crs, peσ, stσ) → ⟨z⟩σ. The deterministic decoding algorithm is parameterized
by a party identifier σ ∈ {A,B}. It takes as input the CRS crs, public encoding peσ
belonging to the other party, and a secret state stσ belonging to party σ. It outputs a
share of z over R.

156



The above functionality must satisfy correctness and security:

Correctness. For all security parameters λ ∈ N and every pair of elements x, y ∈ R, a NIM
scheme is said to be correct if there exists a negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = xy :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, x)

(peB, stB)← EncodeB(crs, y)

⟨z⟩A := DecodeA(crs, peB, stA)

⟨z⟩B := DecodeB(crs, peA, stB)

 ≥ 1− negl(λ).

Security. For all efficient adversaries A, for all σ ∈ {A,B}, there exists a negligible function
negl(·) such that:

Pr

 b = b′ :

crs← Setup(1λ)

(v0, v1, st)← A(crs)
b

R← {0, 1}
(peσ, stσ)← Encodeσ(crs, vb)

b′ ← A(st, peσ)

 ≤
1

2
+ negl(λ).

In words, the public encoding hides the message.

4.4.1 NIM with multiplicative output reconstruction

We also define multiplicative rather than additive reconstruction for NIM, which will serve us
in instantiating a NIDPF in bilinear groups. In this case, Decodeσ outputs a group element
Zσ for σ ∈ {A,B}, such that ZA/ZB = gxy, where g is a generator of a cyclic group G.

Definition 4.4.2 (Multiplicative Reconstruction). A NIM scheme NIM is said to have
multiplicative reconstruction if the correctness property of Definition 4.4.1 is instead stated
as follows.

Multiplicative-Output Correctness. Let G be an Abelian group of order p with generator
g. For all security parameters λ ∈ N and every pair of elements x, y ∈ Zp, a NIM scheme
(instantiated with R = Zp) is said to be correct if there exists a negligible function negl(·)
such that:

Pr

 ZA · ZB = gxy :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, x)

(peB, stB)← EncodeB(crs, y)

ZA := DecodeA(crs, peB, stA)

ZB := DecodeB(crs, peA, stB)

 ≥ 1− negl(λ).
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Remark 19 (General reconstruction). We note that we could have defined NIM (Defini-
tion 4.4.1) to have an arbitrary reconstruction algorithm, that we then instantiate either as
being addition or multiplication. However, because for most applications of NIM the additive
reconstruction property is more desirable, we choose to instead provide two definitions noting
that the more general abstraction is possible.

4.4.2 Succinct NIM for matrix multiplication

When computing non-interactive matrix multiplication, we can realize a “batch NIM” scheme
that achieves sublinear encoding size relative to the size of the output matrix, which translates
to sublinearity with respect to one of the party’s inputs (or the size of the joint output). Note
that we cannot, in general, require succinctness in both of the parties inputs since this would
contradict information-theoretic lower bounds [ARS24].

Definition 4.4.3 (ϵ-succinct Matrix NIM). A NIM scheme for matrix multiplication is said
to be ϵ-succinct, for some 0 ≤ ϵ < 1, if for all security parameters λ ∈ N, every CRS crs,
integers ℓ,m, k ∈ N such that ℓ > k, and every pair of matrices (MA,MB) ∈ Rℓ×m ×Rm×k,
it holds that for N := ℓ ·m,

|peA| ≤ N ϵ · poly(λ, log |R|),

where (peA,_) ← EncodeA(crs,MA). In words, the public encoding generated by the party
with the larger matrix is sublinear in the size of its matrix.

Remark 20 (Connection to “Bilinear HSS”). Abram et al. [ARS24] define the notion of
Bilinear HSS, which is conceptually related to our formalization of succinct NIM. While
the notions share some similarities, succinct NIM is a stronger definition due to the non-
interactivity requirement. Bilinear HSS, in contrast, captures an “HSS-like” syntax, where a
trusted setup process distributes keys to the parties. Succinct NIM follows straightforwardly
from Bilinear HSS with (1) Strong Hasher Privacy, (2) Strong Matrix Privacy, (3) Transparent
Hasher Privacy, and (4) Transparent Matrix Privacy, using the terminology and definitions
from [ARS24]. However, Property (4) is not defined in [ARS24], even though we believe that
it can be easily be inferred as a variant of (3).

4.4.3 Constructions from group-based assumptions

Our group-based construction of succinct NIM follows from the construction of succinct
non-interactive VOLE protocols [ARS24, BCM+24]. Let m be an integer. Let G be a
suitable finite-order group with generators h0, h1, . . . , hm and let g be a generator for a
subgroup of G with order p (not necessarily prime). The CRS consists of the group G and
the generators crs := (g, h0, h1, . . . , hm), sampled according to some distribution we will
define later. The first step in realizing matrix products is non-interactively computing the
inner-product between two vectors [CZ22,ARS24,BCM+24]. To achieve this, we start with
the construction from [ARS24]: Alice has an input vector a ∈ Zm

p and Bob has an input
vector b ∈ Zm

p . The goal is for the parties to obtain shares of the inner product ⟨a,b⟩ in
one simultaneous round of communication. To achieve this, Alice encodes her input vector
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a = (a1, . . . , am) by computing a Pedersen commitment d := hr
0

∏m
i=1 h

ai
i , where r is uniformly

random.3 Bob encodes his input vector b by computing a “batched” ElGamal-like encryption
E := (hs

0, g
b1hs

1, . . . , g
bmhs

m), where s is uniformly random. Surprisingly, just these values are
enough for Alice and Bob to obtain shares of the inner product. In particular, given Bob’s
public encoding E = (e0, e1, . . . , em), Alice computes:

ZA := er0 ·
m∏
i=1

eaii = (hsr
0 · gb1a1h

sa1
1 · · · gbmamhsam

m ) = g⟨a,b⟩ · hsr
0 ·

m∏
i=1

hsai
i ,

and given Alice’s public encoding d, Bob computes:

ZB := ds = hrs
0 (

m∏
i=1

hai
i )

s = hsr
0 ·

m∏
i=1

hsai
i .

Observe that ZA · (ZB)
−1 = g⟨a,b⟩, meaning that the parties obtain multiplicative shares

of the inner-product. To obtain additive shares from the multiplicative shares (i.e., to
“bring down” the exponent), the parties can use the distributed discrete logarithm (DDLog)
procedure [BGI16] (see also Definition 4.3.5). However, an algorithm for solving the DDLog
in an arbitrary group G requires tolerating a polynomial correctness error [DKK20], which is
undesirable. Fortunately, however, in was shown in [ADOS22] that for certain instantiations of
G, the DDLog procedure can be made “error free” provided that g is chosen to be a generator
of a subgroup in which the discrete logarithm is easy.4 Using the DDLog algorithm, and
choosing g according to the non-interactive discrete logarithm sharing (NIDLS) framework of
Abram et al. [ADOS22], Alice and Bob can non-interactively derive additive shares of ⟨a,b⟩,
as required.

Succinct matrix products from inner products. Using a non-interactive protocol
for inner-products we can clearly construct NIM for matrix multiplication by invoking the
inner-product protocol in parallel. In particular, simultaneous round protocols have the
appealing feature that the first messages can be reused, meaning that we can “mix-and-match”
encodings of different vectors generated by Alice and Bob.

Thus, it is enough for Alice to encode her matrix A ∈ Zℓ×m
p by generating a commitment

di using randomness ri for the row vector ai, for each i ∈ [ℓ]. The randomness masks the
entries of A, so Alice’s public encoding does not leak information. Likewise, Bob encodes his
matrix B ∈ Zm×k

p by encrypting the column vectors bi, for each i ∈ [k]. These encryptions
hide the entries of B by the semantic security of the NIDLS-ElGamal encryption, so Bob’s
public encoding also does not leak information.

This allows Alice and Bob to then non-interactively compute shares of the product AB
by locally computing the inner-products between the ai’s and bj’s. We refer to Figure 4.2
for a formal construction of the succinct NIM for matrix multiplication from group-based
assumptions.

As observed in [ARS24,BCM+24], the above protocol has a special property that enables
a communication-succinct variant for certain parameters of ℓ, m, and k: Alice’s message is of

3Note that Alice’s encoding is information-theoretically hiding, regardless of how the CRS was generated.
4Examples of such groups include the Paillier group Z∗

n2 and the group of quadratic residues [ADOS22].
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size O(ℓ) and is entirely independent of m! Moreover, Bob’s message only depends on m and
k and is independent of ℓ.

In particular, when the size of the output matrix is N = ℓ · k, there exists a sublinear
protocol (in N) by letting ℓ = N2/3 and choosing m such that m · k = N2/3. To see this,
note that Alice’s encoding is of size ℓ = N2/3 while Bob’s encoding is of size m · k = N2/3,
resulting in an optimal communication tradeoff with respect to N . This “balancing trick”
works for any matrices A and B, but has previously only been used in realizing succinct
VOLE [ARS24,BCM+24]. Our construction of non-interactive DPFs (Section 4.5) is the first
to exploit this property explicitly for general matrix multiplication, which proves that this
technique may be of independent interest.

Lemma 4.4.1 (Extended from [ARS24]). Let λ be a security parameter, R be a finite ring
(as defined below), ℓ,m be integer parameters, and N = ℓ · m. There exist the following
instantiations of succinct NIM with O(N2/3) encoding size, O(N) encoding time, and O(N4/3)
decoding time, for all matrices A ∈ Rℓ×m and B ∈ Rm×m, where O(·) hides a factor of
poly(λ, log |R|):
(1) under the DCR assumption over the Paillier group Z∗n2, when R ⊆ Zn;

(2) under the QR assumption over the RSA group Z∗n where n is the product of two large
safe-primes, when R = Z2;

(3) under the N1/3-ary EDDH assumption and the uniformity assumption in class groups,
when R = Zp, for any suitable prime p = Ω(2λ); and

(4) under the DDH assumption in a cyclic group G of order p when R = Zp and when the
negligible correctness error of Definition 4.4.1 is relaxed to 1/T 2, for T = T (λ) ∈ poly(λ),
where the Decode is allowed to run in time O(T ).

4.4.3.1 Multiplicative-output NIM from DDH

We observe that NIM (with multiplicative output reconstruction; Definition 4.4.2) can be
instantiated under the DDH assumption over a suitable cyclic group G with generators g and
h1, . . . , hm. To see this, observe that if we forego the DDLog procedure in the overview above,
then the parties already obtain multiplicative shares ZA and ZB such that ZA/ZB = g⟨a,b⟩.
This then carries through to the succinct NIM instantiation via the balancing trick. We will
use this variant of NIM in Section 4.5 to realize a NIDPF scheme in bilinear groups under
the SXDH assumption (an analog of the DDH assumption for bilinear groups).

4.4.4 Constructions from lattice-based assumptions

The LWE and RLWE constructions follow a similar template to the NIDLS-based approach.
The idea, first described in [ARS24], is to replace the Pedersen commitment computed by
Alice with an SIS-based commitment5 and replace the ElGamal encryption computed by Bob
with a dual-Regev variant.

For LWE parameters (n, q, χ) and plaintext space Zp for p≪ q, Alice and Bob encode
their input vectors a,b ∈ Zm

p as elements of Zm
q , in the natural way. For an integer t≫ n,

5The Short Integer Solution (SIS) problem [Ajt96] is implied by LWE.
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Succinct NIM for Matrix Multiplication from Groups

Public Parameters. Matrix dimensions ℓ,m, k. NIDLS framework (GGen,D,DDLog).

NIM.Setup(1λ):
1 : crsG ← GGen(1λ)

2 : foreach i ∈ {0, . . . ,m} :
3 : (hi, ρ)← D(1λ, crsG)
4 : return crs := (crsG, h0, . . . , hm)

NIM.EncodeA(crs,A):
1 : parse crs = (crsG, h0, . . . , hm)

2 : foreach i ∈ [ℓ] :

3 : ri←$ [t]

4 : di := hri0
∏m

j=1 h
ai,j
j

5 : peA := (d1, . . . , dℓ)

6 : stA := (A, r1, . . . , rℓ)

7 : return (peA, stA)

NIM.EncodeB(crs,B):
1 : parse crs = (crsG, h0, . . . , hm)

2 : foreach i ∈ [k] :

3 : si←$ [t]

4 : Ei,0 := hsi0
5 : foreach j ∈ [m] : Ei,j = gbj,ihsij
6 : peB := (Ei,0, . . . , Ei,m)i∈[k]

7 : stB := (s1, . . . , sk)

8 : return (peB, stB)

NIM.DecodeA(crs, peB, stA):
1 : parse crs = (crsG, h0, . . . , hm)

2 : parse peB = (Ej,0, . . . , Ej,m)j∈[k]

3 : parse stA = (A, r1, . . . , rℓ)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : Zi,j := Eri
j,0 ·

∏m
j′=1E

ai,j′

j,j′

6 : ZA[i, j] := DDLog(crsG, Zi,j)

7 : return ZA

NIM.DecodeB(crs, peA, stB):
1 : parse crs = (crsG, h0, . . . , hm)

2 : parse peA = (d1, . . . , dℓ)

3 : parse stB = (s1, . . . , sk)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : Di,j := d
sj
i

6 : ZB[i, j] := DDLog(crsG, Di,j)

7 : return ZB

Figure 4.2: Group-based NIM construction.
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determined by the SIS problem, let V ∈ Zn×m
q and U ∈ Zn×t

q be matrices. The CRS consists
of the LWE parameters, and matrices V and U.

Then, Alice computes a commitment d := Ur+Va, where r ∈ Zt
q is a random vector from

a short distribution that she saves as her secret state. The ElGamal encryption computed by
Bob is replaced with a dual-Regev encryption variant of the form: (e0, e1) where

e0 := V⊤s+ ⌊q/p⌉b+ noise and e1 := U⊤s+ noise,

for a secret s
R← Zn

q that he saves as his secret state. As before, Alice and Bob publish d
and e := (e0, e1). Again, it holds that d is of size n (the LWE security parameter), which is
independent of the vector length m. For correctness, it is enough to note that:

(e⊤0 · a+ e⊤1 · r)− (s⊤ · d) = (s⊤ ·V + ⌊q/p⌉ · b⊤ + noise) · a+ (s⊤ ·U+ noise) · r
− s⊤ · (Ur+Va)

= ⌊q/p⌉ · b⊤ · a+ (noise) · a+ (noise) · r
= ⌊q/p⌉ · b⊤ · a+ noise

≈ ⌊q/p⌉ · ⟨a,b⟩ mod p.

Using the rounding lemma [DHRW16,BKS19], it holds that for sufficiently large q relative to
p, we can locally round the shares such that

Pr
[ ⌊

(e⊤0 · a+ e⊤1 · r)
⌉
p
−
⌊
(s⊤ · d)

⌉
p
=
⌊
(e⊤0 · a+ e⊤1 · r)− (s⊤ · d)

⌉
p

]
≥ 1− negl(λ),

where ⌊·⌉p denotes the modular rounding from Zq to Zp. To ensure security for Bob, we
require that the LWE assumption holds for V and U, i.e., V⊤s + noise and U⊤s + noise
look uniform, so Bob’s public encoding (e0, e1) computationally hides his secret input b.
To ensure security for Alice, we require that SIS holds for U (which follows from a hybrid
argument), i.e., Ur looks uniform, so Alice’s public encoding d computationally hides her
secret input a. We refer to Figure 4.3 for a formal description of the succinct NIM for matrix
multiplication from LWE. The security of the full construction follows from the security of
the dot product construction and a standard hybrid argument. We note that the construction
can be equivalently instantiated from the Ring LWE (RLWE) assumption by replacing the
matrices with a suitable polynomial ring.

Remark 21. We note the the non-interactive VOLE protocol from Chapter 3 can be easily
extended to support inner products (and even batch OLE by working over a spitting ring)
while still remaining non-interactive. However, the key difference with the construction from
Chapter 3 is that both Alice’s and Bob’s encodings are computationally hiding whereas the
construction described here has Alice’s encoding be a statistically hiding commitment. Having
one input be statistically hiding is important for achieving input succinctness: otherwise the
encodings must grow linearly with the input size.
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Succinct NIM for Matrix Multiplication from Lattices

Public Parameters. Matrix dimensions ℓ,m, k. Plaintext space Zp. LWE parameters n
and q ≫ p, error distribution χ. SIS parameter t≫ n, short distribution B.

Notation. We write B[:, i] to denote the ith column of the matrix B.

NIM.Setup(1λ):
1 : V←$Zn×m

q

2 : U←$Zn×t
q

3 : return crs := (V,U)

NIM.EncodeA(crs,A):
1 : parse crs = (V,U)

2 : foreach i ∈ [ℓ] :

3 : ri←$Bt

4 : di := Uri +VA[i, ]

5 : peA := (d1, . . . ,dℓ)

6 : stA := (A, r1, . . . , rℓ)

7 : return (peA, stA)

NIM.EncodeB(crs,B):
1 : parse crs = (V,U)

2 : foreach i ∈ [k] :

3 : si←$Zn
q , wi,w

′
i←$χm

4 : ei,0 := V⊤si + ⌊q/p⌉B[:, i] +wi

5 : ei,1 := U⊤si +w′i

6 : peB := (ei,0, ei,1)i∈[k]

7 : stB := (s1, . . . , sk)

8 : return (peB, stB)

NIM.DecodeA(crs, peB, stA):
1 : parse crs = (V,U)

2 : parse peB = (ei,0, ei,1)j∈[k]

3 : parse stA = (A, r1, . . . , rℓ)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : ZA[i, j] := e⊤j,0 ·A[i, ] + e⊤j,1 · ri
6 : return ZA

NIM.DecodeB(crs, peA, stB):
1 : parse crs = (V,U)

2 : parse peA = (d1, . . . ,dℓ)

3 : parse stB = (s1, . . . , sk)

4 : foreach (i, j) ∈ [ℓ]× [k] :

5 : ZB[i, j] := s⊤j · di

6 : return ZB

Figure 4.3: Lattice-based NIM construction.
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4.5 Non-Interactive DPF

In this section, we define and construct Non-Interactive DPFs (NIDPFs). Our construction
makes use of the NIM abstraction and constructions from Section 4.4.

Definition 4.5.1 (Non-Interactive Distributed Point Function). Let λ be a security parameter
and G be a cyclic group. A non-interactive distributed point function (NIDPF) with input
domain ZN consists of four efficient algorithms,

NIDPF = (Setup, (Genσ,KeyDerσ,Evalσ)σ∈{A,B}),

with the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string crs.

• Genσ(crs, tσ, vσ)→ (pkσ, skσ). The randomized generation algorithm is parameterized
by a party identifier σ ∈ {A,B}. It takes as input the crs, an index tσ ∈ ZN , and a
message vσ ∈ G. It outputs a public key pkσ and secret key skσ.

• KeyDerσ(crs, pkσ, skσ)→ κσ. The deterministic key derivation algorithm is parameter-
ized by a party identifier σ ∈ {A,B}. It takes as input the crs, public key pkσ belonging
to the other party, and a secret key skσ belonging to party σ. It outputs a DPF key κσ

for party σ.

• Evalσ(crs, κσ, x)→ ⟨y⟩σ. The deterministic evaluation algorithm is parameterized by a
party identifier σ ∈ {A,B}. It takes as input the crs, the party’s DPF key κσ, and an
input x ∈ ZN . It outputs a share of the evaluation result y.

Let Pi,v : ZN → G be the point function that outputs 0 for all inputs x ̸= i and outputs
v otherwise. The above functionality must satisfy the following correctness and security
properties:

Correctness. For all security parameters λ ∈ N, every pair of indices tA, tB ∈ ZN such that
t = tA + tB ∈ ZN , every pair of messages vA, vB ∈ G such that v = vA + vB ∈ G, and every
input x ∈ ZN , a NIDPF scheme is correct if there exists a negligible function negl such that:

Pr

 ⟨y⟩A − ⟨y⟩B = Pt,v(x) :

crs← Setup(1λ)

(pkσ, skσ)← Genσ(crs, tσ, vσ), ∀σ ∈ {A,B}
κA := KeyDerA(crs, pkB, skA)

κB := KeyDerB(crs, pkA, skB)

⟨y⟩σ := Evalσ(crs, κσ, x), ∀σ ∈ {A,B}

 ≥ 1− negl(λ),

where the probability is taken over the random coins used by Gen.

Security. For all efficient adversaries A, for all σ ∈ {A,B}, there exists a negligible function
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negl(·) such that:

Pr

 b = b′ :

crs← Setup(1λ)

(t0, v0, t1, v1, st)← A(crs)
b

R← {0, 1}
(pkσ, skσ)← Genσ(crs, tb, vb)

b′ ← A(st, pkσ)

 ≤
1

2
+ negl(λ)

In words, the public key computationally hides the encoded index and message.

We now define two variants of NIDPF that we will consider in this chapter. The first
variant, which we call a half-chosen NIDPF, only allows one of the parties to specify the
output message, forcing the second party to input ⊥ to Gen. The second variant, which we
call a random-output NIDPF, does not allow the parties to specify the output message: the
output v is uniformly random and determined solely based on the random coins of GenA and
GenB.

Definition 4.5.2 (Half-Chosen NIDPF). We say that a NIDPF scheme has a half-chosen
payload if for a fixed σ ∈ {A,B}, Genσ only accepts vσ = 0.

Definition 4.5.3 (Random-Payload NIDPF). We say that a NIDPF scheme has a random
payload if both GenA and GenB do not take any message parameter, and the NIDPF correct-
ness property from Definition 4.5.1 instead holds with respect to a random payload v ∈ G
(determined by the random coins of Gen).

Lemma 4.5.1 (Half-Chosen NIDPF =⇒ NIDPF). Given a half-chosen NIDPF with (public
and secret) encoding size S and evaluation time T , we can obtain a NIDPF with encoding
size size 2S and evaluation time 2T .

The lemma follows directly from the composition theorem of function secret sharing [BGI15,
Section 3.2]. In particular, the parties run two instances of the half-chosen NIDPF in parallel,
where each party specifies its own payload in turn by reversing roles, then the outputs of the
two instances are summed together.

Remark 22 (Full-domain evaluation). Our construction will focus on settings where the
evaluation algorithm Eval is applied on all inputs in the domain ZN (in which case we need
to assume that N is polynomial in the security parameter, for efficiency). That is, given a
NIDPF scheme NIDPF = (Setup, (Genσ,KeyDerσ,Evalσ)σ∈{A,B}), we will denote by EvalAllσ
the algorithm that runs NIDPF.Evalσ on every input x ∈ G. As such, EvalAllσ only takes as
input the crs and key κσ.

This setting captures a motivated range of applications and implemented systems, including
constructions of pseudorandom correlation generators, private “reading” applications such as
Private Information Retrieval, and private “writing” applications such as secure distributed
storage, voting, and aggregation. (See, e.g., [BGIK22] for further discussion.)

We additionally remark that all present black-box distributed DPF setup protocols require
domains of feasible size. Indeed, removing this limitation while remaining black-box in the
underlying cryptography would seem to pose a significant challenge.
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4.5.1 Emulating arithmetic modulo N

Here, we briefly describe two natural approaches for representing arithmetic over the inputs of
Alice and Bob. We want our construction to give parties the ability to generate keys for the
point function with a non-zero index at tA+tB modN . Unfortunately, our NIDPF construction
requires Alice and Bob to parse their inputs tA, tB ∈ [N ] as (iA, jA), (iB, jB) ∈ Zℓ×Zm, where
N = ℓ ·m and only allows them to compute a DPF key encoding a point function with special
index:

(iA + iB mod ℓ) ·m+ (jA + jB mod m). (4.3)

If we parse the indices tA and tB of each party in the simplest way, i.e., tA = iA ·m + jA
and tB = iB ·m+ jB, the above operation does not capture addition of tA and tB modulo
N . Specifically, it is possible that jA + jB has a “carry bit” b in the case when jA + jB ≥ m,
which then has to be added to the iA + iB component as:

(iA + iB + b mod ℓ) ·m+ (jA + jB mod m). (4.4)

Concretely, in our NIDPF construction, this will require shifting the rows of the matrix T by
iB + b in the case that the carry bit is set (recall Step II from Section 4.2.2).

Remark 23 (Random point function). We remark that in the case that Alice and Bob need
a point function with a random non-zero index, they do not need to emulate addition modulo
N and can instead simply sample uniformly random (iσ, jσ) for their inputs to the NIDPF.

Here, we present two approaches for emulating addition (modulo N) using arithmetic
represented over ℓ and m, as in Equation 4.3.

Approach I: Emulating arithmetic via a residue number system. As described in
Section 4.2, we can let ℓ be coprime to m, which immediately allows us to emulate arithmetic
modulo N in a residue number system, using ℓ and m as the coprime moduli. In this case,
we no longer need to worry about the carry bit, since we can compute locally modulo Zℓ and
Zm and then map back to ZN . Alice and Bob represent their indices tA, tB ∈ [N ] as (iA, jA)
and (iB, jB) where

tA ≡ iA (mod ℓ), tB ≡ iB (mod ℓ),

tA ≡ jA (mod m), tB ≡ jB (mod m).

After executing the protocol, they hold secret shares of a matrix that is nonzero in location
(iA + iB (mod ℓ), jA + jB (mod m)). Let α, α′ be integers such that αℓ + α′m = 1, which
exist since ℓ and m are coprime. Alice and Bob can each map location (i, j) of their ℓ×m
matrix to location l ∈ [N ] in a vector of length N where l ≡ iα′m+ jαℓ (mod N). Suppose
t is the resulting one-hot index in the vector Alice and Bob now hold shares for. By the
Chinese Remainder Theorem, we have that

t ≡ iA + iB (mod ℓ)

t ≡ jA + jB (mod m)

}
=⇒ t ≡ tA + tB (mod N).
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Approach II: Emulating the carry. For some applications, it may be inconvenient or
impossible for ℓ and m to be coprime, such as if N = ℓ ·m is a power of 2. An alternative
strategy we can use in this case is to prevent the “erasure” of the carry bit modulo m.
Specifically, we observe that if the cyclic shift is performed modulo 2m, then we do not lose
information on the carry: the non-zero entry of Alice’s matrix A ∈ Rℓ×2m will either contain
the non-zero entry in the “left half” or the “right half” of the columns depending on whether
or not the carry occurred. At this point, Alice and Bob will hold shares of a matrix T that
can be parsed as [T0 T1], where T0,T1 ∈ Rℓ×m and T1−b = 0 when b is the value of the carry
bit. Then, Alice and Bob can cyclically shift their rows of T1 down by one (this operation is
a linear function over their shares of T1), and compute T := T0 + ShiftDown(T1, 1). Observe
that because T1−b is always zero, they obtain shares of the matrix T that has exactly one
non-zero entry and the rows cyclically shifted down precisely if the carry bit is set. Note that
this approach works regardless of the choice of ℓ and m.

4.5.2 NIDPF framework

Here, we formalize the NIDPF construction, closely following the technical overview from
Section 4.2.2. We present a construction for the “half-chosen payload” (Definition 4.5.2)
NIDPF in Figure 4.4, which can be extended to satisfy the full NIDPF definition via
Lemma 4.5.1 (however, for the applications described in Section 4.1.2, the payload is public,
and so the half-chosen variant sufficient on its own).

Our construction uses the following auxiliary functions as building blocks.

Auxiliary functions. We define two deterministic functions that simplify the presentation
of our NIDPF construction in Figure 4.4.

• Shift : Rℓ×m× [ℓ]→ Rℓ×m. Shift takes as input a ℓ×m matrix (for arbitrary integers ℓ,
m) and a shift i ∈ [ℓ]. It outputs the matrix with the rows cyclically shifted down by i.

• Mat2Vec : Rℓ×m → Rℓ·m. Mat2Vec takes as input a ℓ×m matrix (for arbitrary integers
ℓ, m) and outputs the vector obtained by concatenating the rows of the matrix together.

Proposition 4.5.1. Let NIM be a succinct NIM scheme (Definition 4.4.3) and let HSS be a
(degree-2, secret-key) HSS scheme (Definition 4.3.8). The construction presented in Figure 4.4
is a half-chosen NIDPF (Definition 4.5.2).

Proof. We prove correctness and security in turn.

Correctness. By correctness of NIM, we have that

UA +UB = AE =
[
ASjB

∣∣ skB ·ASjB

∣∣ · · · ∣∣ skk ·ASjB

]
.

In words, Uσ is an HSS memory share of T = ASjB . Recall that the vector eiB has entries
eiB ,j = 0 for j ̸= iB and eiB ,iB = 1. Then, by correctness of HSS, we have that

ZA − ZB =
∑
j∈[ℓ]

(Z
(j)
A − Z

(j)
B ) = (Z

(iB)
A − Z

(iB)
B ) + 0

= TiB = Shift(T, iB) = Shift(ASjB , iB).
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NIDPF Framework

Public Parameters. Domain size N and matrix dimensions ℓ,m such that ℓ ·m = N .
Set of cyclic shift matrices Sm = {Sj : j ∈ [m]}, where Sj is the j-th canonical cyclic shift
matrix. Succinct NIM scheme NIM = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) and (degree-2,
secret-key) HSS scheme HSS = (Setup, Share,Convert,Mult). We instantiate the full-
domain evaluation algorithm NIDPF.EvalAll, described in Remark 22.

NIDPF.Setup(1λ):
1 : crs← NIM.Setup(1λ)

2 : return crs

NIDPF.GenA(crs, tA, v):
1 : parse tA = (iA, jA) ∈ [ℓ]× [m]

2 : A := 0 ∈ Rℓ×m, A[iA, jA] := v

3 : (peA, stA)← EncodeA(crs,A)

4 : (pkA, skA) := (peA, stA)

5 : return (pkA, skA)

NIDPF.KeyDerσ(crs, pkσ, skσ):
1 : parse (pkσ, skσ) = (peσ, ekσ, JeiBKσ, stσ)
2 : Uσ := Decodeσ(peσ, stσ)

3 : parse Uσ = ⟨⟨T⟩⟩σ
4 : κσ := (⟨⟨T⟩⟩σ, ekσ, JeiBKσ)
5 : return κσ

NIDPF.GenB(crs, tB,⊥):
1 : parse tB = (iB, jB) ∈ [ℓ]× [m]

2 : (sk, (ekA, ekB))← HSS.Setup(1λ)

3 : parse sk = (skB, . . . , skk) ∈ Rk

▷ k is determined by the HSS scheme.
4 : (JeiBKA, JeiBKB)← HSS.Share(sk, eiB )

▷ eiB is the iB-th canonical unit vector.

5 : E :=
[
SjB

∣∣ skB · SjB

∣∣ · · · ∣∣ skk · SjB

]
6 : (peB, stB)← EncodeB(crs,E)

7 : pkB := (peB, ekA, JeiBKA)
8 : skB := (stB, ekB, JeiBKB)
9 : return (pkB, skB)

NIDPF.EvalAllσ(crs, κσ):
1 : parse κσ = (⟨⟨T⟩⟩σ, ekσ, JeiBKσ)
▷ JeiBKσ = (JeiB ,1Kσ, . . . , JeiB ,kKσ).
2 : foreach j ∈ [ℓ] :

3 : ⟨⟨Tj⟩⟩σ := Shift(⟨⟨T⟩⟩σ, i)
4 : Z(j)

σ := Mult(σ, ekσ, JeiB ,jKσ, ⟨⟨Tj⟩⟩σ)

5 : Zσ :=
∑ℓ

j=1 Z
(j)
σ

6 : ⟨y⟩σ := Mat2Vec(Zσ)

7 : return ⟨y⟩σ

Figure 4.4: NIDPF framework.
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A is zero everywhere except location (iA, jA), so ASjB is zero everywhere except location
(iA, jA + jB), and Shift(ASjB , iB) is zero everywhere except location (iA + iB, jA + jB), as
desired.

Security. Note that pkA = peA where peA is a public encoding generated by EncodeA for
message A defined by tA, v. This computationally hides tA and v by NIM security. To prove
security for pkB = (peB, ekA, JeiBKA), we proceed via a hybrid argument.

• Hybrid H0. This hybrid consists of the NIDPF game instantiated using the construction
from Figure 4.4 with index t0 and payload v0 (i.e., when b = 0).

• Hybrid H1. In this hybrid, we set E := 0 ∈ Rm×m(k+1).

Claim. H1 ≈c H0 assuming the security of NIM.

Proof. Suppose an efficient adversaryA distinguishes betweenH1 andH0. The existence
of A contradicts NIM security: the reduction asks the NIM challenger for peB to be
either a public encoding of E or 0, samples (sk, (ekA, ekB))← HSS.Setup(1λ) itself, and
uses A to break NIM security of Encode. □

• Hybrid H2. In this hybrid, we set eiB := 0 ∈ Rℓ.

Claim. H2 ≈c H1 assuming the security of HSS.

Proof. Suppose an efficient adversaryA distinguishes betweenH2 andH1. The existence
of A contradicts HSS security: the reduction asks the HSS challenger for peB to be either
a share of eiB or 0, samples crs ← NIM.Setup(1λ), computes peB ← EncodeB(crs,0)
itself, and finally uses A to break HSS security of HSS.Share. □

At this point, there is no information on t0 and v0. By continuing with the same sequence of
hybrids in reverse order, we can show that H0 is indistinguishable from the NIDPF game
instantiated using the construction from Figure 4.4 with index t1 and payload v1 (i.e., when
b = 1). As such, no efficient adversary can distinguish between the b = 0 and b = 1 case with
better than negligible advantage, which concludes the proof of security. ■

Theorem 4.5.1. There exist the following instantiations of Figure 4.4 with a O(N2/3) public
key size, O(N) key generation time, O(N4/3) key derivation time, and O(N5/3) full domain
evaluation time, where O(·) hides a factor of poly(λ, log |R|):

• under the DCR assumption over the Paillier group Z∗n2, when R ⊆ Zn;

• under the QR assumption over the RSA group Z∗n where n is the product of two large
safe-primes, when R = Z2;

• under the N1/3-ary EDDH assumption and the uniformity assumption in class groups,
when R = Zp, for any suitable prime p = Ω(2λ); and

• under the LWE/RLWE assumption with a superpolynomial modulus-to-noise ratio, when
R = Zp, for any integer p.
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The class group and LWE/RLWE instantiations have a transparent setup.

Proof. We set parameters ℓ = N2/3 and m = N1/3. Since the HSS secret key length
k = k(λ) = poly(λ), we will ignore factors of k in our analysis below.

The size of the public key generated for the larger matrix with dimensions ℓ×m grows
with the number of rows, resulting in an asymptotic size of N2/3. The size of the public key
generated for a smaller matrix with dimensions m ×m grows with the size of the matrix,
resulting in an asymptotic size of N1/3 ·N1/3 = N2/3. Key generation time is dominated by
the NIM encoding algorithm for a matrix of size ℓ×m, resulting in an asymptotic runtime of
N2/3 ·N1/3 = N .

Key derivation time is dominated by the NIM decoding algorithm for matrices with
dimensions ℓ×m and m×m, resulting in an asymptotic runtime of N2/3 ·N1/3 ·N1/3 = N4/3.
Full domain evaluation time is dominated by running the HSS multiplication algorithm ℓ times
for a matrix with dimensions ℓ×m, resulting in an asymptotic runtime of N2/3 ·N2/3 ·N1/3 =
N5/3. ■

4.5.3 Random-payload instantiation from SXDH

Here, we provide a construction of Figure 4.4 with random payload (see Definition 4.5.3)
from the SXDH assumption over bilinear groups. Our starting point is the observation that
if we replace the NIM in Figure 4.4 with the multiplicative-output NIM (Definition 4.4.2),
we can avoid the error introduced from the DDLog procedure converting the multiplicative
shares into additive shares. However, by having the output of NIM be multiplicative, we lose
the ability to compute the HSS multiplication in EvalAll, since HSS requires additive memory
shares.

We overcome this by constructing a new degree-2 HSS scheme satisfying Definition 4.3.8
and which has “multiplicative” memory shares (i.e., additive memory shares “in the exponent”)
that are compatible with the outputs of the multiplicative NIM.

4.5.3.1 Degree-2 HSS with Multiplicative Memory Shares

In Figure 4.5, we construct a (secret-key, degree-2) HSS scheme satisfying Definition 4.3.8
under the SXDH assumption in bilinear groups.6 The construction follows the standard
template for realizing HSS in cyclic groups. However, one difference is that we define input
shares over the group G1 and memory shares over the group G2, which allows us to compute
the multiplication using a pairing operations. This slightly complicates the scheme since now
we need to convert input shares to memory shares using Convert by “hopping between groups,”
which necessitates defining two independent encryptions of the message in HSS.Share when
generating an input share. Importantly, the encryptions in G1 need to be generated using an
encryption key α that is independent from the encryption key β used to encrypt the messages
in G2 (otherwise the security of the encryption would be trivially broken via the pairing).

6The construction can easily be made public key, but we present the secret-key variant for consistency
with the rest of the chapter.
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Degree-2 Secret-key HSS from SXDH

Public Parameters. Bilinear group of order p defined by (p,G1,G2,GT , g1, g2, e). For
convenience, we define gT := e(g1, g2) ∈ GT . Additive secret sharing algorithm ShareG(·)
outputting two-out-of-two shares in the group G (see Section 4.3.2). Distributed discrete
logarithm algorithm DDLog (Definition 4.3.4) and an integer 2 ≤M ≤ poly(λ) defining
the message space {0, 1, . . . ,M − 1}.

HSS.Setup(1λ):

1 : α, β
R← Zp, γ := αβ, sk := (α, β, γ)

2 : (⟨α⟩A, ⟨α⟩B)← ShareZp(α)

3 : (⟨β⟩A, ⟨β⟩B)← ShareZp(β)

4 : (⟨γ⟩A, ⟨γ⟩B)← ShareZp(γ)

5 : foreach σ ∈ {A,B} :
6 : ekσ := (⟨α⟩σ, ⟨β⟩σ, ⟨γ⟩σ)
7 : return (sk, (ekA, ekB))

HSS.Convert(σ, ekσ, JxKσ):
1 : parse ekσ = (⟨α⟩σ, ⟨β⟩σ, ⟨γ⟩σ)
2 : parse JxKσ = (_,_, E0, E1)

3 : ⟨⟨x⟩⟩σ := (E1 · E
−⟨β⟩σ
0 , E

⟨α⟩σ
1 · E−⟨γ⟩σ0 )

4 : return ⟨⟨x⟩⟩σ

HSS.Share(sk, x):

1 : r, r′
R← Zp

2 : foreach σ ∈ {A,B} :

3 : JxKσ := (gr1, g
x+α·r
1 , gr

′
2 , g

x+β·r′
2 )

4 : return (JxKA, JxKB)

HSS.Mult(σ, ekσ, JxKσ, ⟨⟨y⟩⟩σ):
1 : parse JxKσ = (D0, D1,_,_)

2 : parse ⟨⟨y⟩⟩σ = (S(0)
σ , S(1)

σ )

3 : Zσ := e(D0, S
(1)
σ ) · e(D1, S

(0)
σ )

4 : τ := 0 if σ = A; else τ := 1

5 : ⟨z⟩σ := DDLog((GT , gT ,M), Z−1
τ

σ )

6 : return ⟨z⟩σ

Figure 4.5: Degree-2 secret-key HSS from SXDH.
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Proposition 4.5.2. The construction presented in Figure 4.5 satisfies Definition 4.3.8
(degree-2, secret-key) HSS with ϵ = 1− 1/poly(λ) correctness assuming the SXDH assumption
holds in the bilinear group G := (p,G1,G2,GT , g1, g2, e).

Proof. We prove correctness and security in turn.

Correctness. To simplify analysis later on, we show that Convert outputs memory shares
that are partially consistent with the template outlined in Section 4.3.6.1. Notice that
given an input share JxKσ of the form (gr1, gx+α·r

1 , gr
′

2 , gx+β·r′
2 ), ⟨⟨x⟩⟩σ consists of a tuple of

multiplicative shares of (x, x · α) defined over G2, since

E1 · E
−⟨β⟩σ
0 = gx+β·r′

2 · (gr′2 )−⟨β⟩σ = g
⟨x⟩σ
2 and

E
−⟨α⟩σ
1 · E−⟨γ⟩σ0 = (gx+β·r′

2 )⟨α⟩σ · (gr′2 )−⟨αβ⟩σ = g
⟨x·α⟩σ
2 ,

which follows the template from Section 4.3.6.1, when memory shares are defined multiplica-
tively in the group G2 with respect to secret key α. Specifically, we can “ignore” the secret key
β, which is only used to convert from input to memory shares and does not aid in decryption
when performing HSS.Mult.

Now, we turn to proving correctness, as defined in Definition 4.3.8. First, observe that
Zσ, as computed in HSS.Mult (line 3), is defined as

ZA = e(gr1, g
⟨−y·α⟩A
2 ) · e(gx+α·r

1 , g
⟨y⟩A
2 ) = g

⟨−α·(ry)⟩A
T · g⟨yx+α·(ry)⟩A

T = g
⟨xy⟩A
T

ZB = e(gr1, g
⟨−y·α⟩B
2 ) · e(gx+α·r

1 , g
⟨y⟩B
2 ) = g

⟨−α·(ry)⟩B
T · g⟨yx+α·(ry)⟩B

T = g
⟨xy⟩B
T .

Therefore, party σ ∈ {A,B} obtains Zσ, which is a multiplicative share of gxyT . By correctness
of the DDLog, the parties obtain an additive share of z := xy with probability ϵ := 1−poly(λ).
As such, the error of the HSS scheme is also ϵ.

Security. We prove security via a hybrid argument.

• Hybrid H0. This hybrid consists of the HSS security game instantiated using the
construction in Figure 4.5 with message xb.

• Hybrid H1. In this hybrid, we replace the evaluation key ekσ produced by HSS.Setup
(and given to the adversary) with uniformly random value in Z3

p. It is trivial to verify
that this hybrid game is perfectly indistinguishable from H0.

• Hybrid H2. In this hybrid, we replace the elements of G1 of each input share produced
by HSS.Share with uniformly random group elements in G1.

Claim. H2 ≈c H1 assuming DDH in G1.

Proof. Notice that in H1, the adversary A receives a vector of input shares JxbKσ :=
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(Jx(1)
b Kσ, . . . , Jx

(k)
b Kσ) distributed as:(

(gr11 , g
x
(1)
b +α·r1

1 , g
r′1
2 , g

x
(1)
b +β·r′1

2 ), . . . , (grk1 , g
x
(k)
b +α·rk

1 , g
r′k
2 , g

x
(k)
b +β·r′k

2 )

)
=

(
(gr11 , g

x
(1)
b

1 hr1
1 , g

r′1
2 , g

x
(1)
b

2 h
r′1
2 ), . . . , (grk1 , g
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where h1 := gα1 and h2 := gβ2 . In turn, this is distributed identically to:(
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by rearranging the terms. Note that all elements of the input share from G2 are
independent of the G1 elements (they are computed with different randomness r′i and
using a different secret key β, sampled independently of ri and α).

Suppose, towards contradiction, that A distinguishes between H2 and H1 with non-
negligible advantage. By a separate hybrid argument, it follows that A distinguishes

between some (gri1 , g
x
(i)
b

1 hri
1 ) and uniformly random (ui, vi) ∈ G2

1, for some i ∈ [k] (note
that all elements of G2 in each input share are still computed as in hybrid H1). This
contradicts the DDH assumption in G1, since by a straightforward reduction, the
adversary is able to distinguish between (gα1 , g

ri
1 , g

αri
1 ) and (gα1 , ui, vi). □

• Hybrid H3. In this hybrid, we replace the elements of G2 of each input share produced
by HSS.Share with uniformly random group elements in G2.

Claim. H3 ≈c H2 assuming DDH in G2.

Proof. The proof follows the same strategy as in the proof of the previous claim, except
that now the adversary contradicts the DDH assumption in G2. □

At this point, we have proven that under the SXDH assumption, A cannot distinguish
between JxbKσ and uniform tuple over (G2

1 × G2
2)

k, with better than negligible advantage.
In turn, it follows that A’s distinguishing advantage between Jx0Kσ and Jx1Kσ is negligible,
which concludes the proof. ■

4.5.3.2 Random “DDLog” procedure

In Figure 4.5, correctness of the output shares depends on the correctness of the DDLog
procedure. However, in cyclic groups G, the DDLog procedure has an inherent 1/poly(λ)
error [BGI16,DKK20], which the NIDLS framework overcomes by using specific groups G
(e.g., Z∗n2) and requiring different assumptions (e.g., DCR). This is why Figure 4.5 only
achieves ϵ = 1 − 1/poly(λ) correctness, in general. The crucial observation we make here
is that the DDLog procedure has no error when given multiplicative shares of g0 ∈ G and,
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moreover, because we additionally only require uniformly random payloads in the case where
the parties hold multiplicative shares of gu, for some u ̸= 0, we can construct a trivial
algorithm “DDLog” procedure using just a PRF, as we show in the following lemma.

Lemma 4.5.2 (Random Distributed Discrete Logarithm). Let G be an arbitrary cyclic group
with generator g and 1 ≤M ≪ |G| be an integer. There exists an efficient algorithm DDLog
satisfying Definition 4.3.4 such that:

(1) For all elements hA, hB ∈ G where hA · hB = g0,

Pr
[
⟨z⟩A − ⟨z⟩B = 0 : ⟨z⟩σ := DDLog((G, g,M), hσ), ∀σ ∈ {A,B}

]
= 1;

(2) For all hA, hB ∈ G where hA · hB ̸= g0, it holds that for all σ ∈ {A,B}:{
(⟨z⟩σ, hσ)

∣∣∣ ⟨z⟩σ := DDLog((G, g,M), hσ)
}
≈c

{
(⟨z⟩σ, hσ)

∣∣∣ ⟨z⟩σ
R← ZM

}
.

Proof. We construct DDLog satisfying the two required properties using any PRF family
F : {0, 1}λ×G→ ZM . Define DDLog as ((G, g,M), hσ) 7→ FK((hσ)

−1τ ),7 where K is a public
uniformly random PRF key. Then, (1) the output of DDLog consists of pseudorandom shares
of zero whenever hA ·hB = g0 and (2) the output of DDLog for all non-zero values is uniformly
random in ZM (thus satisfying the second property).

To see (1), note that if hA · hB = g0, then it holds that hA = h−1B , which in turn implies
that FK(hA)− FK(hB) = 0, with probability 1.

To see (2), note that if hA · hB = gu, for some non-zero u with high (pseudo)entropy
independent of the PRF key K, then DDLog outputs two pseudorandom and independent
elements of ZM , which guarantees computational indistinguishability by the security of the
PRF. ■

Theorem 4.5.2. Under the SXDH assumption over a bilinear group, there exists an in-
stantiation of Figure 4.4 with random payloads (cf. Definition 4.5.3) in the message space
ZM , for any integer M , with a O(N2/3) public key size, O(N) key generation time, O(N4/3)
key derivation time, and O(N5/3) full domain evaluation time, where O(·) hides a factor of
poly(λ, log |R|).

Proof. The construction consists of Figure 4.4 instantiated with a multiplicative-output NIM
(Definition 4.4.2) and the degree-2 HSS construction from SXDH (Figure 4.5) using the
modified DDLog from Lemma 4.5.2.

The public key size, key generation time, and evaluation time follows from the proof
of Theorem 4.5.1. Then, by Lemma 4.5.2 we immediately get correctness and a random
payload on the non-zero coordinate. However, to additionally ensure pseudorandomness of
the payload given the PRF key K, the parties must set their payload to a uniformly random
scalar. That is, party σ sets the non-zero coordinate to be ∆σ (for some uniformly random
∆σ

R← Zp, where p is the prime order of G). Then, the parties obtain multiplicative shares of

7Here, DDLog is implicitly parameterized by the party identifier σ and the global PRF key K. We leave
this implicit for readability.
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a uniformly random value in ∆A ·∆B ∈ Zp which guarantees the resulting PRF output is
pseudorandom.

■

Remark 24 (Guaranteeing a non-zero output). We remark that because the payload is
uniformly random in ZM , it may be zero with noticeable probability if M is small. To
guarantee a negligible probability of the payload being zero, we can choose the M ≥ 2λ so as
to ensure the output is non-zero with all but negligible probability. In particular, the DDLog
procedure of Lemma 4.5.2 does not require M to be polynomial in the security parameter.

4.6 Generalization to Non-interactive Computation

In this section, we show that we can generalize the ideas behind our NIDPF construction
to construct succinct, two-party “multi-key” HSS for a restricted class of computations. In
particular, with multi-key HSS, two parties can provide inputs to a computation without
having to agree on a common public key ahead of time (similarly to spooky encryption, which
is based on multi-key FHE [DHRW16]). We consider a setting where Alice has a large input
x and Bob has a short input y, where we will require succinctness in the large input (similarly
to Definition 4.4.3 and succinct HSS [ARS24]). Then, by exchanging input shares, Alice
and Bob can compute secret shares of P (x, f(y)), where f is any NC1 function and P is a
constant-degree polynomial.

Abram et al. [ARS24] achieved succinct HSS for a similar, slightly larger computational
class which they call “Special RMS” programs. Effectively, this class supports computations
of the form

P (xA, xB, f(yA, yB)),

where again f ∈ NC1 and P is a constant-degree polynomial, and Alice and Bob can
each contribute inputs xσ, yσ for each computation role. In their construction, they have
x = (xA, xB) as a “special” input share and y = (yA, yB) as a standard HSS input share.
However, since they let the HSS input y be defined by both parties, this prevents their
construction from being “multi-key” or, in other words, non-interactive. That is, in their
construction, the parties need to have a common HSS public key to generate the inputs yA
and yB used in the evaluation of f through HSS.8

We show that we can extend succinct NIM for “special RMS” programs provided that
only one party specifies the input to the function f—which is exactly the generalization
of our NIDPF construction in Section 4.5. That is, instead of letting both parties provide
inputs to the function f , we consider computations of the form P (x, f(yσ)), where only
party σ is allowed to input y. However, we still get the succinctness property since the total
communication incurred is only o(|x|) +O(|yσ|),9 which is sublinear in the size of the large
input. Formally, we capture the following extension to NIM for computing general functions:

8In particular, this approach requires a trusted setup to distribute the evaluation keys to both parties
before parties can share their inputs yA and yB , respectively.

9Ignoring polynomial factors in the security parameter.
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Definition 4.6.1 (Extended NIM). Let ℓ0, ℓ1 be integers. An extended NIM scheme for a
function class F , consists of five efficient algorithms,

ExtNIM = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}),

with the same syntax and security property as defined in Definition 4.4.1 except that Decodeσ
takes an additional input f ∈ F . The algorithms must satisfy the following extended correctness
property:

Extended Correctness. For all security parameters λ ∈ N, every function f ∈ F , and
every pair of inputs x, y ∈ {0, 1}ℓ0 × {0, 1}ℓ1, an extended NIM scheme is said to be correct if
there exists a negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = f(x, y) :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, x)

(peB, stB)← EncodeB(crs, y)

⟨z⟩A := DecodeA(crs, peB, stA, f)

⟨z⟩B := DecodeB(crs, peA, stB, f)

 ≥ 1− negl(λ).

We can additionally consider succinctness, analogously to Definition 4.4.3; we specify the
succinctness directly in the following theorem:

Theorem 4.6.1. Let ℓ0, ℓ1, ℓ2 ∈ N, let R be a ring, and let P be the set of all constant-degree
polynomials defined over R. Let HSS = (Setup, Share,Eval) be a secret-key HSS scheme
(cf. Definition 4.3.7) for the function class F : {0, 1}ℓ1 → Rℓ2 and satisfying multiplication by
memory shares (cf. Definition 4.3.9). Then, there exists an extended NIM (cf. Definition 4.6.1)
for the class of functions described by P (x, f(y)), where P ∈ P, f ∈ F , x ∈ Rℓ0 and
y ∈ {0, 1}ℓ1. Moreover, the size of the public encoding output by EncodeA is bounded by:

poly(λ, log |R|) · (ℓ0)ϵ,

for some 0 ≤ ϵ < 1.

Proof (sketch). The main idea is that Alice, given an HSS input share of y from Bob, as
well as the evaluation key ekA, can locally compute memory shares of f(y) under Bob’s
secret key sk. Simultaneously, Alice and Bob can use NIM to compute memory shares of x
under Bob’s secret key sk. More concretely, Alice inputs x and Bob inputs sk, to instantiate
non-interactive VOLE [ARS24, BCM+24]. This then allows Alice and Bob to compute
x · f(y) via the “multiplication by memory shares” supported by the HSS scheme (recall
Definition 4.3.9). This immediately generalizes to computing P (x, f(y)), for any constant-
degree polynomial P . To see this, note that Alice can input the vector x corresponding
to the coefficients of all the monomials of P and Bob can input y for the function f̂ that
outputs a vector y := (1, f(y)1, f(y)2, . . . , f(y)d−1), where d ∈ O(1) is the degree of P . Then,
P (x, f(y)) = ⟨x,y⟩ =

∑d
i=1 xi ·f(y)i−1. Moreover, when using succinct NIM (Definition 4.4.3),

Alice’s encoding is sublinear in ℓ0 and Bob’s encoding is independent of d. ■
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Chapter 5

Multi-Key Homomorphic Secret Sharing

Summary

Homomorphic secret sharing (HSS) is a distributed analogue of fully homomorphic encryption
(FHE) where following an input-sharing phase, parties can locally compute a function over
their private inputs to obtain secret shares of the function output.

Over the last decade, HSS schemes have been constructed from an array of different
assumptions. However, all existing HSS schemes, except ones based on assumptions known to
imply multi-key FHE, require a public-key infrastructure (PKI) or a correlated setup between
parties. This limitation carries over to many applications of HSS.

In this chapter, we construct multi-key homomorphic secret sharing (MKHSS), where
given only a common reference string (CRS), two parties can secret share their inputs to
each other and then perform local computations as in HSS, eliminating the need for PKI
or correlated setups. Specifically, we present the first MKHSS scheme that supports all NC1

computations from the Decisional Composite Residuosity (DCR) assumption.
Our construction implies the following applications in the CRS model:

• Succinct two-round secure computation. We construct succinct, two-round, two-
party secure computation for NC1 circuits. Previously, such a result was only known
from spooky encryption and required using multi-key FHE.

• Attribute-based NIKE. We construct non-interactive key exchange (NIKE) protocols
where two parties agree on a key if and only if their secret attributes satisfy a public
NC1 predicate. This significantly generalizes the notion of password-based NIKE.

• Public-key PCFs. We construct public-key pseudorandom correlation functions
(PCFs) for any NC1 correlation. This yields the first public-key PCFs for Beaver triples
(and more) from non-lattice assumptions.

• Silent MPC. We construct an p-party secure computation protocol in the silent
preprocessing model where the preprocessing phase has communication O(p), ignoring
polynomial factors. All prior protocols that do not rely on spooky encryption require
Ω(p2) communication.
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5.1 Introduction

In a homomorphic secret sharing (HSS) [BGI16] scheme supporting a class of functions F ,
two or more parties, each with a share of a secret x, can compute a function f ∈ F over x
to get a share of the result f(x). For security, any strict subset of the shares must hide the
secret x. Importantly, the shares must be homomorphic, in that they must support local
(non-interactive) function evaluations such that for any f ∈ F , the output shares correspond
to an additive sharing of f(x).

The key property of HSS is succinctness, namely, the size of the input and output shares
must be independent of the size of the circuit computing the function over the secret-shared
inputs. HSS can be viewed as a distributed analogue of fully homomorphic encryption [Gen09]:
it allows two parties to securely compute a function over their private inputs succinctly with
respect to the circuit size.

Starting from the seminal work of Boyle, Gilboa, and Ishai [BGI16], a key goal of HSS
is to build secure computation schemes from assumptions other than learning with errors
(LWE). By now, many HSS schemes are known [BGI16,DHRW16,BGI17,BCG+17,BKS19,
BCG+19b,CM21,OSY21,RS21,ADOS22,DIJL23] from a variety of standard assumptions
that vary in the number of parties (most schemes support two parties), the class of supported
functions (most schemes support NC1 computations), and correctness error. In particular,
while some HSS schemes have a non-negligible correctness error, they still have applications
to secure computation [BGI17,DIJL23].

Over the last decade, HSS schemes have enabled a variety of applications in cryp-
tography. These applications include secure computation with sublinear communication
[BGI16,Cou19,CM21,DIJL23], private information retrieval [GI14,BGI16], pseudorandom cor-
relation generators [BCGI18,BCG+19b], and constrained pseudorandom functions [CMPR23].

Homomorphic secret sharing with multiple inputs. The basic notion of HSS only
enables computations over the private input of a single party. To support multiple private
inputs, the notion of public-key HSS [BGI17,ADOS22] was proposed. In a public-key HSS
scheme, following a CRS setup, there is a public-key setup phase where the parties sample
and publish their respective public keys. Using these public keys, the parties locally derive a
common public key and use it for secret sharing their inputs with one another.1 This enables
the parties to perform secure computations over their private inputs, encrypted under the
common public key.

Intuitively, public-key HSS can be viewed as an analogue of threshold fully homomorphic
encryption [AJL+12]—a multi-party version of FHE in the public-key infrastructure (PKI)
model. The key drawback of this notion is the necessity of the PKI setup, which itself relies
on a CRS, prior to the input sharing phase. This limitation, in turn, affects the applications
of HSS. For example, the PKI requirement carries over in the application of HSS to sublinear
secure computation, imposing a minimum of three rounds, which is suboptimal [HLP11].

Furthermore, while HSS (with negligible correctness error) for NC1 computations implies
pseudorandom correlation functions (PCFs) for NC1 correlations [BGMM20,CMPR23] (as-
suming the existence of pseudorandom functions computable in NC1), the same is not known

1Alternatively, a correlated setup can take place where the parties obtain shares of a secret key belonging
to a common public key.

178



Assumption CRS Transparent
Setup

Computational
Class

[DHRW16] iO+DDH ✗ None P/poly

[DHRW16,XW23] LWE ✓ ✓ P/poly⋆

Theorem 5.4.1 DCR ✓ ✗ NC1

Table 5.1: Construction of MKHSS realized in this work and comparison to prior work.
⋆Requires making circular security assumptions to obtain a scheme for all circuits.

for public-key PCFs. A public-key PCF [OSY21,BCM+24] is a much stronger primitive that
allows two parties to generate correlated randomness “on the fly,” without needing to engage
in a correlated setup ahead of time.

Multi-key homomorphic secret sharing. In this chapter, we study multi-key homomorphic
secret sharing (MKHSS), which does not require any PKI or other correlated randomness setup.
Instead, given only a CRS, the parties can directly secret share their inputs to each other.
In this sense, MKHSS can be viewed as an analogue of multi-key FHE [LTV12,MW16]—a
multi-party version of FHE that enables computing over the private data of multiple entities,
without needing PKI.

MKHSS for multiple parties is readily implied by spooky encryption [DHRW16], which is
currently only known from assumptions known to imply FHE. Similarly to the foundational
work of Boyle et al. [BGI16], which initiated the study of HSS as an alternative to FHE,
we investigate the feasibility of MKHSS from assumptions not known to imply FHE. As
we discuss next, MKHSS enables new applications that were not previously known from
public-key HSS, similarly to how multi-key FHE enabled many new applications relative to
the older (and weaker) notion of threshold FHE.

We show that multi-key HSS is possible from group-based assumptions in the two-party
setting and prove the following theorem:

Theorem 5.1.1 (Informal). Under the DCR assumption, there exists a two-party, multi-key
homomorphic secret sharing scheme for computing all functions in the class NC1.

In particular, our MKHSS scheme has a negligible correctness error and supports a
large message space, similarly to non-multi-key HSS constructions from DCR [OSY21,RS21,
ADOS22]. We compare our result to the state-of-the-art in Table 5.1.

5.1.1 Applications of multi-key HSS

We show that many of the applications that multi-key FHE implies are also possible from
MKHSS in the two-party setting, thanks to our construction. We briefly summarize the
applications of our scheme. Technical details surrounding these applications can be found in
Sections 5.4.4, 5.5 and 5.6 of this chapter.

Application I: Sublinear, two-round secure computation. As was shown by Boyle et
al. [BGI17], standard HSS already gives two-party secure computation in three rounds and
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with sublinear communication in the circuit size. At a high level, the three-round protocol
proceeds as follows:

Round 1: Agree on a public key and derive shares of the secret key.

Round 2: Exchange inputs encrypted under the public key.

Round 3: Locally evaluate the function and output the resulting shares.

The question of constructing two-round sublinear secure computation protocols from group-
based assumptions has remained open. In particular, only multi-key FHE was known to be
sufficient to instantiate sublinear two-round secure computation in the CRS model.

Our construction gives the first realization of two-round secure computation in the CRS
model from an assumption that was not known to imply multi-key FHE. Concretely, multi-key
HSS immediately implies the following sublinear, two-round secure computation protocol:

Round 1: Exchange inputs encrypted under independent public keys.

Round 2: Locally evaluate the function and output the resulting shares.

This protocol achieves reusability of the first round messages [AJJM20,BL20,BGMM20,
AJJM21,BJKL21] in the following sense: the parties can compute different functions over
their inputs without having to recompute their first round messages. Furthermore, a party can
reuse its first-round message in different computations with different parties. In particular,
this enables one party to even go offline after sending the first message, and only later
complete the computation asynchronously.

Theorem 5.1.2 (Informal). Under the DCR assumption, there exists a sublinear, two-party,
two-round secure computation protocol for NC1 computations.

Application II: Attribute-based NIKE. We show that our construction of MKHSS also
implies attribute-based non-interactive key exchange (ANIKE) supporting NC1 predicates.

An ANIKE scheme involves two parties, each with their own secret attribute. The
requirement is that the parties can derive a shared key if their secret attributes jointly satisfy
a public predicate. However, if their attributes do not satisfy the predicate, then they derive
independent keys (and do not learn that the predicate was unsatisfied).

ANIKE captures password-based NIKE as well as its extensions such as fuzzy password-
based NIKE, where parties can derive a shared key only if they share approximately-matching
passwords (e.g., those derived from biometrics). In general, ANIKE is well-suited for
applications that involve authenticating complicated credentials before providing sensitive
information. We briefly summarize the construction (details are provided in Section 5.5):

Public key: Alice samples an MKHSS public and secret key, and generates input
shares of her secret attribute xA and a random shift. Her public key consists of her
MKHSS public key and the input share of her attribute and shift. Bob computes his
public key in a symmetric manner.

Key derivation Alice, given (1) her secret key, (2) her own input share, and (3) Bob’s
public key with an input share of his secret attribute xB, uses MKHSS to evaluate the
program which computes the predicate and multiplies the result by the random shift
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of each party. Bob evaluates his shares exactly as Alice does. The key for each party
consists of the subtractive share output by the MKHSS evaluation.

If the predicate evaluates to 0, which we define as the predicate being satisfied, Alice and Bob
end up with pseudorandom subtractive shares of 0, i.e., the same key. On the other hand, if
the predicate evaluates to 1, Alice and Bob end up with subtractive shares of a random value
(i.e., independent keys) because of the random shifts.

To the best of our knowledge, all existing constructions of key exchange which support
NC1 predicates require interaction and/or assume some idealized model [KKL+16,Mel22].
We realize the first non-interactive construction in the standard model. Thanks to the non-
interactivity property, our ANIKE scheme—and the associated security proof—is conceptually
very simple. In contrast, interactive constructions of ANIKE have many moving parts, have
complicated proofs as a result, and many constructions have been broken due to subtle
flaws [JRX24].

Theorem 5.1.3 (Informal). Under the DCR assumption, there exists an attribute-based
non-interactive key exchange protocol supporting predicates in NC1.

Public-key PCFs for NC1 correlations. Modern secure computation protocols are realized
in the preprocessing model [Bea95,DPSZ12]. In this model, during an “offline” preprocessing
phase, the computing parties generate many pseudorandom correlations that are independent
of any function they will later compute. Then, during an online phase, the parties use the
stored correlations to compute a function over their inputs in a secure protocol. Thanks to
the correlated randomness, the online phase has far greater efficiency by not requiring any
cryptographic operations. Pseudorandom correlation functions [BCG+20a] (PCFs) push this
model of secure computation to the limit by allowing parties to obtain a short key that they
can use to locally, and “on-demand,” to generate correlated pseudorandomness for use in the
online phase.

Starting with the work of Orlandi, Scholl, and Yakoubov [OSY21], which introduced the
concept of a public-key PCF, parties can non-interactively derive a PCF key using only the
other party’s public key. The advantage of public-key PCFs is that any pair of parties can
generate correlated randomness on the fly, using only each other’s public keys. However,
existing constructions of public-key PCFs [OSY21,BCM+24] (including the construction from
Chapter 3 for ListOT), are restricted to the OT/VOLE correlation (or weaker variants thereof).
In particular, barring spooky encryption, constructing a public-key PCF for even Beaver triple
correlations has, so far, remained elusive. In Section 5.6, we use our MKHSS construction to
build the first public-key PCF for any NC1 correlation from the DCR assumption.

Theorem 5.1.4 (Informal). Under the DCR assumption, there exists a public-key pseudo-
random correlation function for NC1 correlations.

Silent, secure multi-party computation. For multi-party computation protocols instan-
tiated in the preprocessing model, the typical choice of correlated randomness consists of
Beaver triples. A p-party Beaver triple consists of additive shares of (a, b, ab), where a, b are
random elements in some finite ring. In practice, the cost of securely generating the correlated
randomness in the preprocessing phase often dominates the overall cost of the protocol. To
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mitigate this cost, a relatively recent line of work [BCGI18,BCG+19a,BCG+19b,BCG+20a]
has introduced the silent preprocessing model, in which the correlated randomness is replaced
by correlated pseudorandomness computed by a PCF.

Thanks to recent advances in homomorphic secret sharing and PCFs, there exist silent
preprocessing protocols for generating suitable correlated pseudorandomness from standard
assumption such as DCR, DDH in class groups, and variants of LPN [OSY21,RS21,ADOS22,
BCG+20b,BCCD23]. However, in the context of p-party secure computation, all known
methods (that do not rely on spooky encryption) incur an Ω(p2) · poly(λ) communication
overhead in the preprocessing phase. This overhead stems from the fact that all known
constructions of HSS and PCFs are, barring some exceptions (cf. Remark 25), restricted
to the setting of two participants, and generating p-party correlations via these primitives
requires all pairs of parties to interact.

Remark 25. Nearly all HSS and PCF constructions are restricted to the two-party set-
ting. However, some exceptions include the p-party HSS scheme from sparse LPN of Dao,
Ishai, Jain, and Lin [DIJL23], which cannot be used to generate correlated randomness due
to its imperfect correctness, the 4-party DCR-based HSS scheme of Boyle, Couteau, and
Meyer [BCM23], and the 8-party scheme of Couteau and Kumar [CK24]. We also note that
this restriction also applies to pseudorandom correlation generators (PCGs) [BCG+19b].

Using MKHSS, we show how to construct a multi-party, public-key PCF for Beaver triples
over any finite ring. At a high level, using our multi-party public-key PCF for NC1, p parties
can simultaneously broadcast their public keys on a public channel. Then, any pair of parties
can, without any interaction, derive two-party Beaver triples. Using the two-party shares, all
parties can locally aggregate their two-party Beaver triples to obtain (an arbitrary number
of) p-party Beaver triples. Using these precomputed (and pseudorandom) Beaver triples, the
parties can then run any efficient p-party non-cryptographic protocol to securely compute a
target function (e.g., via the GMW protocol [GMW87]).

As a direct corollary of our MKHSS construction, there exists a p-party protocol securely
computing an arithmetic circuit C with s multiplication gates and m outputs over a ring R
with the following communication complexity:

• Preprocessing: The parties communicate p · poly(λ) bits in a single broadcast round.

• Online: The parties communicate p · (2s+m) elements of R.

This yields a quadratic communication improvement over the state-of-the-art [BBC+24]
approach for secure computation in the preprocessing phase. However, we note that our
construction is still primarily of theoretical interest because our MKHSS construction is not
concretely efficient for general computations.

Theorem 5.1.5 (Informal). Let C be an arithmetic circuit with n inputs, s multiplication
gates, and m outputs, instantiated over a ring R. Under the DCR assumption, for any
number of parties p, there exists a p-party secure computation protocol for computing C in
the preprocessing model, with the following communication complexity:

• In the preprocessing phase: O(p) bits in a single broadcast round.

• In the online phase: p · (2s+m) ring elements.
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The protocol is secure against a passive adversary corrupting any strict subset of parties.

Chapter organization. We provide an in-depth technical overview in Section 5.2 capturing
the details of our construction. In Section 5.3, we provide the necessary preliminaries related to
our construction. In Section 5.4, we provide our formal definition of MKHSS. In Section 5.4.3,
we describe our construction of MKHSS from DCR. In Sections 5.5 and 5.6, we provide
detailed constructions of these applications.

5.2 Technical Overview

In this section, we provide a technical overview of our MKHSS construction. We organize the
overview into the following subsections:

• Background. In Section 5.2.1, we define the notation that we use. Then, in Section 5.2.2,
we describe the basic template underpinning all existing group-based HSS constructions
and provide other relevant background.

• Challenges. In Section 5.2.3, we explain the challenges involved in adapting the basic
HSS template into a multi-key HSS construction.

• Construction. In Section 5.2.4, we explain the new ideas that allow us to build MKHSS
from DCR. Then, in Section 5.2.5, we overview the full construction.

5.2.1 Notation

We briefly provide some relevant notation for this overview, see Section 5.3 for more details.
We let λ denote the security parameter. We let a ← Alg denote the output of a (possibly
randomized) algorithm Alg and a

R← S denote a uniformly random sampling from the set
S. Assignment of a value b to a variable a is denoted a := b. We denote three types of
“secret shares” which form the backbone of existing HSS scheme abstractions [BGI16] (see
Section 5.2.2 for background) as follows:

• Input shares of a message x are denoted by JxK.

• Memory shares of a message x are denoted by ⟨⟨x⟩⟩.
• Subtractive shares of a message x are denoted by ⟨x⟩.2

This notation is used to describe the set of shares of the message x. When referring to a
single party’s share, we write JxKσ, ⟨⟨x⟩⟩σ, and ⟨x⟩σ, where σ ∈ {A,B} is the party identifier
(e.g., Alice and Bob’s subtractive shares of x are denoted ⟨x⟩A and ⟨x⟩B, respectively). We
define these share types and describe how they are used to realize an HSS scheme next.

2Subtractive shares (zA, zB) of a message x are defined over the integers such that x = zA − zB .
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5.2.2 Background on HSS from group-based assumptions

Here, we describe a simplified template capturing the basics of existing group-based HSS
constructions [BGI16,BCG+17,OSY21,RS21,ADOS22]. Relative to the full constructions,
this minimal template omits some important details in the interest of clarity. Our primary
goal here is to capture the essential components needed to understand our multi-key HSS
approach. Because all known group-based HSS schemes are in the two-party setting, we will
call these parties Alice and Bob throughout this overview.

Instantiating the group. Group-based HSS constructions require an Abelian group G in
which a suitable subgroup indistinguishability assumption holds (e.g., DDH in cyclic groups,
DCR in the Paillier group, or similar assumptions in class groups). We will use g to denote
the generator of G. We will also use a “special” generator h for a suitable subgroup of G
in which the discrete logarithm is computationally easy. Concretely, for the Paillier [Pai99]
group G = Z∗N2 , g is a random generator of a hidden-order subgroup, and h = (N + 1) which
generates a subgroup of order N .

Correlated setup. All existing HSS schemes require some form of correlated setup process
to generate a common public key and distribute “evaluation keys” to the two parties. More
concretely, in group-based constructions, the setup produces a public key f := g−s and
secret shares the secret key s between Alice and Bob. Following the trusted setup, each
party can generate input shares of a private input x by encrypting it under the public key f
with an “ElGamal-style” encryption over G. Looking ahead, the main challenge in realizing
multi-key HSS is replacing the entire trusted setup process with a common reference string.
In particular, while it was shown that it is possible to reduce the correlated setup down to
one round of interaction [BGI17,ADOS22] in the PKI model (i.e., when all parties know each
other’s public keys), removing this round of interaction has remained an open problem.

Input shares. An input share of a message x (we will define the message space later) under
the public key f consists of two “ElGamal-like” ciphertexts in the group, where the first
ciphertext encrypts x · s (recall, s is the secret key) and the second ciphertext encrypts x. All
operations over the messages are performed “in the exponent” of the subgroup of G generated
by h. An HSS input share of a message x given to party σ ∈ {A,B} is denoted as JxKσ and
defined as:

JxKσ :=
(
(gr, hx·sf r)︸ ︷︷ ︸

Ciphertext 1

, (gr
′
, hxf r′)︸ ︷︷ ︸

Ciphertext 2

)
, (5.1)

where r, r′
R← ZN . Note that all parties get the same ciphertexts; while it is possible to add

private state to the input shares, group-based HSS schemes satisfy the property that at least
one component of the input share is identical across parties.

In addition to input shares, existing HSS schemes define an “intermediate” sharing used
during a computation called a memory share, which we describe next.

Memory shares. A memory share of a message x held by party σ ∈ {A,B} is denoted as
⟨⟨x⟩⟩σ and is defined as a tuple of secret shares, consisting of subtractive shares of the message
x and x · s. In particular, a memory share is the secret-shared analog of an input share.
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That is,
⟨⟨x⟩⟩σ :=

(
⟨x · s⟩σ, ⟨x⟩σ

)
. (5.2)

Using the definition of an input share and a memory share, we can now describe how
existing group-based HSS schemes evaluate functions.

5.2.2.1 Evaluating functions

The template for evaluating functions on the input shares, introduced by Boyle et al. [BGI16],
is to emulate the program via a set of multiplication and addition instructions. In particular,
the idea is to show that it is possible to compute a restricted-multiplication straight-line
(RMS) program [Cle90]—a special model of computation that is known to be sufficiently
powerful to evaluate all branching programs (and the class of functions in NC1).3

In a nutshell, RMS programs are defined to take a set of input values and require
maintaining the following rules. Each input to the program can either be (1) converted into
a memory value or (2) multiplied by a memory value to produce a memory value of the
product [Cle90,BGI16]. Moreover, (3) memory values can be added together to produce a
memory value of the sum. In particular, what an RMS program does not allow is multiplying
two memory values together, since that would imply the ability to compute all functions.

In existing group-based HSS schemes, non-interactively evaluating RMS programs over
input shares boils down to computing (2)—a multiplication between an input share and a
memory share. That is, given an input share of x and a memory share of y, it should be
possible for each party to locally derive a memory share of xy. Once this single requirement
is satisfied, meeting the other requirements becomes relatively straightforward.

The fact that the input and memory shares defined in Equations (5.1) and (5.2) enable
computing a memory share of the product is not difficult to show, but requires using one
crucial ingredient: the distributed discrete logarithm (DDLog) procedure [BGI16,OSY21,
RS21,ADOS22], which we briefly explain here.

Tool: The Distributed Discrete Logarithm. The DDLog procedure enables local
conversion of multiplicative shares to subtractive shares as follows. Given multiplicative
shares of any value x in the group G, where one party holds h⟨x⟩Ag⟨0⟩A and the other party
holds h⟨x⟩Bg⟨0⟩B such that4

h⟨x⟩Ag⟨0⟩A · h−⟨x⟩Bg−⟨0⟩B = hx,

the DDLog procedure allows party-σ to obtain a subtractive share ⟨x⟩σ. The details of the
distributed discrete log procedure do not matter for the purposes of this overview, and we will
treat it as a black-box algorithm satisfying the above “share conversion” property. However, it
does play a vital role in computing multiplications between input shares and memory shares
in all existing group-based HSS schemes, as we explain next.

Computing a multiplication in HSS. Computing a multiplication between an input share
and a memory share is done in two steps. The idea is to exploit (1) the additive homomorphism

3See also Section 5.3 for background on RMS programs.
4Note that h is the group element of order N in Z∗

N2 .
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of memory shares, (2) the additive homomorphism of the ElGamal-style encryption, and (3)
the linear decryption process. First, the parties compute the multiplication “in the exponent”
of the group. Then, using DDLog, the resulting multiplicative shares are converted back to
memory shares. In more detail:

Step I: Computing a multiplication “in the exponent.” Given an input share JxKσ and a
memory share ⟨⟨y⟩⟩σ, party-σ (for σ ∈ {A,B}) computes:(

(gr)⟨y·s⟩σ · (hx·sf r)⟨y⟩σ , (gr
′
)⟨y·s⟩σ · (hxf r′)⟨y⟩σ

)
=
(
h⟨xy·s⟩σg⟨0⟩σ , h⟨xy⟩σg⟨0⟩σ

)
.

To see the equality, recall that f = g−s.
Notice that each party now holds a multiplicative share of (xy · s, xy), which corresponds

to the party having the correct memory share “in the exponent” of the group. The next step
is converting this back to a subtractive share via the DDLog procedure described above.

Step II: Conversion to memory shares. By applying the DDLog procedure to each component
of the above multiplicative share, the parties locally recover subtractive shares of (xy · s, xy),
i.e., a memory share of xy. To see this, it suffices to observe that:(

DDLog(h⟨xy·s⟩σg⟨0⟩σ), DDLog(h⟨xy⟩σg⟨0⟩σ)
)
=
(
⟨xy · s⟩σ, ⟨xy⟩σ

)
= ⟨⟨xy⟩⟩σ.

At this point, the parties hold memory shares of the desired product, and can continue
multiplying other input shares with the newly derived memory share. This enables the
computation of RMS programs, as we briefly explain next.

Computing RMS programs. Observe that if the parties are additionally given memory
shares of 1 (e.g., as part of the correlated setup), then they can locally convert any input
share into a memory share by computing a multiplication by 1. All in all, this is now sufficient
to evaluate the three operations required for RMS programs: (1) An input can be converted
to a memory value, (2) an input can be multiplied by a memory value, and (3) any two
memory values can be added together to provide a memory value of the sum.

With the above template for how to construct HSS for RMS programs, we are now ready
to list some of the challenges and pitfalls associated with constructing multi-key HSS.

5.2.3 Challenges associated with multi-keyness

Before we dive in, we emphasize that the problem of eliminating the correlated setup comes
down to two things. First, the parties need to obtain a memory sharing of 1 under some
joint secret key derived on the fly. Second, they need a way to obtain input shares encrypted
under this joint key. If these two problems were magically resolved, then the computation of
RMS programs follows.

In particular, the difficulty lies primarily in getting a “re-encryption” of an HSS input
share under some joint key, without any interaction or correlated setup.5 We call this the

5We note that a common reference string is still allowed in this model; what we need to avoid is any
setup process that distributes correlated secrets to parties, which bars solutions based in the PKI model
where parties are allowed to exchange public keys in a setup round.
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problem of synchronizing input shares. To understand this better, consider two input shares
generated as in Equation 5.1 but defined under two independent public keys fA := g−sA and
fB := g−sB . In particular, consider the input shares generated by each party independently:

Party-A’s input share:
(
(grA , hx·sAf rA

A ), (gr
′
A , hxf

r′A
A )
)

Party-B’s input share:
(
(grB , hy·sBf rB

B ), (gr
′
B , hyf

r′B
B )
)
.

The problem is that, given the input shares (and public key) of the other party, it is
unclear how the parties can evaluate RMS programs over their independent input shares.
While one party, say Alice, can give Bob a share of her secret key sA, which would then
allow the two parties to compute an RMS program using Alice’s input shares, the multi-key
problem arises when trying to compute a program using both the inputs of Alice and Bob.
This is where prior work resorts to an extra round of communication: parties first agree on
a joint public-key in the first round and then share their inputs using this joint key in the
second round [BGI17,OSY21,ADOS22]. In the multi-key setting, the question becomes:

How can Alice and Bob non-interactively obtain a “synchronized”
input share under a joint public key?

Interestingly, this question can be partially resolved by leveraging the structure of ElGamal-
style encryption. In particular, given Alice’s public key fA, Bob can compute a joint public
key f := fA · fB = g−(sA+sB).

Observe that Alice and Bob can actually interpret their own keys as being “trivial” memory
shares of 1 under the joint secret key s = sA + sB, since (sA, 1) and (sB, 0) form subtractive
shares of (s, 1), satisfying the invariant of Equation 5.2. Then, for an input share sent by
Alice, Bob can compute a “partially synchronized” input share under the joint public key as:(

(grA , hx·sAf rA
A · (g

rA)−sB), (gr
′
A , hxf ·rAA · (gr′A)−sB)

)
=
(
(grA , hx·sAf rA), (gr

′
A , hxf r′A)

)
,

which defines a valid ciphertext tuple under the joint secret key.
Moreover, given that Alice generated the input share, she can trivially re-encrypt it on

her end under the joint key f := g−(sA+sB) using the same randomness rA and r′A (reusing
the randomness rA, r

′
A ensures that Alice and Bob obtain the exact same synchronized input

share at the end).
This idea almost gives a valid input share under the joint public key. The only issue is

that the “synchronized” share still has Alice’s secret key sA encrypted in the first component.
Unfortunately, while seemingly minor, this is a major obstacle in achieving multi-key HSS. In
particular, the above idea fails to give an encryption of x · (sA + sB) and thus the resulting
ciphertexts do not constitute a valid input share with respect to the joint public key. This
prevents the parties from computing RMS programs (indeed, it is not even possible to convert
such a share to a memory share, let alone compute a multiplication).

Intuitively, the reason why Alice and Bob are able to synchronize the encryption of x (and
not x · sA) is because they can both compute gr

′
A·sB : Alice using her knowledge of r′A and Bob

using his knowledge of sB. Upon closer inspection, this was made possible because both r′A
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and sB are random, which means giving out gr
′
A and gsB does not compromise security and

makes it possible to compute (gsB)r
′
A = (gr

′
A)sB à la Diffie–Hellman key exchange [DH76].

In contrast, we run into trouble when doing the same with the encryption of x ·sA. Getting
an encryption of x · (sA + sB) seems to require Alice and Bob to compute hx·sB . This seems
challenging for two reasons. First, unlike in the previous case, it is insecure to send hx or
hsB since discrete logarithms are easy over the subgroup generated by h. However, even
if we were to use g, Alice cannot send gx because x is not random and therefore gx leaks
information on x.

5.2.4 Solving the synchronization challenges

To get around the synchronization challenges outlined in Section 5.2.3, we have to take
inspiration from existing constructions of HSS and carefully string together several ideas and
observations, which we explain next.

Outline. In Section 5.2.4.1, we start by describing how we can get a step closer to multi-key
HSS by avoiding the need for the parties to have encryptions of the secret key as part of the
input shares and instead only giving out “implicit” encryptions of the key. In Section 5.2.4.2,
we show that defining the joint secret key multiplicatively paves the way to synchronization if
we additionally sample the secret keys in a special way (which we describe in Section 5.2.4.3).
The new way of sampling secret keys results in “full synchronization” of the input shares but
introduces a correctness problem. In Section 5.2.4.4, we resolve this introduced correctness
problem by moving to a generalized Paillier-ElGamal encryption scheme. Finally, in Sec-
tion 5.2.4.5, we show how parties can non-interactively generate subtractive shares of the
joint encryption key. We overview the final construction in Section 5.2.5.

5.2.4.1 Step 1: Removing encryptions of the secret key

Abram et al. [ADOS22] observe that it is possible to define a “flipped” ElGamal-like encryption
by reversing the role of g and the public key in a ciphertext. A surprising feature of flipped
encryption is that “input-to-memory conversion” automatically yields a subtractive share of
x · s when decrypted with a share of the correct decryption key s. In more detail, if Alice
generates her input share as:

JxKA :=
(
(hxgrA , f rA

A ), (gr
′
A , hxf

r′A
A )
)
,

then the first (highlighted) component can only be decrypted by computing (hxgrA)sA · (f rA
A ) =

hx·sA , which corresponds to a decryption of the desired result. (Note that it is still possible
to decrypt hx in the usual way using the second ciphertext present in the input share.)

The hope is that, by not having an “explicit” encryption of the secret key, we can mitigate
the challenges we ran into in Section 5.2.3. Specifically, using the “flipped” encryption trick
above, an input share of a message x under Alice’s public key is of the form:((

hxgrA , f rA
A

)
,
(
gr

′
A , hxf

r′A
A

))
∈ Z∗N2 × Z∗N2 .

However, at this point, the modified input share does not appear to bring us any closer
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to resolving the synchronization challenge. In particular, it is unclear how Bob can compute
grA·sB without being given grA (which would break security of the encryption scheme). Despite
this, in the next few steps, this modified encryption of the input share will play a crucial role
in achieving synchronization.

5.2.4.2 Step 2: Defining the joint secret key multiplicatively

Next, observe that the parties can equivalently define their joint public key as f := g−sA·sB

using Diffie–Hellman [DH76]. Ignoring, for the moment, the challenge of then deriving
subtractive shares of the product sA · sB (we will resolve this later, in Section 5.2.4.5) we
first show how Alice and Bob can derive partially synchronized input shares, as described
in Section 5.2.3, under this newly defined joint public key. While in and of itself, it is still
not clear how it helps solve the synchronization issue, it paves the way for our next trick,
described in Section 5.2.4.3, which does result in full synchronization.

Recall that the goal of synchronization in MKHSS is to take an HSS input share of x
generated under Alice’s public key and transform it into an HSS input share under the joint
key. In this case, Alice and Bob need to locally obtain an input share of the form:((

hxgrA , f rA
)
,
(
gr

′
A , hxf r′A

))
,

where f = g−sA·sB .
As before, Alice can trivially synchronize her own share by simply re-encrypting x under

the joint public key f and reusing the same randomness r, r′ she used to generate the original
share. By doing so, Alice obtains a new HSS input share of the form:(

(hx · grA , f rA), (gr
′
A , hxf r′A)

)
, (5.3)

which is distributed exactly as an input share under the joint public key f .
Now, we try again to let Bob synchronize by computing((

hx · grA , (f rA
A )sB

)
,
(
gr

′
A , (hxf

r′A
A )sB

))
=
((

hx · grA , f rA
)
, (gr

′
A , hx·sBf r′A

))
.

However, we run into a similar barrier to the one we faced with our prior synchronization
attempt described in Section 5.2.3—the second component is an encryption of x · sB under
the joint public key f whereas we need it to be just an encryption of x.

The crucial insight we make next is that the partial synchronization introduced a superflu-
ous multiplication by sB. In contrast, our previous attempt had the exact opposite problem:
it was missing a multiplication by sB. Intuitively, while finding a way to obliviously multiply
by Bob’s secret key sB appears impossible (as we already explained in Section 5.2.3), it turns
out that canceling out the superfluous multiplication by sB is quite easy, as we explain next.

5.2.4.3 Step 3: Use special secret keys

At this point, to explain how we cancel out the superfluous multiplication by sB, we need
to work explicitly over the Paillier group Z∗N2 and use Paillier–ElGamal encryption [CS02,
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BCP03,DJ03]. Concretely, g is a random generator of a subgroup of Z∗N2 of order ϕ(N)/4
and h = (N + 1) is a generator of another subgroup of order N .

The goal now is to ensure that the secret key sB is automatically “canceled out” in the
second component of (gr′A , hx·sBf r′A

)
. To make this happen, our idea is to change the space

from which the secret keys are sampled. Rather than sampling sσ from the set {1, . . . , N}
(as done in Paillier–ElGamal [DJ03]), we instead sample the secret keys from the set

{N + 1, 2N + 1, 3N + 1, . . . , (N − 1) ·N + 1},

which guarantees that all sampled secret keys satisfy sσ ≡ 1 mod N . Observe that because
the secret keys are sampled over the integers, this requirement can be easily satisfied by first
sampling s′σ

R← {1, . . . , N − 1} and then defining sσ := s′σ ·N + 1 ∈ Z. While at first glance
this may appear to be an odd choice for sampling the secret keys, it turns out to be just the
trick to achieve full synchronization (and does not harm security, as we will show later).

Specifically, using the fact that the secret key is congruent to 1 mod N and the fact that
h has order N in Z∗N2 , we get that hsB = hi·N+1 (mod N) = h ∈ Z∗N2 . This property allows Bob
to then synchronize the encryption of the message x as above because (hxf rA

A )sB = hxf rA ,
which is a proper encryption of x under public key f with randomness r, and matches Alice’s
synchronized encryption of x computed in Equation 5.3.

The high-level intuition for why sampling the key in this way does not impact security is
the following. First, observe that the public key g−s in Paillier–ElGamal, computed with a
secret key s

R← [N ], is close to a random subgroup element generated by g. Then, because g
has order ϕ(N)/4, and N is co-prime to ϕ(N), a public key g−s

′ computed with s′ := N · s, is
statistically close to g−s, given thats mod ϕ(N)/4 is statistically close to s ·N mod ϕ(N)/4.
As such, the new sampling results in a public key that is statistically close to a standard
Paillier–ElGamal public key.

While we now resolved the synchronization problem completely, we are not out of the
woods yet. By sampling the secret keys in this way, we lose the ability to derive shares of
x · s as required for HSS computations! Specifically, it is no longer possible to compute shares
of x · s, since now hx·s = hx, making it impossible to compute the multiplication.

5.2.4.4 Step 4: Moving to the Damgård–Jurik–ElGamal

We are now in a situation where we face two competing requirements:

1. We need to sample the secret keys we need to sample the secret keys sA and sB such
that sA (mod N) ≡ sB (mod N) ≡ 1 (mod N) in order for Bob to locally synchronize
the encryption of x.

2. At the same time, we want to maintain our ability to compute multiplicative shares of
hx·s using the “flipped” decryption technique, without having the group’s order cancel
out the secret key s.

Despite these two requirements appearing mutually exclusive, our next idea allows us to
get around this. Instead of encrypting messages exclusively in Z∗N2 , we can encrypt them
both in Z∗N2 and in Z∗Nw+1 , for some w > 2, by using the generalized Paillier–ElGamal
encryption scheme of Damgård and Jurik [DJ03]. In Z∗Nw+1 , the group element h has order
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Nw, which allows us to encrypt x separately in Z∗N2 and then duplicate this in Z∗Nw+1 , such
that hx·s ∈ Z∗N2 ≡ hx and hx·s ∈ Z∗Nw+1 ≡ hx·s (mod Nw), for sufficiently large w so that x · s
does not exceed Nw, allowing us to satisfy both requirements. This now gives Bob the ability
to fully synchronize with Alice and allows us to satisfy the required invariants to evaluate
branching programs over the synchronized input shares.

The final problem we still need to resolve is giving the parties a way to locally obtain
subtractive shares of the joint secret key sA ·sB. We glossed over this problem in Section 5.2.4.2
when we defined the joint public key as being g−sA·sB .

5.2.4.5 Step 5: Getting shares of the secret key

The final ingredient we need is a non-interactive solution for computing subtractive secret
share of s := sA · sB. Fortunately, we can easily achieve this by using non-interactive
multiplication (NIM), as described and constructed in Chapter 4.

Recall that a NIM scheme allows Alice and Bob to generate shares of the multiplication
of their respective inputs by exchanging public encodings. To allow the parties to locally
derive shares of the joint secret key, we have the parties provide NIM encodings as part of
their public keys. Then, by encoding their secret keys as the message, Alice and Bob can
locally derive subtractive shares of the joint secret key s = sA · sB (defined over the integers)
using just the public key of the other party, which is exactly a share of the joint secret key
they require.

Constructing NIM from DCR. As was shown in Chapter 4 (specifically, Section 4.4), we
can construct a NIM scheme from the DCR assumption. We sketch the construction here for
completeness. The scheme is essentially a simplification of non-interactive NIM for matrix
products described in Chapter 4 and proceeds in two steps: (1) compute the multiplication
“in the exponent” of the group and then (2) compute the DDLog to obtain subtractive shares
over the integers.

Let N be a suitable composite modulus and let g and h be random generators of Z∗N2 that
are part of the CRS. The protocol is instantiated over the ring R = Zℓ, where for correctness
we need ℓ < 2−λ ·

√
N . The high-level idea behind the NIM construction is to have:

• Alice’s public encoding consist of a commitment grAhx to her element x and

• Bob’s public encoding consist of an encryption (grB , (N + 1)yhrB) of his element y,

where rA and rB are random elements of ZN .
Then, given Alice’s encoding peA := grAhx, Bob derives ZB := (grAhx)−rB = g−rArBh−xrB .

Similarly, given Bob’s encoding peB := (grB , (N +1)yhrB), Alice derives ZA := (grB)rA · ((N +
1)yhrB)x. It is not hard to see that ZA and ZB form multiplicative shares of (N + 1)xy mod N

since:

ZA · ZB = ((grB)rA · ((N + 1)yhrB)x) · (grAhx)−rB

= (grArB · (N + 1)xyhxrB) · (g−rArBh−xrB)

= (N + 1)xy.

Therefore, by applying the DDLog procedure to ZA and ZB, the parties recover subtractive
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shares of xy mod N . Moreover, because x, y < 2−λ ·
√
N , we have that, with all but negligible

probability, the shares ⟨xy⟩A and ⟨xy⟩B are subtractive shares over the integers, by the
correctness of the DDLog algorithm.

5.2.5 Putting things together

We now bring all the above ideas together and overview our full multi-key HSS construction
(see Section 5.4.3 for the full scheme). The CRS consist of (N, g, crsnim), where crsnim is the
CRS of the NIM scheme.

Key generation. Each party samples a secret key sσ
R← {i ·N + 1 | 1 ≤ i ≤ N − 1} and

sets the corresponding encryption public key to fσ := g−sσ . Additionally, each party generates
a public NIM encoding peσ of sσ (keeping the private NIM state, denoted stσ, to itself). The
MKHSS public key of party σ is defined as pkσ := (fσ, peσ), and the secret key skσ := (sσ, stσ).

Input sharing. Alice shares her message xA (without knowing the identity of Bob) by
generating two input shares:

JxAKA :=
((

xA, rA, r
′
A

)
,
(
(N + 1)xA · grA , f rA

A

)
,
(
gr

′
A , (N + 1)xAf

r′A
A

))
JxAKB :=

((
(N + 1)xA · grA , f rA

A

)
,
(
gr

′
A , (N + 1)xAf

r′A
A

))
,

where her own share of her own message JxAKA, contains private “state”
(
xA, rA, r

′
A) that

is not made available in the other, public share JxAKB. We stress that JxAKB is generated
without knowledge of Bob’s identity (the subscript B refers to any party that may later want
to play the role of Bob and synchronize with Alice). Alice publishes (pkA, JxAKB). Bob (or
any other party) can generate input shares under their own—and independent—public keys
in the same way as Alice does above.

Key synchronization. Once any two parties, playing the role of Alice and Bob, decide
to perform an HSS computation on their respective input shares, they can syncrhonize
their encryption public keys by computing a Diffie–Hellman key exchange to derive a joint
encryption key f := g−sA·sB = g−s. Then, they can use the NIM encodings from the public
keys to locally derive a secret share of the joint decryption secret key s.

Input synchronization. Finally, Alice and Bob synchronize Alice’s MKHSS input share
under their joint public key as follows. Note that synchronization of Bob’s MKHSS input
share follows by performing the symmetric synchronization computation.

We will denote a synchronized input share of a message x by {{x}}.
1. Alice synchronizes her own input share of xA under the joint public encryption key f

by using her private state (xA, rA, r
′
A) and simply re-encrypting the message as:

{{x}} :=
((

(N + 1)xA · grA , f rA
)
,
(
gr

′
A , (N + 1)xAf r′A

))
∈ (Z∗Nw+1)2 × (Z∗N2)2.

2. Bob synchronizes with Alice by using the joint public encryption key f and his secret
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key sB and computing:

{{x}} :=
((

(N + 1)xA · grA , (f rA
A )sB

)
,
(
gr

′
A ,
(
(N + 1)xAf

r′A
A

)sB))
=
((

(N + 1)xA · grA , f rA
)
,
(
gr

′
A , (N + 1)xAf r′A

))
∈ (Z∗Nw+1)2 × (Z∗N2)2.

In particular, observe that {{xA}} is identical for both parties. We show that {{xA}} is
a suitable HSS input share under the joint key f , making it possible for Alice and Bob to
then compute any NC1 function over this synchronized input share. The idea then extends to
synchronizing with Bob’s input share (under the same joint public key f) and to synchronizing
many input shares provided by both parties.

5.3 Preliminaries

In this section, we cover the notation that we will use throughout the chapter.

General notation. We let N denote the set of natural numbers, Z denote the set of integers,
G denote a finite group, and R denote a finite ring. A reduction modulo t, for any positive
integer t, yields a representative in the range Zt = {−⌊t/2⌋, . . . , ⌊(t− 1)/2⌋}. We denote
by poly(·) the set of all polynomials and by negl(·) any negligible function. We occasionally
abuse notation and let poly denote a fixed polynomial.

Vectors and matrices. We denote a vector v using bold lowercase letters and a matrix A
using bold uppercase letters. The i-th coordinate of a vector v is denoted by v[i]. We will
occasionally write (vi)

n
i=1 to denote the vector (v1, . . . , vn).

Vector group operations. For all g ∈ Gℓ and x ∈ Zℓ, we use ⟨g,x⟩ to denote ⟨g,x⟩ =
∏ℓ

i=1 g
xi
i ,

where g = (g1, . . . , gℓ) and x = (x1, . . . , xℓ).

Sampling and assignment. We let x
R← S denote a uniformly random sample drawn from a

set S. We let x← A denote assignment from a randomized algorithm A and x := y denote
initialization of x to the value of y (which may be the output of a deterministic algorithm).

Efficiency. By an efficient algorithmA we mean thatA is modeled by a (possibly non-uniform)
Turing Machine that runs in probabilistic polynomial time.

Probability and indistinguishability. We let Pr[E : A] denote the probability of an event E
in an experiment defined by executing A. For two probability ensembles {Ai}i and {Bi}i,
we use {Ai}i ≡ {Bi}i to denote that the ensembles are identical, {Ai}i ≈s {Bi}i to denote
that the ensembles are statistically close and {Ai}i ≈c {Bi}i to denote that the ensembles
are computationally indistinguishable.

Subtractive Sharing. Let R be a ring. We use ⟨x⟩R ∈ R2 where ⟨x⟩R = (⟨x⟩RA , ⟨x⟩RB ) to denote
a subtractive sharing of x ∈ R such that ⟨x⟩RA − ⟨x⟩RB = x. For ease of notation, we use
⟨x⟩ = (⟨x⟩A, ⟨x⟩B) to denote the subtractive sharing over the integers when R = Z.

5.3.1 Cryptographic assumptions

We will make use of the Decisional Composite Residuosity (DCR) assumption [Pai99].
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Assumption 1 (Decisional Composite Residuosity Assumption). Let GenPQ be a randomized
algorithm that, on input the security parameter λ, outputs two distinct, sufficiently large,
random safe primes p and q. The DCR assumption states that:

 (N, g0)

∣∣∣∣∣∣∣
(p, q)← GenPQ(1λ)

N := pq

g0
R← Z∗N2

 ≈c

 (N, g1)

∣∣∣∣∣∣∣∣∣∣
(p, q)← GenPQ(1λ)

N := pq

g0
R← Z∗N2

g1 := gN0

.

5.3.2 Cryptographic building blocks

We will make use of the following two building blocks: Non-interactive key exchange, non-
interactive multiplication (introduced in Chapter 4 and recalled here for convenience), and
the Damgård–Jurik encryption scheme.

Non-Interactive Key Exchange. Here, we provide a basic definition of non-interactive
key exchange, which will suffice for our applications and constructions.

Definition 5.3.1 (Non-Interactive Key Exchange [DH76,CKS08,FHKP13]). Let λ ∈ N be a
security parameter. A non-interactive key exchange (NIKE) scheme consists of algorithms
NIKE = (Setup,KeyGen,KeyDer) with the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
λ and outputs a common reference string crs.

• KeyGen(crs) → (pk, sk). The randomized key generation algorithm takes as input the
CRS crs. It outputs a public key pk and secret key sk.

• KeyDer(crs, pki, skj)→ K. The deterministic key derivation algorithm takes as input
the CRS crs, a public key pki, and a secret key skj. It outputs a key K ∈ {0, 1}λ.

The above algorithms must satisfy the following properties:

Correctness. For all security parameters λ ∈ N, it holds that:

Pr

 KA = KB :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB, skB)← KeyGen(crs)

KA ← KeyDer(crs, pkB, skA)

KB ← KeyDer(crs, pkA, skB)

 = 1.

Security. For all efficient adversaries A, there exists a negligible function negl(·) such that:
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Pr


b = b′ :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB, skB)← KeyGen(crs)

K0 ← KeyDer(crs, pkA, skB)

K1
R← {0, 1}λ

b
R← {0, 1}

b′ ← A(crs, pkA, pkB, Kb)


≤ 1

2
+ negl(λ)

In particular, this security definition for NIKE is known as “CKS-light” security [FHKP13],
which is known to be polynomially equivalent to stronger notions of NIKE.

Damgård–Jurik–ElGamal encryption scheme. We first recall the Damgård–Jurik
“ElGamal” encryption scheme in Figure 5.1. The scheme is proven secure under the DCR
assumption [DJ03] (see also [CS02, BCP03]). For convenience, we extend the scheme to
support the “flipped” encryptions via a FlipEncrypt algorithm.

For completeness, we prove the security of the extended DJEG encryption scheme presented
in Figure 5.1.

Lemma 5.3.1. Let λ be a security parameter. If the DCR assumption holds, then the
encryption scheme presented in Figure 5.1 satisfies the standard notion of semantic security
(i.e., CPA-security).

Proof. The proof of semantic security follows a similar proof made in [BCCS24, Section 4.4]
and proceeds with a simple hybrid argument. Here, we adapt the proof to the generalized
Damgård–Jurik–ElGamal setting.

• Hybrid H0. This hybrid consist of a ciphertext (c0, c1) as generated by DJEG.Encrypt
in Figure 5.1.

• Hybrid H1. In this hybrid, we change how the randomness r is sampled in DJEG.Encrypt,
and sample r uniformly from {0, 1, . . . , Nw+1} instead of {0, 1, . . . , N}.

Claim. H1 ≈s H0.

Proof. This hybrid is statistically close to the previous one by the fact that g and f
have order ϕ(N)/4, which is coprime to N . We note that we implicitly use the fact
that GenPQ outputs safe primes making g, as sampled in Figure 5.1, a generator for
the subgroup of order ϕ(N)/4 with overwhelming probability. □

• Hybrid H2. In this hybrid, we change how the public key f is sampled in DJEG.KeyGen
by sampling f as a uniformly random 2Nw-th residue. That is, f := (g′)2N

w ∈ Z∗Nw+1 ,
where g′

R← Z∗Nw+1 .

Claim. H2 ≈s H1.
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Damgård–Jurik–ElGamal Encryption Scheme [DJ03]

Public Parameters. An algorithm GenPQ as defined in Assumption 1, an exponent
parameter w ≥ 1, and an efficiently computable function Lw that computes the discrete
log base N + 1 [DJ01].

DJEG.Setup(1λ):
1 : (p, q)← GenPQ(1λ)

2 : N := pq

3 : g0
R← Z∗Nw+1

4 : g := (g0)
2Nw ∈ Z∗Nw+1

5 : return crs := (N, g)

DJEG.KeyGen(crs):
1 : parse crs = (N, g)

2 : s
R← [N ]

3 : f := gs ∈ Z∗Nw+1

4 : (pk, sk) := (f, s)

5 : return (pk, sk)

DJEG.Decrypt(crs, sk, ct):
1 : parse crs = (N,_)

2 : parse ct = (c0, c1)

3 : c′ := c1/(c0)
sk

4 : x := Lw(c
′)

5 : return x

DJEG.Encrypt(crs, pk, x):
1 : parse crs = (N, g)

2 : parse pk = f

3 : r
R← {0, 1, . . . , N}

4 : c0 := gr mod Nw+1

5 : c1 := (N + 1)xf r mod Nw+1

6 : return ct := (c0, c1)

DJEG.FlipEncrypt(crs, pk, x):
1 : parse crs = (N, g)

2 : parse pk = f

3 : r
R← {0, 1, . . . , N}

4 : c0 := (N + 1)xgr mod Nw+1

5 : c1 := f r mod Nw+1

6 : return ct := (c0, c1)

Figure 5.1: The DJEG encryption scheme.
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Proof. By the definition of g = (g0)
2Nw , it is a generator for the subgroup of the 2Nw-th

residues with overwhelming probability (again, using the fact that N is a composite of
safe primes). Then, it suffices to note that in H1 we have f = gs, which is a uniformly
random 2Nw-th residue when g is a generator for the subgroup of 2Nw-th residues and
s is sampled uniformly from ZN . □

• Hybrid H3. In this hybrid, we change how the public key f is sampled in DJEG.KeyGen
by sampling f as a uniformly random square from Z∗Nw+1 .

Claim. H3 ≈c H2 assuming DCR.

Proof. The claim follows from a direct reduction to the DCR assumption. For simplicity,
we focus on the w = 1 case which generalizes to w > 1 via induction [DJ01, Theorem 1].
Notice that f is sampled as a 2N -th residue in H2 and a random square of Z∗N2 in H3.
The reduction thus has at most a factor of two loss in advantage in the DCR game. □

Remark 26. We note that, thanks to CRT decomposition, ZNw·ϕ(N)/4 is isomorphic
to ZNw × Zϕ(N)/4 because N is coprime to ϕ(N). Using this, any square c in Z∗Nw+1

can be written as c = (1 +N)agb mod Nw+1, for some (a, b) ∈ ZNw × Zϕ(N)/4, since all
elements in Z∗Nw·ϕ(N) can be decomposed into this form. Moreover, for a random c, with
overwhelming probability 1− p+q−1

N
, we have that a ̸= 0 and coprime to N .

• Hybrid H4. In this hybrid, the ciphertext elements c0 and c1 are sampled as uniformly
random elements of Z∗Nw+1 .

Claim. H4 ≈s H3.

Proof. We claim that, in hybrid H3, (c0, c1) is already statistically close to the uniform
distribution over Z∗Nw+1 ×Z∗Nw+1 . To see this, we first note that g generates a subgroup
of order ϕ(N)/4 and, therefore, the element c0 statistically reveals only the value
r0 = r mod ϕ(N)/4. Moreover, using Remark 26, c1 can be rewritten as follows:

c1 = (1 +N)x · f r = (1 +N)ar1+x mod Nw · gb·r0 mod ϕ(N)/4 mod Nw+1,

where r0 = r mod ϕ(N)/4 and r1 = r mod Nw. Then, conditioned on r0, r1 is
statistically close to a uniformly random element by the fact that N and ϕ(N) are
coprime. By the above, we have that ar1+x mod Nw is statistically close to a uniformly
random element of ZNw given r0 (recall that a is coprime to N , with overwhelming
probability). Combined, we have that (c0, c1) are statistically close to a uniformly
random tuple of elements sampled from Z∗Nw+1 . □
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We have now concluded the proof of semantic security for the DJEG scheme when the
ciphertext is generated using DJEG.Encrypt. We note that a very similar hybrid argument
applies to proving that ciphertexts output by the “flipped” encryption DJEG.FlipEncrypt are
computationally indistinguishable from uniform under the DCR assumption. A little more
formally, starting with H3, the element f is distributed identically to g (both are random
squares in Z∗N2) which enables interchanging them in c0 and c1. This concludes the proof. ■

Non-interactive multiplication. Here, we recall the definition of NIM from Chapter 4.
We change the syntax of the encoding and decoding algorithms to not depend on the party
identifier, which simplifies our MKHSS construction. This change is without loss of generality
since each party’s public and private encoding can consist of public and private encodings
generated by playing the role of both parties, increasing the size of the public encoding by a
factor of two.

Definition 5.3.2 (Non-Interactive Multiplication). Let λ be a security parameter, R be
a finite ring. A non-interactive multiplication (NIM) scheme consists of three algorithms
NIM = (Setup,Encode,Decode) with the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string crs.

• Encode(crs, x)→ (peσ, stσ). The randomized encoding algorithm takes as input the CRS
crs and a ring element x ∈ R. It outputs a public encoding peσ and secret state stσ.

• Decode(crs, pe1−σ, stσ) → ⟨z⟩σ. The deterministic decoding algorithm takes as input
the CRS crs, another party’s public encoding pe1−σ, and secret state stσ. It outputs a
subtractive secret share of z.

The above functionality must satisfy correctness and security, which are defined as follows:

Correctness. For all security parameters λ ∈ N and every pair of elements x, y ∈ R, a NIM
scheme is said to be correct if there exists a negligible function negl(·) such that:

Pr

 ⟨z⟩A − ⟨z⟩B = xy :

crs← Setup(1λ)

(peA, stA)← Encode(crs, x)

(peB, stB)← Encode(crs, y)

⟨z⟩A := Decode(crs, peB, stA)

⟨z⟩B := Decode(crs, peA, stB)

 ≥ 1− negl(λ).

Security. A NIM scheme is said to be secure if for all efficient adversaries A, there exists a
negligible function negl(·) such that for all λ ∈ N, and all σ ∈ {A,B}, we have that

Pr

 b′ = b :

crs← Setup(1λ)

(x0, x1, st)← A(crs)
b

R← {0, 1}
(peσ, stσ)← Encode(crs, xb)

b′ ← A (peσ, st)

 ≤
1

2
+ negl(λ),
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where x0, x1 ∈ R.

5.3.3 Distributed evaluation of RMS programs

In this section, we present a unifying template for reasoning about distributed evaluation
of HSS input shares, which not only captures HSS evaluation from prior works but will
also be useful in proving the correctness of our constructions. Note that our focus here
is only on correctness of HSS evaluation, assuming both parties already hold shares of all
program inputs. How these inputs are securely shared between the parties will be discussed
in subsequent sections.

Restricted Multiplication Straight-line (RMS) programs. An RMS program is an
arithmetic circuit over integers with the restriction that every multiplication is between an
input value and an intermediate value of the computation, called a memory value. Most
existing HSS schemes support evaluating RMS programs. Boyle et al. [BGI16] show that
the class of polynomial-size RMS programs includes the class of polynomial-size branching
programs, which is in turn known to contain the class of NC1 circuits.

Definition 5.3.3 (Restricted Multiplication Straight-line Program [Cle90,BGI16]). A re-
stricted multiplication straight-line (RMS) program P consists of a magnitude bound B ∈ N
and an arbitrary sequence of the following four instructions.

• Convert(Ix)→ Mx : Load the value of the input wire Ix to the memory wire Mx.

• Add(Mx,My) → Mz : Add the values of the memory wires Mx and My and assign the
result to the memory wire Mz.

• Mult(Ix,My)→ Mz : Multiply the value of the input wire Ix by the value of the memory
wire My and assign the result to the memory wire Mz.

• Output(Mz)→ z : Output the value of the memory wire Mz.

If at any step of the execution, the size of a memory value exceeds the bound B, the output
of the program on the corresponding input is defined to be ⊥. The size of an RMS program,
denoted by |P |, is defined as the number of instructions.

Primitives required for distributed evaluation. The distributed, non-interactive
evaluation of RMS programs in group-based HSS schemes rely on two primitives. The
first is HSS shares of the inputs, which satisfy a property we abstract as “exponent-linear
decoding.” This property intuitively captures the decryption process in ElGamal-style public-
key encryption schemes instantiated over various groups (e.g., DDH-hard cyclic groups,
the Paillier group, class groups, etc.). The second is the distributed discrete logarithm
algorithm introduced in [BGI16], which serves as the foundation of all existing group-based
HSS constructions. In Lemma 5.3.3, we show that these components suffice for distributed
evaluation of any RMS program. This framework captures HSS constructions of Boyle et
al. [BGI16] from DDH (the BHHO-based scheme), as well as the HSS constructions by Abram
et al. [ADOS22] based on either the DCR assumption or DDH-like assumptions in Paillier
and class groups. Looking ahead, although inputs in our multi-key HSS construction are
encoded differently from prior works, they still satisfy the exponent-linear decoding property,
which in turn allows distributed evaluation of RMS programs.
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Definition 5.3.4 (Exponent-Linear Decoding). Let G be an abelian group, let H ⊆ G be a
finite cyclic subgroup of order t with generator h and let ℓ ∈ N. We let {{x}} := (c1, . . . , cℓ) ∈
Gℓ×ℓ be an encoding of an integer x with base-h exponent-linear decoding under the decoding
key k = (k1, . . . , kℓ) ∈ Zℓ if for all i ∈ [ℓ], we have ⟨ci,k⟩ = hx·ki.

Remark 27 (Exponent-linear decoding in HSS schemes). In ElGamal-based HSS, H is simply
the group G itself. However, in the Paillier–ElGamal-based HSS (and variants thereof), H is
a subgroup of G in which the discrete logarithm (base h) is efficiently computable. In all cases,
the decryption procedure in these schemes consists of a linear function (“in the exponent”)
with the secret key and hence why existing scheme satisfy Definition 5.3.4.

Definition 5.3.5 (Distributed Discrete Logarithm). Let G be an abelian group, let H ⊆ G
be a finite cyclic subgroup of order t with generator h, let ε be a real number and Bdl be a
positive integer, where 0 ≤ ε < 1 and Bdl < t. An efficient algorithm DDLog is an ε-correct,
Bdl-bounded, base-h algorithm for distributed discrete logarithm, if there exists a negligible
function negl(·) such that for all λ ∈ N, all integers x where |x| ≤ B and all f ∈ G we have

Pr
r
R←{0,1}λ

[DDLog(f · hx; r)− DDLog(f ; r) ̸≡ x mod t] ≤ ε+ negl(λ).

Lemma 5.3.2 (DDlog in DCR; Adapted from [OSY21, Lemma 3.3]). In the Paillier group
Z∗N2, for all λ ∈ N, and all integers Bdl < N · 2−λ, there exists an 2−λ-correct, Bdl-bounded,
base-(N + 1) algorithm for distributed discrete logarithm.

Template for distributed evaluation. We conclude this section by describing an algorithm
in Figure 5.2 for distributed evaluation of RMS programs, using PRFs, a DDLog algorithm
and encodings of inputs that are exponent-linear decodeable. The proof of correctness closely
follows that of group-based HSS constructions in prior works; however, we revisit the details
here for completeness.

Lemma 5.3.3. Let G be an Abelian group, H ⊆ G be a finite cyclic subgroup of order t with
generator h, DDLog be an ε-correct, Bdl-bounded, base-h algorithm for distributed discrete
logarithm, and F1 and F2 be secure PRFs. Then, for all polynomials poly(·), there exists a
negligible function negl(·) such that for all λ ∈ N, all k = (k1, . . . , kℓ−1, 1) ∈ Zℓ, all kA ∈ Zℓ,
all RMS programs P with bound B, all x1, . . . , xm ∈ Z and {{x1}}, . . . , {{xm}} ∈ Gℓ×ℓ, the
algorithm DEval described in Figure 5.2 satisfies

Pr


⟨z⟩A − ⟨z⟩B
̸=

P (x1, . . . , xm)

:

kprf
1 , kprf

2
R← {0, 1}λ

kB := kA − k

ekσ := (kprf
1 , kprf

2 ,kσ), ∀σ ∈ {A,B}
⟨z⟩σ := DEval(σ, ekσ, ({{x1}}, . . . , {{xm}}), P ), ∀σ ∈ {A,B}


≤ ε · ℓ · |P |+ negl(λ),

where each |ki| ≤ Bsk for some Bsk ∈ N, each {{xi}} is an encoding of xi with base-h exponent-
linear decoding under k, P (x1, . . . , xm) ̸= ⊥, ℓ ≤ poly(λ), |P | ≤ poly(λ), B · Bsk ≤ Bdl and
B ·Bsk · 2λ < t.
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Distributed Evaluation of RMS Program

Public Parameters. Abelian group G and finite cyclic subgroup H ⊆ G of order t
with generator h. Base-h distributed discrete logarithm algorithm DDLog. PRF F1 with
output space {0, 1}λ and a PRF F2 with output space Zt.

DEval(σ, ekσ, ({{x1}}, . . . , {{xm}}), P ) :

Parse ekσ = (kprf
1 , kprf

2 , ⟨⟨1⟩⟩σ).
For each id ∈ [|P |], evaluate the id-th instruction as follows:

– Convert : Mx ← Ix :

1: Execute the Mult({{x}}, ⟨⟨1⟩⟩σ) instruction to compute ⟨⟨x⟩⟩σ.

– Mult : Mxy ← Ix ·My :

1: Parse {{x}} = (c1, . . . , cℓ).
2: For i ∈ [ℓ] :

2.1: f
(i)
σ := ⟨ci, ⟨⟨y⟩⟩σ⟩.

2.2: ⟨zi⟩σ := DDLog(f
(i)
σ ;F1(k

prf
1 , id∥i)) + F2(k

prf
2 , id∥i) mod t.

3: ⟨⟨xy⟩⟩σ := (⟨z1⟩σ, . . . , ⟨zi⟩σ).

– Add : Mx+y ← Mx +My :

1: ⟨⟨x+ y⟩⟩σ := ⟨⟨x⟩⟩σ + ⟨⟨y⟩⟩σ.

– Output : z ← Mz :

1: Parse ⟨⟨z⟩⟩σ = (⟨z1⟩σ, . . . , ⟨zi⟩σ).
2: Return ⟨zℓ⟩σ.

Figure 5.2: Distributed evaluation of RMS program.

Proof. Observe that for every memory value Mx in the RMS program, party σ computes a
share ⟨⟨x⟩⟩σ. We must show that the output produced by each party is a subtractive sharing
of P (x1, . . . , xm). At a high level, we will show this by proving that DEval maintains the
invariant that ⟨⟨x⟩⟩ = (⟨⟨x⟩⟩A, ⟨⟨x⟩⟩B) forms a subtractive sharing of x · k, for every memory
value Mx. Then, since the last component of k is 1, the parties obtain a subtractive sharing
of the program output upon evaluating DEval.

Note that for Add(Mx,My) instructions, the above invariant holds trivially due to the
additive homomorphism of subtractive sharing.

For Mult(Ix,My) instructions, the exponent-linear decoding property allows party-B to
compute a f

(i)
B ∈ G and party-A to compute f

(i)
A = f

(i)
B · hxy·ki , for each component ki of the

decoding key. The parties can then compute a subtractive sharing of xy · k using DDLog.
Let the output of the correctness experiment be defined as 1 if ⟨z⟩A−⟨z⟩B = P (x1, . . . , xm)

and defined as 0 otherwise. We will prove that this output is 1 with probability ε·ℓ·|P |+negl(λ).
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We first use a simple hybrid argument to replace the pseudorandom outputs of the PRFs
with uniformly random values.

• Hybrid H0. This hybrid is the output of the experiment, as defined above.

• Hybrid H1. This hybrid is identical to the previous hybrid, except that ⟨zi⟩σ in DEval

is computed as ⟨zi⟩σ := DDLog(f
(i)
σ ; r

(i)
σ ) + r̂

(i)
σ mod t, where r

(i)
σ ∈ {0, 1}λ and r̂

(i)
σ ∈ Zt

are the outputs of truly random functions evaluated at id∥i.

Claim. H0
c≈ H1.

Proof. The claim follows by the pseudorandomness of the PRFs F1 and F2. □

Now that we have uniformly random shares, we will prove that the experiment’s output
is 1, except with a probability of at most ε · ℓ · |P |+ negl(λ). To do so, we first show that
if the input for a multiplication satisfies the invariant, the invariant will also hold for the
product with probability at least 1− ε− negl(λ). Then, we use this to derive a lower bound
on the probability that the output of the experiment is 1 in hybrid H1 above.

Claim. For each multiplication instruction Mult(Ix,My) evaluated in DEval, we have

Pr[⟨⟨xy⟩⟩A − ⟨⟨xy⟩⟩B ̸= xy · k | ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B = y · k ] ≤ ε · ℓ+ negl(λ).

Proof. Consider any arbitrary i ∈ [ℓ]. Since {{x}} = (c1, . . . , cℓ) is exponent-linear decodable
under k = (k1, . . . , kℓ), we have

hxy·ki = ⟨ci, y · k⟩ = ⟨ci, ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B⟩ = f
(i)
A ·

(
f
(i)
B

)−1
=⇒ f

(i)
A = hxy·ki · f (i)

B ,

where the second equality follows from the fact that ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B = y · k.
Let ⟨z′i⟩σ = DDLog(f

(i)
σ ; r

(i)
σ ), where r

(i)
σ is the output of a truly random function. Since P

is B-bounded and P (x1, . . . , xm) ̸= ⊥, we have |xy| ≤ B. Along with the fact that |ki| ≤ Bsk

and B ·Bsk ≤ Bdl, it follows from the correctness of DDLog that ⟨z′i⟩A − ⟨z′i⟩B ≡ xy · ki mod t

with a probability of at least 1 − ε − negl(λ). Moreover, since ⟨zi⟩σ = ⟨z′i⟩σ + r̂
(i)
σ (mod t),

where r̂
(i)
σ ∈ Zt, we have ⟨zi⟩A − ⟨zi⟩B ≡ xy · ki mod t, except with a probability of at most

ε+ negl(λ).
Conditioned on the event that there was no error in DDLog, ⟨zi⟩A and ⟨zi⟩B are uniformly

random subtractive shares over Zt since r̂
(i)
σ is uniformly random in Zt. This implies that

⟨zi⟩A − ⟨zi⟩B does not wrap around t with overwhelming probability.
In more detail, since |xy · ki| < B · Bsk, ⟨zi⟩A − ⟨zi⟩B wraps around t only when −t/2 ≤

⟨zi⟩B ≤ −t/2+B·Bsk or t/2−B·Bsk ≤ ⟨zi⟩B ≤ t/2. The size of this interval is 2B·Bsk and since
⟨zi⟩A is a uniformly random subtractive share over Zt, the probability that ⟨zi⟩A−⟨zi⟩B wraps
around is at most 2B ·Bsk/t < 2 · 2−λ, which is negligible. Thus, it follows that (⟨zi⟩A, ⟨zi⟩B)
constitute a subtractive sharing of xy ·ki over the integers except with a probability of at most
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ε+ negl(λ), where the probability is over the correctness of DDLog as well as the possibility
of wrap-around when converting additive shares over Zt to subtractive shares over integers.

Finally, observe that ⟨⟨xy⟩⟩A−⟨⟨xy⟩⟩B = xy ·k if and only if ⟨zi⟩A−⟨zi⟩B = xy ·ki, for every
i ∈ [ℓ]. Therefore, each (⟨zi⟩A, ⟨zi⟩B) constitutes a subtractive sharing of xy · ki, except with
a probability of at most ε+ negl(λ), since they are computed with independently sampled
randomness. By a union bound, and the fact that ℓ ≤ poly(λ), we have

Pr[⟨⟨xy⟩⟩A − ⟨⟨xy⟩⟩B ̸= xy · k | ⟨⟨y⟩⟩A − ⟨⟨y⟩⟩B = y · k ] ≤ ε · ℓ+ negl(λ).

□

We will argue that if the invariant is true for memory values corresponding to the output
of the first id−1 instructions of the RMS program P , then the invariant is true for the memory
value that corresponds to the output of the id-th instruction, except with a probability of
at most ε · ℓ + negl(λ). In more detail, observe that if the id-th instruction is an addition
instruction Add(Mx,My), then it follows from the additive homomorphism of subtractive
sharing that the invariant holds for Mx+y with probability 1 since ⟨⟨x+ y⟩⟩A − ⟨⟨x+ y⟩⟩B =
⟨⟨x⟩⟩A + ⟨⟨y⟩⟩A − ⟨⟨x⟩⟩B − ⟨⟨y⟩⟩B = x+ y. Similarly, if the id-th instruction is a multiplication
instruction Mult(Ix,My), then it follows from our previous claim that the invariant holds for
Mxy except with a probability of at most ε · ℓ+ negl(λ). Finally, if the id-th instruction is a
Convert(Ix) instruction, then DEval runs the same steps as for evaluating Mult(Ix,M1), where
⟨⟨1⟩⟩σ = kσ. Observe that (kA,kB) is, by definition, a subtractive sharing of 1 · k, which
implies from our previous claim that (⟨⟨x⟩⟩A, ⟨⟨x⟩⟩B) constitutes a subtractive sharing of x · k,
except with a probability of at most ε · ℓ+ negl(λ). Thus, the invariant holds true for the
output Mx of the Convert(Ix) instruction.

Since the last component of the decoding key kℓ = 1, we have ⟨z⟩A−⟨z⟩B = P (x1, . . . , xm)
in this hybrid when the invariant is true for the memory value Mz corresponding to the output
instruction Output(Mz). The probability that the invariant does not hold for a memory
value is at most ε · ℓ+ negl(λ), since the randomness is freshly sampled for each instruction.
It thus follows from a straightforward union bound and the fact that |P | ≤ poly(λ) that
⟨z⟩A−⟨z⟩B = P (x1, . . . , xm) and the output of the experiment is 1 in hybrid H1, except with a
probability of at most ε · ℓ · |P |+negl(λ). Moreover, since H0

c≈ H1, it follows that the output
of the experiment is 1 in hybrid H0, except with a probability of at most ε · ℓ · |P |+ negl(λ).
This concludes the proof. ■

5.4 Multi-Key Homomorphic Secret Sharing

We formalize the notion of MKHSS in Section 5.4.1. Then, we construct MKHSS from DCR
in Section 5.4.3.

5.4.1 Definition

We define multi-key HSS (MKHSS) in Definition 5.4.1. An MKHSS scheme allows a party,
given a common reference string, to locally generate a key pair and share its input using its
public key. These shares can then be used with the input shares computed by any other party
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(generated using its own public key), to compute subtractive shares of a program’s output,
evaluated on the joint inputs. This ability to compute shares of the input, independent of
the other party’s key—indeed, even before knowing the identity of the other party—is the
key property of MKHSS schemes.

Let JxKAA denote Alice’s share of her input x and let JxKAB denote the share of x intended
for other parties. The security of the scheme requires that JxKAB—which can be viewed as a
ciphertext that enables computing on x—preserves privacy of Alice’s input. In contrast, the
definition does not impose any security requirements on Alice’s share JxKAA, since she already
knows the input x as well as the secret key corresponding to the public key used to generate
the shares.

We first introduce some additional notation and then proceed with the definition.

Notation. We denote by JxKσ = (JxKσA, JxKσB) an input sharing of a message x generated
using party σ’s HSS public key. Additionally, we occasionally write JxKσ = (Jx1K

σ, . . . , JxℓK
σ)

to denote a tuple of input shares of x ∈ Rℓ, where x = (x1, . . . , xℓ). For some party identifier
σ ∈ {A,B}, we write 1− σ as shorthand for the “other party identifier” σ ∈ {A,B} \ {σ}.

Definition 5.4.1 (Multi-Key Homomorphic Secret Sharing). A multi-key homomorphic secret
sharing (MKHSS) scheme for a program class P, defined over a ring R, and having a message
spaceM⊆ R consists of four efficient algorithms MKHSS = (Setup,KeyGen, Share,Eval) with
the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string (CRS) crs.

• KeyGen(crs)→ (pk, sk). The randomized key generation algorithm, independently run
by each party, takes as input the CRS crs and outputs a public and private key pair
(pk, sk) for the party.

• Share(crs, σ, pkσ, x)→ (JxKσA, JxKσB). The randomized share algorithm takes as input the
CRS crs, the party identifier σ ∈ {A,B}, the party’s public key pkσ, and a message
x ∈M. It outputs a pair of input shares (JxKσA, JxKσB) encoding the message x.

• Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P )→ ⟨z⟩Rσ . The deterministic evaluation algorithm
takes as input the CRS crs, the party identifier σ ∈ {A,B}, the party’s secret key skσ,
the public key of another party pk1−σ, two tuples JxAKAσ and JxBKBσ of the party’s input
shares (where the tuples are generated by different parties using Share), and a program
description P . It outputs a subtractive share (over the ring R) of the evaluation result
z.

An MKHSS scheme must satisfy the following correctness and security properties:

Correctness. An MKHSS scheme is said to be ε-correct, for some ε ∈ [0, 1), if for all λ ∈ N,

204



all 2m-input programs P ∈ P, and all xA,xB ∈Mm, we have

Pr


⟨z⟩RA − ⟨z⟩RB

̸=
P (xA,xB)

:

crs← Setup(1λ)

(pkσ, skσ)← KeyGen(crs), ∀σ ∈ {A,B}
(JxσK

σ
A, JxσK

σ
B)← Share(crs, σ, pkσ,xσ), ∀σ ∈ {A,B}

⟨z⟩Rσ ← Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P ), ∀σ ∈ {A,B}


≤ ε+ negl(λ),

where xσ = (x
(1)
σ , . . . , x

(m)
σ ) for each σ ∈ {A,B}. Note that we slightly abuse notation by

letting Share(crs, σ, pkσ,xσ) denote running Share(crs, σ, pkσ, x
(i)
σ ) separately for each i. If

ε = 0, we simply say that the MKHSS is correct.

Security. An MKHSS scheme is said to be secure if for all efficient adversaries A, there
exists a negligible function negl(·) such that for every σ ∈ {A,B}, we have that

Pr


b′ = b :

crs← Setup(1λ)

(pkσ, skσ)← KeyGen(crs)

(x0, x1, st)← A(crs, pkσ)
b

R← {0, 1}
(JxbK

σ
A, JxbK

σ
B)← Share(crs, σ, pkσ, xb)

b′ ← A
(
JxbK

σ
1−σ, st

)


≤ 1

2
+ negl(λ).

Comparison to public-key HSS. In a public-key HSS scheme (e.g., [BGI16, Definition
2.2]), the Setup algorithm outputs a public key pk and two private evaluations keys ekA and
ekB. Any party—not necessarily those holding the evaluation keys—can then share their input
using pk, which in turn allows the servers holding the evaluation keys to non-interactively
compute on all shared inputs. Thus, compared to an MKHSS scheme, a public-key HSS
scheme allows computing on the inputs of several parties; but this comes at the cost of
requiring a correlated setup or, alternatively, a PKI [BGI17,OSY21,ADOS22], which implies
a two-round sharing protocol in the CRS model.

While an MKHSS scheme and a public-key HSS scheme might initially seem incomparable,
it is not too hard to see that the former implies the latter. Specifically, given an MKHSS
scheme MKHSS, a public-key HSS scheme can be constructed as follows.

• The setup algorithm computes crs using MKHSS.Setup, generates two keys pairs
(pkA, skA) and (pkB, skB) using MKHSS.KeyGen and outputs pk := (crs, pkA, pkB),
ekA := skA, and ekB := skB.

• The HSS share of an input x is computed using pk by first computing a subtractive
sharing, ⟨x⟩ = (⟨x⟩A, ⟨x⟩B), and then computing MKHSS shares of ⟨x⟩σ using pkσ i.e.,(

J⟨x⟩AKAA, J⟨x⟩AKAB
)
← MKHSS.Share(crs, A, pkA, x)(

J⟨x⟩BKBA, J⟨x⟩BKBB
)
← MKHSS.Share(crs, B, pkB, x).
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Thus, (J⟨x⟩AKAA, J⟨x⟩BKBA) constitutes the HSS share of x for the server holding ekA and
(J⟨x⟩AKAB, J⟨x⟩BKBB) is the HSS share for the server holding ekB. In particular, although
party-σ might learn ⟨x⟩σ, the security of MKHSS ensures the privacy of ⟨x⟩1−σ, thereby
preserving the privacy of x.

• To evaluate a program P on the shared inputs, the servers use MKHSS.Eval to evaluate
a program P ′ that first reconstructs the inputs and then evaluates P .

This gives a public-key HSS scheme for all programs P for which the corresponding program
P ′ can be evaluated using the MKHSS scheme. Specifically, for an MKHSS scheme supporting
polynomial-size RMS programs—which is the focus of this chapter—this implies a public-key
HSS scheme for polynomial-size RMS programs.

5.4.2 External security

We introduce an additional security notion for MKHSS, which will be important for our
applications. The notion strengthens the correctness property of MKHSS by requiring,
informally, that the output shares of any HSS evaluation are indistinguishable from uniformly
random subtractive shares of the output over the ring R.

Definition 5.4.2 (External Security of Multi-Key Homomorphic Secret Sharing). An MKHSS
scheme MKHSS = (Setup,KeyGen, Share,Eval) for a program class P, defined over a ring R,
is externally secure if for all λ ∈ N, all 2m-input programs P ∈ P, all xA,xB ∈ Mm, and
all efficient adversaries A, there exists a negligible function negl(·) such that

AdvexsecA,xA,xB
(λ) :=

∣∣∣Pr[ Eexsec
A,xA,xB ,A(λ) = 1

]
− Pr

[
Eexsec
A,xA,xB ,B(λ) = 1

]∣∣∣ ≤ negl(λ),

where the experiment Eexsec
A,xA,xB ,b(λ) is defined in Figure 5.3.

Getting external security, generically. We now show a simple transformation for
converting any MKHSS scheme MKHSS = (Setup,KeyGen, Share,Eval) into an MKHSS
scheme MKHSS∗ that satisfies external security. The idea is to use a non-interactive key
exchange (NIKE) to derive a common pseudorandom key, which we use to randomize the
output shares. Let NIKE = (Setup,KeyGen,KeyDer) be a NIKE scheme (cf. Definition 5.3.1)
and let G be a PRG (note that MKHSS implies the existence of NIKE, generically [BGI+18]).
We describe the transformation to external security in Figure 5.4; the main idea is to have
MKHSS∗.Eval derive a common pseudorandom string K, which is then used to randomize
the output with the help of the PRG.

Claim. The MKHSS scheme described in Figure 5.4 satisfies Definition 5.4.2 (external
security).

Proof (sketch). The proof of external security of MKHSS∗ is almost immediate and can be
shown with a simple hybrid argument. First, invoke the security of NIKE to replace K with a
fresh random string. Second, invoke the PRG security to replace G(K) with a fresh random
value R. Finally, invoke the correctness of MKHSS to conclude that ⟨z⟩RA +R, ⟨z⟩RB +R are
distributed as pseudorandom subtractive shares of P (xA,xB) over the ring R. ■
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Eexsec
A,xA,xB ,0(λ):

crs← Setup(1λ)
foreach σ ∈ {A,B}:
(pkσ, skσ)← KeyGen(crs)
(JxσK

σ
A, JxσK

σ
B)← Share(crs, σ, pkσ,xσ)

⟨z⟩Rσ := Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P )

b← A(pkA, pkB, JxAKAB, JxBKBA, ⟨z⟩RA , ⟨z⟩RB)
return b

Eexsec
A,xA,xB ,1(λ):

crs← Setup(1λ)
foreach σ ∈ {A,B}:
(pkσ, skσ)← KeyGen(crs)
(JxσK

σ
A, JxσK

σ
B)← Share(crs, σ, pkσ,xσ)

⟨z⟩RB
R← R

⟨z⟩RA := ⟨z⟩RB + P (xA,xB)
b← A(pkA, pkB, JxAKAB, JxBKBA, ⟨z⟩RA , ⟨z⟩RB)
return b

Figure 5.3: External security experiment for MKHSS.

5.4.3 Construction

In this section, we present the full MKHSS construction from DCR.

5.4.3.1 MKHSS construction

We present the full MKHSS construction in Figure 5.5. Each party samples a secret key
sσ

R← {i ·N + 1 | 1 ≤ i ≤ N − 1} such that sσ ≡ 1 mod N . The public key pkσ of each party
consists of the group element fσ := g−sσ and public NIM encoding of sσ. Alice and Bob
then synchronize their keys and respective input shares as described in the overview. In
particular, because the input shares are nearly identical to the input shares in the Paillier–
ElGamal constructions of (non-multi-key) HSS [OSY21,RS21], the correctness of evaluation
for branching programs is almost immediate. Moreover, security reduces to the semantic
security of the Damgård–Jurik encryption scheme and the NIM scheme, which can both be
based on the security of the DCR assumption in Z∗N2 .

Concrete performance estimates. We note that the construction in Figure 5.5 is
potentially implementable. Finding ways to further optimize it is an interesting direction for
future work. As an immediate optimization, we make the short exponent assumption and
sample the keys from a shorter space, allowing us to work in the group Z∗N4 instead of Z∗N6 .
Then, the main overhead of Figure 5.5 is exponentiation in Z∗N4 . Each RMS multiplication in
our construction requires four exponentiations: two exponentiation in Z∗N4 and two in Z∗N2 ,
which require roughly 60 milliseconds and 15 milliseconds on high-end hardware, respectively,
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External-Security Transformation for MKHSS

Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be any MKHSS scheme, let
NIKE = (Setup,KeyGen,KeyDer) be any NIKE scheme, and let G : {0, 1}λ → R be a
PRG.

MKHSS∗.Setup(1λ):
1 : crsmkhss ← MKHSS.Setup(1λ)

2 : crsnike ← NIKE.Setup(1λ)

3 : crs := (crsmkhss, crsnike)

4 : return crs

MKHSS∗.KeyGen(crs):
1 : parse crs = (crsmkhss, crsnike)

2 : (pknike, sknike)← NIKE.KeyGen(crsnike)

3 : (pkmkhss, skmkhss)← MKHSS.KeyGen(crsmkhss)

4 : pk∗ := (pknike, pk)

5 : sk∗ := (sknike, sk)

6 : return (pk∗, sk∗)

MKHSS∗.Share(crs, σ, pkσ, x):
1 : parse crs = (crsmkhss,_)

2 : (JxKσA, JxKσB)← Share(crsmkhss, σ, pkσ, x)

3 : return (JxKσA, JxKσB)

MKHSS∗.Eval(crs, σ, sk∗σ, pk
∗
1−σ, JxAKAσ , JxBKBσ , P ):

1 : parse crs = (crsmkhss, crsnike)

2 : parse pk∗1−σ = (pknike1−σ, pk
mkhss
1−σ )

3 : parse sk∗σ = (sknikeσ , skmkhss
σ )

4 : ⟨z⟩Rσ := Eval(crs, σ, skmkhss
σ , pkmkhss

1−σ , JxAKAσ , JxBKBσ , P )

5 : K := KeyDer(pknike1−σ, sk
nike
σ )

6 : return ⟨z⟩Rσ +G(K)

Figure 5.4: External-security transformation for MKHSS.
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when using a 3072-bit modulus N . Therefore, we can expect each multiplication to take
between 150 and 200 milliseconds. This results in roughly 5 multiplications per second. In
contrast, (non-multi-key) HSS can achieve upwards of 100 multiplications per second on
high-end hardware [BCG+17], making our construction an order of magnitude slower.

Theorem 5.4.1. Let λ is the security parameter and let N = N(λ) be the output of GGen
as defined in Figure 5.1. If the DCR assumption holds, then the construction described in
Figure 5.5 is an MKHSS scheme for the class of polynomial sized RMS programs with bound
B < 2−λ ·N and message space ZB.

Proof. We prove correctness and privacy in turn.

Correctness. Recall that the correctness property requires that parties obtain a subtractive
sharing of the program output upon evaluation.

We first prove that the encoding {{x}} derived by the parties in MKHSS.Eval is (1) the
same for both parties and (2) exponent-linear decodable.

Claim. For all integers x ∈ ZN and all σ ∈ {A,B}, we have

{{x}} = ExpLinEncS(skσ, pk1−σ, JxKσσ) = ExpLinEncR(sk1−σ, pkσ, JxKσ1−σ),

where (JxKσA, JxKσB)← MKHSS.Share(crs, σ, pkσ, x). Moreover, {{x}} is base-(N + 1) exponent-
linear decodable under the decoding key k = (sA · sB, 1).

Proof. We consider the case where σ = A; a symmetric argument follows for the other case.
Inspecting MKHSS.Share, we have JxKAA = ((x, r, r′), (ct, ct′)) and JxKAB = (ct, ct′), where

ct = ((N + 1)x · gr, f r
A) and ct′ = (gr

′
, (N + 1)x · f r′

A ).

Party-A computes {{x}} in ExpLinEncS as

{{x}} =
(
((N + 1)x · gr, (f r

B)
sA), (gr

′
, ((N + 1)x · f r′

B )sA)
)
∈ (Z∗N6)2 × (Z∗N2)2

=
(
((N + 1)x · gr, f r), (gr

′
, (N + 1)x·sA · f r′·sA

B )
)

=
(
((N + 1)x · gr, f r), (gr

′
, (N + 1)x · f r′)

)
,

where the third equality follows from the fact that sA ≡ 1 (mod N) and (N + 1) has order
N in Z∗N2 . Now, observe that party-B computes {{x}} in ExpLinEncR as

{{x}} =
(
((N + 1)x · gr, (f r

A)
sB), (gr

′
, ((N + 1)x · f r′

A )sB)
)
∈ (Z∗N6)2 × (Z∗N2)2

=
(
((N + 1)x · gr, f r), (gr

′
, (N + 1)x·sB · f r′·sB

A )
)

=
(
((N + 1)x · gr, f r), (gr

′
, (N + 1)x · f r′)

)
.

Therefore, both parties obtain the same encoding {{x}}.
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Construction of MKHSS from DCR

Public Parameters. Let Ssk := {i ·N + 1 | 1 ≤ i ≤ N − 1} be the secret key space and
let B be a bound on the message space. Let NIM = (Setup,Encode,Decode) be a NIM
scheme. We will use the algorithms ExpLinEncS and ExpLinEncR defined in Figure 5.6.

MKHSS.Setup(1λ, w):
1 : (N, g)← DJEG.Setup(1λ)

2 : crsnim ← NIM.Setup(1λ)

3 : kprf1 , kprf2
R← {0, 1}λ

4 : crs := (N, g, crsnim, k
prf
1 , kprf2 )

5 : return crs

MKHSS.Share(crs, σ, pkσ, x):
1 : parse crs = (N, g, crsnim)

2 : parse pkσ = (peσ, fσ)

3 : r, r′
R← ZN

4 : ct← DJEG.FlipEncrypt(fσ, x, 5; r)

5 : ct′ ← DJEG.Encrypt(fσ, x, 1; r
′)

6 : JxKσσ :=
(
(x, r, r′), (ct, ct′)

)
7 : JxKσ1−σ := (ct, ct′)

8 : return (JxKσA, JxKσB)

MKHSS.KeyGen(crs):
1 : parse (N, g, crsnim) from crs

2 : s
R← Ssk, f := g−s

3 : (pe, st)← NIM.Encode(crsnim, s)

4 : pk := (pe, f)

5 : sk := (st, s)

6 : return (pk, sk)

MKHSS.Eval(crs, σ, skσ, pk1−σ, JxAKAσ , JxBKBσ , P ):
1 : parse (crsnim, k

prf
1 , kprf2 ) from crs

2 : parse skσ = (stσ, sσ)

3 : parse pk1−σ = (pe1−σ, f1−σ)

4 : f := (f1−σ)
sσ ▷ Derive common key.

5 : ⟨z⟩σ := NIM.Decode(crsnim, pe1−σ, stσ)

6 : kσ := (⟨z⟩σ, 1) if σ = A else kσ := (⟨z⟩σ, 0)
7 : for i ∈ [m] :

8 : {{x(i)σ }} := ExpLinEncS(skσ, pk1−σ, Jx
(i)
σ K

σ

σ)

9 : {{x(i)1−σ}} := ExpLinEncR(skσ, pk1−σ, Jx
(i)
1−σK

1−σ
σ

)

10 : ekσ := (kprf1 , kprf2 ,kσ)

11 : {{x}} := ({{x(1)A }}, . . . , {{x
(m)
A }}, {{x

(1)
B }}, . . . , {{x

(m)
B }})

12 : return DEval(σ, ekσ, {{x}}, P )

Figure 5.5: Construction of MKHSS from DCR.

We are left to show that {{x}} = (c0, c1) is base-(N + 1) exponent-linear decodable under
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ExpLinEncS(skσ, pk1−σ, JxKσσ):
1 : parse JxKσσ =

(
(x, r, r′), (_,_)

)
2 : parse skσ := (_, sσ)

3 : parse pk1−σ = (_, f1−σ)

4 : (c0, c1) := DJEG.FlipEncrypt(f1−σ, x, w; r)

5 : (c′0, c
′
1) := DJEG.Encrypt(f1−σ, x, 2; r

′)

6 : {{x}} := ((c0, (c1)
sσ), (c′0, (c

′
1)

sσ))

7 : return {{x}}

ExpLinEncR(skσ, pk1−σ, JxK1−σσ ):
1 : parse JxK1−σσ =

(
(c0, c1), (c

′
0, c
′
1)
)

2 : parse skσ = (_, sσ)

3 : {{x}} := ((c0, (c1)
sσ), (c′0, (c

′
1)

sσ))

4 : return {{x}}

Figure 5.6: Exponent-linear encoding algorithms used as subroutines in the MKHSS construction.

k = (k1, k2) = (sA · sB, 1). Observe that

⟨c0,k⟩ = ((N + 1)x · gr)sA·sB · f r = (N + 1)x·sA·sB · gr·sA·sB · g−sA·sB ·r = (N + 1)x·sA·sB ∈ Z∗N6 ,

⟨c1,k⟩ = ((gr
′
)sA·sB · (N + 1)x · f r′ = gr·sA·sB · (N + 1)x · g−sA·sB ·r = (N + 1)x ∈ Z∗N2 ,

which proves that {{x}} is base-(N + 1) exponent-linear decodable. (Recall that we abuse
notation by denoting ⟨·, ·⟩ as computing the inner product “in the exponent” of the group.)
In particular, sA · sB ≤ ((N − 1) · N)2 < N4. Furthermore, because x ≤ N , we have that
x · sA · sB does not overflow modulo N5. □

Finally, to complete the proof of correctness, it suffices to note that by the correctness of
NIM, the parties obtain subtractive shares of sA · sB, and so kσ is a subtractive share of k as
defined above.

In sum, it follows that parties run DEval with encodings of the input that are base-(N +1)
exponent-linear decodable. Finally, since B < 2−λ · N and DDLog is a B-bounded (resp.
(B ·N4)-bounded) base-(N + 1) algorithm for distributed discrete logarithm with negligible
correctness error in Z∗N2 (resp. Z∗N6), it follows from Lemma 5.3.3 that the MKHSS scheme
satisfies the correctness property for all polynomial-size RMS programs P .

Security. Recall that the security property requires that the input share JxKσ1−σ of party-
(1− σ), ensures the privacy of an input x shared using party-σ’s public key pkσ.

Consider any efficient adversary A for the security experiment defined in Definition 5.4.1.
Let the output of the security experiment be defined as 1 if A’s output b′ is equal to
the challenge bit b; else let the output of the experiment be defined as 0. We will use a
hybrid argument to show that the output of the experiment is 1 with probability of at most
1/2 + negl(λ).

• Hybrid H0. This hybrid consists of the output of the experiment when run with
adversary A when the challenge bit is b = 0.

• Hybrid H1. This hybrid game is identical to the previous hybrid, except that the secret
key sσ is sampled uniformly at random from [N ] in MKHSS.KeyGen, which matches
the distribution of the secret key in the DJEG encryption scheme.
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Claim. H1 ≈s H0.

Proof. Note that in H0 the public key is computed as f = gN ·ig for some i ∈ [N − 1]
while in H1 it is computed as gi for i ∈ [N ]. Because g has order ϕ(N)/4, and for a
random i ∈ [N − 1], i (mod ϕ)(N)/4 is statistically close to i ·N mod ϕ(N)/4 (since
ϕ(N) is co-prime to N), it follows that gi and (gN)i are both statistically close to the
uniform distribution. To conclude the proof, it suffices to note that (gN)i · g is also
close to uniform. □

• Hybrid H2. In this hybrid game, pe is replaced with an encoding of zero. That is,
(peσ,_)← NIM.Encode(crsnim, 0).

Claim. H2 ≈c H1 assuming the security of NIM.

Proof. The claim follows immediately from the security of the NIM scheme. □

• Hybrid H3. In this hybrid game, we replace the DJEG encryptions with encryptions of
x1.

Claim. H3
s≈ H2 by the semantic security of the DJEG encryption scheme.

Proof. The claim follows by a straightforward hybrid argument replacing the two
encryptions of x0 with encryptions of x1 and invoking the semantic security of the
DJEG scheme. □

• Hybrid H4. In this hybrid game, we reverse the changes made in H2 and encode the
secret key s using the NIM scheme.

Claim. H4 ≈c H3 assuming the security of NIM.

Proof. The claim follows immediately from the security of the NIM scheme. □

• Hybrid H5. In this hybrid game, we reverse the changes made in H1 and sample the
secret key as in the construction.

Claim. H5 ≈c H4.

Proof. The proof follows the same argument used to prove that H1 ≈c H0. □

To complete the proof, observe that H5 is exactly the output of the experiment when the
challenge bit b = 1. Since we have shown that H0 ≈c H5, it follows that A wins the MKHSS
security game with probability of at most 1/2 + negl(λ). ■
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5.4.4 Sublinear, two-round secure computation

In this section, we discuss how our above MKHSS construction can be applied to achieve
a sublinear, two-round, two-party secure computation protocol. Sublinear here means that
the communication cost is bounded by a fixed polynomial in the total length of the inputs,
outputs and the security parameter, but is independent of the circuit evaluated. We refer
the reader to Goldreich [Gol06] for the standard security definitions of two-party secure
computation.

An MKHSS scheme with negligible correctness error immediately implies a sublinear
two-round secure computation protocol, as outlined in Section 5.1.1. Consequently, we obtain
the following corollary of Theorem 5.4.1.

Corollary 5.4.1 (Sublinear protocols for RMS programs). Under the DCR assumption,
there exists a sublinear two-round, two-party, secure computation protocol with semi-honest
security for evaluating polynomial-size RMS programs in the common reference string model.

5.5 Attribute-Based Non-Interactive Key Exchange

An intriguing application of MKHSS is the ability to perform policy-based key-exchange. In
particular, two parties, Alice and Bob, each have secret attributes xA and xB, respectively. For
a public predicate C, Alice and Bob obtain the same secret key if and only if C(xA, xB) = 0
(the predicate is satisfied), and independently distributed keys otherwise. In this process,
nothing about Bob’s secret attribute is leaked to Alice, as from her perspective she always
receives a random key, and vice versa.

Kolesnikov et al. [KKL+16] present an interactive solution for this problem using using
garbled circuits and supporting general predicates.6 Many related notions of attribute-based
key-exchange also exist, including witness-authenticated key exchange (see the overview of
Melissaris [Mel22]). We also note that attribute-based key exchange generalizes the widely-
used notion of password-authenticated key exchange, where the predicate essentially checks
that Alice and Bob hold the same secret attribute (or password).

To the best of our knowledge, we construct the first attribute-based non-interactive
key-exchange (ANIKE) protocol for NC1 predicates in the standard model. In particular, we
show that MKHSS for polynomial-size RMS programs implies ANIKE with predicates from
the same function class.

We present a universally composable (UC) corruptible ideal functionality for attribute-
based non-interactive key exchange, which we then instantiate using MKHSS. This is a more
desirable security guarantee for key exchange than a weaker property-based definition, since
it composes with other primitives (key exchange is often used as a building block in larger
protocols).

The ideal functionality is defined as follows. In the initialization phase (which happens
once), the functionality receives an attribute x from every party. The adversary is assumed
to statically corrupt an arbitrary subset of these parties. In the key exchange phase (which
is repeatable), and instantiated between a pair of parties Alice and Bob, the functionality

6They define attribute-based key exchange in a client-server model, which is equivalent to our notion.
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Attribute-Based Non-Interactive Key Exchange Protocol

crs← Setup(1λ)

Alice(crs, xA) Bob(crs, xB)
(peA, stA)← AttrKeyGen(crs, xA) (peB, stB)← AttrKeyGen(crs, xB)

peA peB

k ← AttrKeyDer(A, stA, peB, C) k ← AttrKeyDer(B, stB, peA, C)

Figure 5.7: The ANIKE protocol using the algorithms specified in Definition 5.5.1.

receives a request from Alice and Bob, which consists of a predicate, and outputs a fresh
key to each party. If repeated with the same predicate, the functionality outputs the same
keys deterministically. The pair of keys output by the functionality are defined as follows,
depending on whether the parties are honest or corrupted and whether the predicate is
satisfied.
First we consider the case where both parties are honest:

• If Alice and Bob’s attributes satisfy the predicate, the functionality samples a fresh key
k which it sends to both parties.

• If their attributes do not satisfy the predicate, the functionality independently samples
two keys kA and kB, then sends kA to Alice and kB to Bob.

Second, we consider the case where one of the parties is corrupted:

• If both parties’ attributes satisfy the predicate, the adversary gets to specify the key k,
which the functionality sends to both parties.

• If their attributes do not satisfy the predicate, the functionality samples a uniformly
random key to send to the uncorrupted party.

We refer to Functionality 1 for the full specification and define the algorithms, properties,
and key exchange protocol that we will instantiate in Definition 5.5.1.

Definition 5.5.1 (Attribute-Based Non-Interactive Key Exchange). An attribute-based
non-interactive key exchange (ANIKE) protocol with attribute space X consists of three
efficient algorithms (Setup,AttrKeyGen,AttrKeyDer), which are used to instantiate the two-
party protocol described in Figure 5.7, and which have the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string (CRS) crs.

• AttrKeyGen(crs, x)→ (stσ). The randomized attribute encoding algorithm takes as input
the CRS crs and an attribute x ∈ X . It outputs a public encoding pe and private state
st.
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• AttrKeyDer(σ, stσ, pe1−σ, C)→ k. The deterministic key derivation algorithm takes as
input the party identifier σ ∈ {A,B}, the CRS crs, the party’s secret state stσ, the other
party’s public encoding pe1−σ, and a circuit C describing the predicate. It outputs a key
k.

Security. We say that the ANIKE protocol is secure if it realizes the corruptible ideal
functionality described in Functionality 1 against a semi-honest adversary assuming an
authenticated channel.

Construction. Our construction is parameterized by an MKHSS scheme supporting
polynomial-size RMS programs. We assume, without loss of generality, that the MKHSS
message spaceM is a finite field F, such that |F| ≥ 2λ. Such a setup can always be achieved
by working in the field extension of F2.

Remark 28. For simplicity, in our construction, we let the algorithm AttrKeyGen be pa-
rameterized by a party identifier σ ∈ {A,B}. This allows us to construct AttrKeyGen
“asymmetrically” by having it be defined differently depending on whether Alice or Bob runs it.
This change is without loss of generality, since the party-agnostic version of AttrKeyGen can
be recovered by having the parties play both roles simultaneously and agree on their respective
roles in the key-derivation phase.

To encode her attribute xA, Alice maps it into the field F. She also samples a PRF key
K which will be used to generate pseudorandom shifts ∆A ∈ F in the key derivation phase.
Specifically, these shifts are used to ensure the derived keys are uniformly random when the
predicate C is unsatisfied.

Alice then samples MKHSS keys (pkA, skA) and computes shares (JKA∥xAKAA, JKA∥xAKAB)
of KA∥xA. Her public encoding consists of her MKHSS public key pkA and Bob’s share
JKA∥xAKAB, while her private encoding consists of her MKHSS secret key skA and her own
share JKA∥xAKAA. Bob encodes his attribute xB analogously.

Given her own private encoding and Bob’s public encoding, Alice now holds her MKHSS
secret key skA, Bob’s MKHSS public key pkB, and her shares JKA∥xAKAA and JKB∥xBKBA. She
homomorphically evaluates the program PC , where PC is defined as:

PC(KA||xA, KB||xB) = FKA
(Aid∥Bid∥C)︸ ︷︷ ︸

∆A

·FKB
(Aid∥Bid∥C)︸ ︷︷ ︸

∆B

·C(xA, xB).

That is, PC computes the predicate C(xA, xB) and then multiplies the result by ∆A ·∆B,
derived from the PRF. Bob symmetrically evaluates his shares for the same program PC

using his MKHSS secret key skB and Alice’s MKHSS public key pkA. Thus, if C(xA, xB) = 0,
Alice and Bob end up with subtractive shares of 0, i.e., the same key. On the other hand, if
C(xA, xB) ̸= 0, Alice and Bob end up with shares of ∆A ·∆B, i.e., independent pseudorandom
keys.

We refer to Figure 5.8 for a formal description of our construction.

Theorem 5.5.1. Assuming the existence of an MKHSS scheme MKHSS for polynomial-size
RMS programs and the existence of PRFs in NC1, the construction described in Figure 5.8 is an
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Functionality Fanike

Parties. The functionality is parameterized by a set of parties and an adversary A that
statically corrupts an arbitrary subset of the parties.

Procedure. The functionality aborts if it receives any incorrectly formatted messages.

• One-time initialization phase.

1: Receive a message (Init, idσ, x) containing an attribute x from every party with
identifier σ.

2: Initialize a lookup table of generated keys T .
3: Send ready to A.

• Repeatable key exchange phase between Alice and Bob.

1: Receive messages (KeyAgree, idB, C) from Alice and (KeyAgree, idA, C) from Bob,
where C is a circuit describing a predicate.

2: Receive a message from A, which is either empty, contains a key and an identifier
σ ∈ {idA, idB}, or contains two keys and both identifiers.

3: If (idA, idB, C) ∈ T :
3.1 Set (kA, kB) := T [(idA, idB, C)].

4: Else if A sent an empty message, i.e., the Alice and Bob are both honest:
4.1 If C(xA, xB) = 0: sample kA uniformly and set kB = kA.
4.2 Else if C(xA, xB) = 1: sample kA, kB uniformly and independently.

5: Else if A sent kσ, i.e., party-σ is corrupted and party σ ∈ {A,B} \ {σ} is honest:
5.1 If C(xA, xB) = 0: set kσ := kσ.
5.2 Else if C(xA, xB) = 1: sample kσ uniformly.

6: If A sent kA and kB, i.e., both parties are corrupted:
6.1 Do nothing.

7: Set T [(idA, idB, C)] = (kA, kB).
8: Output kA to Alice and kB to Bob.

Functionality 1: Corruptible ideal functionality for attribute-based non-interactive key exchange.

attribute-based non-interactive key exchange supporting predicates described by polynomial-size
RMS programs.

Proof. We show that Figure 5.8 securely realizes the functionality Fanike described in Func-
tionality 1 by constructing a simulator which simulates the view of the corrupted party and
interacts with Fanike on behalf of the ideal adversary.

• Initialization phase. For every corrupted party, the simulator obtains their attribute x
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Attribute-Based Non-Interactive Key Exchange from MKHSS

Public Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be an MKHSS scheme
with external security (cf. Definition 5.4.2) for polynomial-size RMS programs defined
over the finite field F, where |F| ≥ 2λ. Let F : {0, 1}λ × {0, 1}⋆ → F be a PRF. Let
FK : {0, 1}⋆ → F be a PRF with keys sampled from {0, 1}λ, such that Fk(x) is computable
by a polynomial-size RMS program over F.

The evaluated program. Define PC to be the program that, on input KA∥xA, KB∥xB

outputs FKA
(Aid∥Bid∥C) ·FKB

(Aid∥Bid∥C) ·C(xA, xB), where C is the attribute predicate.

NIKE.Setup(1λ):
1 : crs← MKHSS.Setup(λ)

2 : return crs

NIKE.AttrKeyGen(crs, σ, x):

1 : K
R← {0, 1}λ

2 : (pk, sk)← MKHSS.KeyGen(crs)

3 : (JK∥xKσA, JK∥xKσB)← MKHSS.Share(crs, σ, pk, (K∥x))
4 : pe := (pk, JK∥xKσ1−σ)
5 : st := (sk, JK∥xKσσ)
6 : return (pe, st)

NIKE.AttrKeyDer(σ, stσ, pe1−σ, C):
1 : parse pe1−σ = (pk1−σ, JK1−σ∥x1−σK1−σσ )

2 : parse stσ = (skσ, JKσ∥xσKσσ)

3 : k ← MKHSS.Eval(crs, σ, skσ, pk1−σ, JKA∥xAKAσ , JKB∥xBKBσ , PC)

4 : return k

Figure 5.8: Attribute-based non-interactive key exchange from MKHSS.

and sends it to Fanike on behalf of the ideal adversary.

We now emulate a key derivation phase between two parties, Alice and Bob.

• Case 1: Both parties are honest. By correctness of MKHSS, we have that

kA − kB = PC(∆A∥xA,∆B∥xB) = C(xA, xB) ·∆A ·∆B ∈ F.
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Thus, if C(xA, xB) = 0, we have that kA = kB, with all but negligible probability. More-
over, the tuple (kA, kB) is computationally indistinguishable from a uniformly random
tuple (kA, kB) ∈ F × F subject to kA = kB, by the external security Definition 5.4.2.
As such, when the predicate is satisfied, kA and kB matches the output of the ideal
functionality.

On the other hand, if C(xA, xB) ̸= 1, we have kA = kB + C(xA, xB) ·∆A ·∆B, where
∆A and ∆B are the secret pseudorandom shifts output by the PRF evaluated under
independent keys (by the correctness of MKHSS and the definition of the evaluated
program PC).

We proceed to show that (kA, kB) is computationally indistinguishable from a random
tuple via a simple hybrid argument:

– Hybrid H0. This hybrid consists of the tuple (kA, kB), as computed using
AttrKeyDer by each party in Figure 5.8.

– Hybrid H1. In this hybrid, we replace kB with a uniformly random key and set
kA = kB + C(xA, xB) ·∆A ·∆B. This hybrid is computationally indistinguishable
from the previous one by the external security of MKHSS.

– Hybrid H2. In this hybrid, we sample (kA, kB) as a uniformly random tuple over
F × F. This hybrid is computationally indistinguishable from the previous one
by the pseudorandomness of ∆A ·∆B (which are generated internally using the
PRF). To see this, it suffices to note that, in H1, we already have that kB is
computationally indistinguishable from a random field element conditioned on kA,
since we can view ∆A ·∆B as being a uniformly random element.

At this point, it suffices to note that H2 is distributed identically to the output of the
ideal functionality when the predicate is not satisfied. This concludes the proof for the
case where both parties are honest.

• Case 2: Alice is corrupted. The simulator computes (pkB, skB)← MKHSS.KeyGen(crs)
and (J0KAB, J0KBB) ← MKHSS.Share(crs, B, pkB,0), to define peB := (pkB, J0KBA), where
0 := 0λ+|x|. The simulated view of Alice consists of crs and peB. Eventually, the
simulator recovers xA and stA = (skA, JKA∥xAKAA). It computes

kA := MKHSS.Eval(crs, A, skA, pkB, JKA∥xAKAA, J0KBA),

and sends kA to the functionality on behalf of the ideal adversary. The functionality
outputs kA to Alice and kB to Bob. By the security of MKHSS and a straightforward
hybrid argument, the joint distribution of Bob’s message and the output of both parties
in the real world is indistinguishable from the simulation of Bob’s message and the
output of the ideal functionality.

• Case 3: Bob is corrupted. This case follows by symmetry.

■
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Corollary 5.5.1. Assuming the existence of PRFs in NC1, there exists an attribute-based
non-interactive key exchange scheme supporting predicates described by polynomial-size RMS
programs under the DCR assumption.

5.6 Public-Key PCFs from MKHSS and Applications

Practical secure computation protocols are realized in the preprocessing model [DPSZ12]:
During an “offline” preprocessing phase, the computing parties generate a large amount of
pseudorandom correlations that are independent of any function. Then, during an online
phase, the parties use the stored correlations to compute a function over their inputs in a
secure protocol. The advantage of this model is that it pushes the bulk of the communication
and computation costs of the function-dependent online phase to the preprocessing phase.
Pseudorandom correlation generators (PCGs) and functions (PCFs) push this model of secure
computation to the limit by allowing parties to locally expand a short key into a virtually
unbounded amount of correlated randomness. However, traditional approaches still require
the parties to run an interactive protocol to generate their key.

Public-key PCFs. A public key PCF (PK-PCF) is a PCF equipped with a non-interactive
key distribution protocol. Public-key PCFs were originally introduced in the work of Orlandi
et al. [OSY21] and formalized in the recent work of Bui et al. [BCM+24]. PK-PCFs are
motivated by their direct application to secure computation in the preprocessing model.

Let Y be a correlation such that a secure access to random samples from Y enables
efficient information-theoretic two-party computation (typically, Y can sample an oblivious
transfer correlation, Beaver triples, authenticated Beaver triples, or other types of correlated
randomness, depending on the application at hand). A PK-PCF for Y induces the following
appealing template for communication-efficient secure two-party computation:

Non-interactive preprocessing. Ahead of time, all participants Pi of a secure compu-
tation network upload their PK-PCF public key pki to some public bulletin board.

Fast, online secure computation. Whenever two parties Pi and Pj want to securely
compute a function, they can retrieve each other’s public keys, non-interactively derive
correlated PCF keys, and generate as many pseudorandom samples from Y as they need
to enable a fast online phase for a two-party protocol in the correlated randomness model
(e.g., GMW [GMW87] or SPDZ [DPSZ12]).

In this section, we construct PK-PCFs for all correlations in NC1. As another application
of our construction, in Section 5.6.3, we show a protocol for generating multi-party correlations
with quadratic improvement in communication relative to the prior constructions of PCFs.

5.6.1 Public-key pseudorandom correlation functions

In this section, we provide some background and a formal definition of PK-PCFs, following
the formalization of Bui et al. [BCM+24].

The standard PCF (and PK-PCF) definition requires the correlation to be “reverse
sampleable” which, roughly speaking, means that given any (possibly adversarially generated)
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share of the target correlation, the other (honest) share can be efficiently sampled. We
note that all additive correlations, which will be the target of our constructions, are reverse
sampleable.

Remark 29 (Notation). In this section, we will identify the two parties using indices 0 and
1, instead of letters A and B as we did in previous sections. This simplifies notation when
we define multi-party PCFs in Section 5.6.3.

Definition 5.6.1 (Reverse-Sampleable Correlation). Let λ be a security parameter and
n = n(λ) ∈ poly(λ) be an output length. Define two efficient algorithms Y and RSample with
the following syntax:

• Y(1λ) → (y0, y1). The randomized correlation sampling algorithm takes as input the
security parameter and outputs a pair (y0, y1) ∈ {0, 1}n × {0, 1}n defining a correlation.

• RSample(1λ, σ, yσ)→ y1−σ. The deterministic reverse-sampling algorithm takes as input
the security parameter, an index σ ∈ {0, 1}, and a string yσ ∈ {0, 1}n. It outputs a
string y1−σ ∈ {0, 1}n.

We say that Y defines a reverse-sampleable correlation if for all σ ∈ {0, 1}, it holds that: (y0, y1)

∣∣∣∣∣∣∣ (y0, y1)← Y(1λ)

 ≈s

 (y0, y1)

∣∣∣∣∣∣∣
(ŷ0, ŷ1)← Y(1λ)

yσ := ŷσ

y1−σ ← RSample(1λ, σ, yσ)

.

ExpprA,N,0(λ):

crs← pkPCF.Setup(1λ)
(pkσ, skσ)← pkPCF.KeyGen(crs, σ), ∀σ ∈ {0, 1}
foreach i ∈ [N ]:
xi

R← {0, 1}n

(y0i , y
1
i )← Y(1λ)

b← A(pk0, pk1, (xi, y
0
i , y

1
i )i∈[N ])

return b

ExpprA,N,1(λ):

crs← pkPCF.Setup(1λ)
(pkσ, skσ)← pkPCF.KeyGen(crs, σ), ∀σ ∈ {0, 1}
Kσ := pkPCF.KeyDer(crs, σ, pk1−σ, skσ), ∀σ ∈ {0, 1}
foreach i ∈ [N ]:
xi

R← {0, 1}n

yσi := pkPCF.Eval(crs, σ,Kσ, xi), ∀σ ∈ {0, 1}
b← A(pk0, pk1, (xi, y

0
i , y

1
i )i∈[N ])

return b

Figure 5.9: Pseudorandom Y-correlated outputs for a weak PK-PCF.

Definition 5.6.2 (Public-Key Pseudorandom Correlation Function [BCM+24]). Let λ be
a security parameter, Y be a reverse-sampleable correlation with output length n = n(λ) ∈
poly(λ), and λ ≤ m = m(λ) ∈ poly(λ) be an input length. A Public-Key Pseudoran-
dom Correlation Function (PK-PCF) for Y is defined by a tuple of algorithms pkPCF =
(Setup,Gen,KeyDer,Eval) with the following functionality:

• pkPCF.Setup(1λ) → crs. The randomized setup algorithm takes as input the security
parameter λ and outputs a common reference string (CRS) crs.
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ExpsecA,N,σ,0(λ):
crs← pkPCF.Setup(1λ)
(pkσ̂, skσ̂)← pkPCF.KeyGen(crs, σ̂), ∀σ̂ ∈ {0, 1}
K1−σ := pkPCF.KeyDer(crs, σ, pkσ, sk1−σ)

foreach i ∈ [N ]:
xi

R← {0, 1}n

y1−σ
i := pkPCF.Eval(crs, 1− σ,K1−σ, xi)

b← A(pk0, pk1, σ, skσ, (xi, y
1−σ
i )i∈[N ])

return b

ExpsecA,N,σ,1(λ) :

crs← pkPCF.Setup(1λ)
(pkσ̂, skσ̂)← pkPCF.KeyGen(crs, σ̂), ∀σ̂ ∈ {0, 1}
Kσ := pkPCF.KeyDer(crs, σ, pkσ, sk1−σ)

foreach i ∈ [N ]:
xi

R← {0, 1}n

yσi := pkPCF.Eval(crs, σ,Kσ, xi)

y1−σ
i ← RSample(1λ, σ, yσi )

b← A(pk0, pk1, σ, skσ, (xi, y
1−σ
i )i∈[N ])

return b

Figure 5.10: Security of game for a weak PK-PCF. Here, RSample is as defined in Definition 5.6.1.

• pkPCF.KeyGen(crs, σ)→ (pkσ, skσ). The randomized key generation algorithm takes as
input the CRS crs and a party identifier σ ∈ {0, 1}. It outputs a public and secret key
pair (pkσ, skσ) for the party.

• pkPCF.KeyDer(crs, σ, pk1−σ, skσ) → Kσ. The deterministic key derivation algorithm
takes as input the CRS crs, a party identifier σ ∈ {0, 1}, the public key pk1−σ of another
party, and the secret key skσ of this party. It outputs an evaluation key Kσ for this
party.

• pkPCF.Eval(crs, σ,Kσ, x)→ yσ. The deterministic evaluation algorithm takes as input
the CRS, the party identifier σ ∈ {0, 1}, an evaluation key Kσ, and an input x ∈ {0, 1}m.
It outputs a string yσ ∈ {0, 1}n.

We say pkPCF = (KeyGen,Eval) is a PK-PCF for the correlation Y, if the following two
properties hold:

Correctness / Pseudorandom Y-correlated outputs. For every σ ∈ {0, 1}, all efficient
adversaries A, and all N = N(λ) ∈ poly(λ), there exists a negligible function negl(·) such
that:

AdvprA,N(λ) :=
∣∣Pr[ExpprA,N,0(λ) = 1]− Pr[ExpprA,N,1(λ) = 1]

∣∣ ≤ negl(λ),

where ExpprA,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 5.9. In particular, the adversary is
given access to N samples.

Security. For all σ ∈ {0, 1}, and all efficient adversaries A, there exists a negligible function
negl(·) such that:

AdvsecA,N,σ(λ) :=
∣∣Pr[ExpsecA,N,σ,0(λ) = 1]− Pr[ExpsecA,N,σ,1(λ) = 1]

∣∣ ≤ negl(λ),

where ExpsecA,N,σ,b(λ), for b ∈ {0, 1}, is as defined in Figure 5.10 (again, with the adversary
given N samples).

Remark 30 (Weak vs. Strong PCFs). We remark that, contrary to pseudorandom functions,
the default notion of a PCF is a weak PCF, where the inputs are chosen uniformly at random.
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A PCF (as defined in Definition 5.6.2) can be generically converted to a strong PCF using a
random oracle.

5.6.2 Public-key PCFs from MKHSS

In this section, we provide a construction of a PK-PCF for any additive correlations computable
by RMS programs (which includes the class NC1). We start by defining additive correlations:

Definition 5.6.3 (Additive Correlation). Let λ be a security parameter, and let ny = ny(λ) ∈
poly(λ) be an input length and nz = nz(λ) ∈ poly(λ) be an output length. We say that Y (as
defined in Definition 5.6.1) is an additive correlation over a ring R defined by a function
family {Cλ : Rny ×Rny → Rnz}λ∈N if Y(1λ) outputs pairs of samples ((y0, z0), (y1, z1)), where
(yσ, zσ) ∈ Rny ×Rnz are uniformly random conditioned on z0 + z1 = Cλ(y0, y1) We will drop
the subscript λ when clear from context.

Remark 31. Additive correlations are naturally reverse-samplable. To see this, observe that
given (yσ, zσ), it is possible to efficiently sample y1−σ ← Rny , and set z1−σ := C(y0, y1)− zσ.

We present our PK-PCF construction in Figure 5.11.

5.6.2.1 Security analysis.

We now turn to the security analysis of the PK-PCF from Figure 5.11.

Theorem 5.6.1 (Security of PK-PCF). Assuming the existence of an externally-secure
MKHSS scheme MKHSS for polynomial-size RMS programs over a finite ring R and the
existence of PRFs in NC1, the construction described in Figure 5.11 is a PK-PCF for arbitrary
additive correlations that can be described by polynomial-size RMS programs over R.

Pseudorandomness. Consider the following sequence of hybrid games.

• Hybrid H0. This hybrid game consists of the pseudorandomness experiment Epkpr
A,N,0.

• Hybrid H1. In this hybrid game, the outputs (z0, z1) are computed by first sampling
z1

R← R, and then setting z0 := z1 + Px(k0, k1).

Claim. H1 ≈c H0 assuming the external security of MKHSS.

Proof. An efficient distinguisher immediately contradicts the external security property
of MKHSS (cf. Definition 5.4.1). □

• Hybrid H2. In this hybrid game, the challenger is given oracle access to Fkσ(·), for
all σ ∈ {0, 1}. Instead of computing Fkσ using kσ, the challenger obtains the PRF
evaluation by querying the respective oracles. Then, the challenger samples z1

R← R,
and set z0 := z1 + C(y0,y1).

Claim. H2 ≈s H1.
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Public-Key PCF from MKHSS

Public Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be an externally secure
MKHSS scheme for polynomial-size RMS programs defined over a ring R. Let nk =
nk(λ) and nx = nx(λ) be polynomials denoting the PRF key length and output length,
respectively. Let Fk : Rm → Rnx be a PRF with keys sampled from Rnk , such that
Fk(x) is computable by a polynomial-size RMS program over R. Let Y be an additive
correlation over a ring R defined by a correlation circuit C computable by polynomial-size
RMS programs.

The evaluated program. For all vectors x ∈ Rm, define the program Px : Rnk×Rnk →
R to be the polynomial-size RMS program that, on input k0, k1 ∈ Rnk , computes
yσ := Fkσ(x) ∈ Rnx , for all σ ∈ {0, 1}, and outputs C(y0,y1).

pkPCF.Setup(1λ):
1 : crs← MKHSS.Setup(λ)

2 : return crs

pkPCF.KeyDer(crs, σ, skpcfσ , pkpcf1−σ):
1 : return kσ := (skpcfσ , pkpcf1−σ)

pkPCF.KeyGen(crs, σ):
1 : k ← Rnk

2 : (pk, sk)← MKHSS.KeyGen(crs)

3 : (JkKσ0 , JkKσ1 )← MKHSS.Share(crs, σ, pk, k)

4 : pkpcfσ := (pk, JkKσ1−σ)

5 : skpcfσ := (sk, JkKσσ, k)

6 : return (pkpcfσ , skpcfσ )

pkPCF.Eval(crs, σ, kσ,x):
1 : parse kσ := ((skσ, JkσKσσ, kσ), (pk1−σ, Jk1−σK1−σσ ))

2 : yσ := Fkσ(x)

3 : zσ := MKHSS.Eval(crs, σ, skσ, pk1−σ, JkσKσσ, Jk1−σK1−σσ , Px)

4 : return (yσ, zσ)

Figure 5.11: Public-key PCF for NC1 from MKHSS.
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Proof. By definition of Px in Figure 5.11, the output distribution is identical to that of
H1. □

• Hybrid H3. This hybrid game proceeds as H2, except that the key k in pkPCF.KeyGen is
replaced by 0. That is, pkPCF.KeyGen computes (JkKσ0 , JkKσ1 )← MKHSS.Share(crs, σ, pk, 0).

Claim. H3 ≈c H2 assuming the security of MKHSS.

Proof. The claim follows immediately by the security of MKHSS. □

• Hybrid H4. This hybrid game proceeds as H3, except that the PRF oracles Fkσ , for
σ ∈ {0, 1}, are replaced with random oracles Hσ. Hence, yσ is computed as yσ := Hσ(x),
for all σ ∈ {0, 1}.

Claim. H4 ≈c H3 assuming the security of the PRF.

Proof. The claim follows from the standard PRF security property (note that we can
apply the PRF security since the shares (JkσK

σ
0 , JkσK

σ
1 ) do not depend on the PRF key

kσ anymore). □

• Hybrid H5. In this hybrid game, the challenger samples yσ
R← Rny , for all σ ∈ {0, 1}.

Claim. H5 ≈s H3.

Proof. Observe that the probability of any two inputs x to the random oracle Hσ

colliding is negligible, hence H5 is statistically indistinguishable from H4. □

At this point, it suffices to note that H5 is equivalent to the experiment Epkpr
A,N,1, concluding

the proof.

Security. We now turn to proving the security of our PK-PCF. We proceed as above via a
sequence of hybrid games.

• Hybrid H0. This hybrid game consists of the security experiment Epksec
A,N,0.

• Hybrid H1. In this hybrid game, the challenger computes z1−σ by first computing

zσ ← MKHSS.Eval(crs, σ, skσ, pk1−σ, JkσK
σ
σ, Jk1−σK

1−σ
σ , Cx)

and then setting z1−σ := zσ + (−1)1−σCx(y0,y1).

Claim. H1 ≈c H0 assuming the correctness of MKHSS.

Proof. The claim follows directly from the correctness property of MKHSS. □
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Hybrid H2. This hybrid game is identical to H1 except that pkPCF.KeyGen outputs:

(Jk1−σK
1−σ
0 , Jk1−σK

1−σ
1 )← MKHSS.Share(crs, 1− σ, pk, 0).

Claim. H2 ≈c H1 assuming the security of MKHSS.

Proof. The claim follows directly from the security property of MKHSS. □

• Hybrid H3. In this hybrid game, the challenges is given oracle access to Fk1−σ . The
challenger uses this oracle access to compute y1−σ := Fk1−σ(x) ∈ Rnx .

Claim. H3 ≈s H2.

Proof. By definition of Px, the output distribution is identical to that of H2. □

• Hybrid H4. This hybrid game is identical to H3 except that the oracle for Fk1−σ is now
replaced with a random oracle H. Hence, y1−σ is computed as y1−σ := H(x).

Claim. H4 ≈c H3 assuming the security of the PRF.

Proof. The claim follows from the security of the PRF. In particular, note that we can
apply the PRF security since the shares (Jk1−σK

1−σ
0 , Jk1−σK

1−σ
1 ) do not depend on k1−σ

anymore. □

• Hybrid H5. In this hybrid game, the challenger samples y1−σ
R← Rny .

Claim. H5 ≈s H4.

Proof. Observe that the probability of any two inputs x to H colliding is negligible,
hence this hybrid is statistically indistinguishable from H4. □

At this point, it suffices to note that Epksec
A,N,1 uses the natural reverse-sampling algorithm for

additive correlations. This concludes the proof.

Remark 32 (On strong PK-PCFs). We note that because we use a standard PRF in our
construction, our PK-PCF can be shown to be a strong PCF. Alternatively, we can substitute
the PRF for a weak PRF and follow the same proof.

5.6.3 Multi-party computation with silent preprocessing

Building upon the PK-PCF introduced in Section 5.6.2, we introduce a multi-party PK-
PCF for generating Beaver triple correlations, and discuss the direct implications to secure
computation. We note that we can only support degree-2 correlations (e.g., Beaver triples) in
the multi-party setting when using two-party PCFs as a building block. The same limitation
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applies to prior constructions of multi-party correlation generators from two-party building
blocks [BCG+19b].

Defining multi-party PK-PCFs. We start by introducing the notion of multi-party PK-
PCF (Definition 5.6.4). Our definition generalizes the notion of PK-PCF to more than two
parties in a natural way. Note that for simplicity, we “absorb” the key derivation procedure
into MKHSS.Eval. That is, in our formal definition, MKHSS.Eval directly takes as input the
secret key ski of a party and the public keys (pkj)j ̸=i of the other parties. This is without
loss of generality, as we can always define KeyDer to output ki := (ski, (pkj)j ̸=i). Indeed, we
note that this is exactly what our MKHSS-based PK-PCF construction in Figure 5.11 does.

Definition 5.6.4 (Multi-Party Public-Key Pseudorandom Correlation Function). A multi-
party PK-PCF for a p-party correlation Y is defined by a tuple of algorithms mpkPCF = (Setup,
KeyGen,Eval), with the following template:

• mpkPCF.Setup(1λ)→ crs. The randomized setup algorithm takes as input the security
parameter and outputs a common reference string (CRS) crs.

• mpkPCF.KeyGen(crs, i) → (pki, ski). The randomized key generation algorithm takes
as input the CRS and an index i ∈ [p], outputs a pair (pki, ski) of public and private
mpkPCF keys.

• mpkPCF.Eval(crs, i, ski, (pkj)j ̸=i, x)→ yi. The deterministic evaluation algorithm takes
as input an index i, the secret key ski, the public keys (pkj)j ̸=i, and an input x ∈ {0, 1}n.
It outputs a string yi.

A multi-party PK-PCF must satisfy the following pseudorandomness and security properties:

Correctness / Pseudorandom Y-correlated Outputs. For all efficient adversaries A,
and all N = N(λ) ∈ poly(λ), there exists a negligible function negl such that for all sufficiently
large λ,

Advmpkpr
A,N (λ) :=

∣∣∣Pr[Empkpr
A,N,0(λ) = 1]− Pr[Empkpr

A,N,1(λ) = 1]
∣∣∣ ≤ negl(λ),

where Empkpr
A,N,b(λ), for b ∈ {0, 1}, is as defined in Figure 5.12.

Security. There exists an efficient algorithm RSample : (1λ, i∗, (yi)i ̸=i∗) 7→ yi∗ such that for
every efficient adversary A, N = N(λ) ∈ poly(λ), and every i∗ ∈ [p], there exists a negligible
function negl such that for all sufficiently large λ,

Advmpkpr
A,N (λ, i∗) :=

∣∣∣Pr[Empkpr
A,N,0(λ, i

∗) = 1]− Pr[Empksec
A,N,1 (λ, i

∗) = 1]
∣∣∣ ≤ negl(λ),

where Empksec
A,N,b (λ, i

∗), for b ∈ {0, 1}, is as defined in Figure 5.13.

Construction. We construct a multi-party PK-PCF for the p-party Beaver triple correlation
over a ring R. Let B denote the p-party correlation that, on input λ, samples p uniformly
random triples (ai, bi, ci)

R← R3 conditioned on (
∑

i ai) · (
∑

i bi) =
∑

i ci. We represent our
construction on Figure 5.14.

At a high level, the construction of Figure 5.14 is a direct extension of the PK-PCF
construction from Figure 5.11. In particular, the generalization from two parties to p parties
is fairly straightforward. In a little more detail, our multi-party PK-PCF is realized as follows:
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Empkpr
A,N,0(λ):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)
foreach j ∈ [N ]:

yi,j ← mpkPCF.Eval(crs, i, ski, (pkℓ)ℓ ̸=i, xj)

b← A((pk1, . . . , pkp), (x1, . . . , xN ), (yi,j)i≤p,j≤N )
return b

Empkpr
A,N,1(λ):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)

foreach j ∈ [N ]:
(y1,j , . . . , yp,j)← Y(1λ)

b← A((pk1, . . . , pkp), (x1, . . . , xN ), (yi,j)i≤p,j≤N )
return b

Figure 5.12: Pseudorandomness of a multi-party public-key PCF for a p-party correlation Y.

Empksec
A,N,0 (λ, i

∗):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)
foreach j ∈ [N ]:
yi,j ← mpkPCF.Eval(crs, i, ski, (pkℓ)ℓ ̸=i, xj)

b← A((pk1, . . . , pkp), ski∗ , (xj)j≤N , (yi,j)i̸=i∗,j≤N )
return b

Empksec
A,N,1 (λ, i

∗):

crs← mpkPCF.Setup(1λ)
(x1, . . . , xN )← ({0, 1}n)N
foreach i ∈ [p]:
(pki, ski)← mpkPCF.KeyGen(crs, i)
foreach j ∈ [N ]:
yi,j ← mpkPCF.Eval(crs, i, ski, (pkℓ)ℓ ̸=i, xj)

yi∗,j ← RSample(1λ, i∗, (yi,j)i ̸=i∗)

b← A((pk1, . . . , pkp), ski∗ , (xj)j≤N , (yi,j)i̸=i∗,j≤N )
return b

Figure 5.13: Security of a multi-party public-key PCF for a p-party correlation Y.

• Each party Pi generates an MKHSS keys pair (pkmkhss
i , skmkhss

i ), samples a PRF key ki,
and shares ki into (JkKσ0 , JkKσ1 ) using MKHSS.Share, for each σ ∈ {0, 1}. Then, Pi sets:
ski := (sk, JkK01, JkK11, k) and pki := (pk, JkK00, JkK10).

• On input x, each party Pi defines (ai, bi) := Fki(x).

• Finally, each pair of parties Pi, Pj, using their MKHSS shares of ki and kj, computes
additive shares of Fki(x) · Fkj(x). Each party Pi aggregates all the shares computed in
this way into ci.

By correctness of the MKHSS scheme, it holds that:

∑
i

ci =
∑
i,j

Fki(x) · Fkj(x) =

(∑
i

ai

)
·

(∑
i

bi

)
.

Theorem 5.6.2 (Security of multi-party PK-PCF). Assuming the existence of an externally-
secure MKHSS scheme MKHSS for polynomial-size RMS programs and a PRF in NC1, the
construction described in Figure 5.14 is a multi-party PK-PCF for Beaver triple correlations.

Proof (sketch). The proof is essentially identical to the proof of Theorem 5.6.1. ■

Application to secure computation. A multi-party PK-PCF for the p-party Beaver
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Multi-Party Public-key PCF from MKHSS

Public Parameters. Let MKHSS = (Setup,KeyGen, Share,Eval) be an MKHSS scheme
for polynomial-size RMS programs defined over a ring R. Let Fk : Rm → R2 be a PRF
with keys sampled from Rnk , such that Fk(x) is computable by a polynomial-size RMS
program over R.

The evaluated program. For all vectors x ∈ Rm, define Px : Rnk ×Rnk → R to be
the function that, on input k0, k1 ∈ Rnk , computes (aσ, bσ) := Fkσ(x), for all σ ∈ {0, 1},
and outputs a0b1 + a1b0.

mpkPCF.Setup(1λ):
1 : crs← MKHSS.Setup(λ)

2 : return crs

mpkPCF.KeyGen(crs, i):

1 : k
R← Rnk

2 : (pk, sk)← MKHSS.KeyGen(crs)

3 : foreach σ ∈ {0, 1} :
4 : (JkKσ0 , JkKσ1 )← MKHSS.Share(crs, σ, pk, k)

5 : pki := (pk, JkK00, JkK10)

6 : ski := (sk, JkK01, JkK11, k)
7 : return (pki, ski)

mpkPCF.Eval(crs, i, ski, (pkj)j ̸=i,x):
1 : (ai, bi) := Fki(x)

2 : parse ski = (sk, JkiK01, JkiK
1
1, ki)

3 : ci := ai · bi
4 : foreach j ∈ [p] \ {i} :
5 : parse pkj = (pk, JkjK00, JkjK

1
0)

6 : if j > i then σ := 0 else σ := 1

7 : ci := ci +MKHSS.Eval(crs, σ, ski, pkj , JkiK
σ
1 , JkjK

1−σ
0 , Px)

8 : return (ai, bi, ci)

Figure 5.14: Multi-party Public-key PCF.
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triple correlation immediately implies a p-party semi-honest secure computation protocol
for a general arithmetic circuit C over R in the silent preprocessing model (see Boyle et
al. [BCGI18,BCG+19a,BCG+19b,BCG+20a] for discussions on this model):

Preprocessing phase. Each party Pi runs (pki, ski) ← mpkPCF.KeyGen(i) and
broadcasts pki over a public channel.

Silent expansion. For each multiplication gate in C, each party Pi computes
(ai, bi, ci) := pkPCF.Eval(crs, i, ski, (pkj)j ̸=i,x), where x is a fresh common randomness.

Online phase. The parties run the information-theoretic GMW protocol, consuming
one Beaver triple for each multiplication gate computed in the preprocessing phase.

The fact that GMW can be securely instantiated using the correlated pseudorandomness
generated by a (multi-party, public key) PCF follows from the fact that the latter suffices to
instantiate a corruptible functionality for generating correlated randomness, and GMW is
provably secure given ideal access to a corruptible correlated randomness functionality. We
refer the reader to Boyle et al. [BCG+19b] for more detailed discussion about this approach.
Then, plugging in our construction of (statistically correct) MKHSS from DCR, we get the
following corollary:

Corollary 5.6.1. Assume the DCR assumption holds. For any polynomial number of
parties p, for any polynomial-size arithmetic circuit C with n inputs, s multiplication gates,
and m outputs over a ring R, there exists a p-party protocol securely computing C in the
preprocessing model against an adversary passively corrupting up to p− 1 parties with the
following communication:

• In the preprocessing phase, the parties communicate p · poly(λ) bits in a single round of
broadcast.

• In the online phase, the parties communicate p · (2s+m) elements of R.

Previously, the best-known multi-party protocols with silent preprocessing (under assump-
tions not known to imply spooky encryption) were constructed using either HSS (from DCR
or DDH over class groups [OSY21,RS21, ADOS22]), programmable 2-party PCGs (from
ring-LPN [BCG+20b], or quasi-abelian syndrome decoding [BCCD23]). All these approaches
incurred a quadratic communication overhead Ω̃(p2) · poly(λ) in the number of parties p, in
the preprocessing phase. Our construction is the first to achieve p · poly(λ) communication
overhead in the preprocessing phase, which is quasi-optimal.
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Part III

Expanding the Frontier
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Chapter 6

Simultaneous-Message and Succinct
Secure Computation

Summary

In this chapter, we put forth and instantiate a new primitive we call simultaneous-message
and succinct (SMS) secure computation. An SMS scheme enables a minimal communication
pattern for secure computation in the following scenario: Alice has a large private input X,
Bob has a small private input y, and Charlie wants to learn f(X, y) for a public function f .

Given a common reference string (CRS) setup phase, an SMS scheme for a function f is
instantiated with two parties holding inputs X and y, and has the following structure:

• The parties simultaneously exchange a single message.

• Communication is succinct, scaling sublinearly in the size of X and the output f(X, y).

• Without further interaction, the parties locally derive additive secret shares of f(X, y).

Indeed, Alice and Bob simultaneously send each other a message using the CRS and
their private inputs. Using the transcript and their private state, the parties locally derive
additive secret shares of f(X, y), which they can send to Charlie. As such, an SMS scheme
incurs a communication cost to Charlie that is only twice that of the function output length.
Importantly, the size of Alice’s message does not grow with the size of her input X, and both
Alice’s and Bob’s first-round messages grow sublinearly in the size of the output. Additionally,
Alice’s or Bob’s view provides no information about the other party’s input besides the output
of f(X, y), even if colluding with Charlie. We show that SMS schemes give:

(1) A direct construction of trapdoor hash functions (TDH) for the same class of functions
as the one supported by the SMS scheme.

(2) A simple and generic compiler for obtaining compact, rate-1 fully homomorphic encryp-
tion (FHE) from any non-compact FHE scheme.

(3) A simple and generic compiler for obtaining correlation-intractable (CI) hash functions
that are secure against all efficiently-searchable relations.

In turn, under the learning with errors (LWE) assumption, we obtain the first construction
of TDH for all functions and generic approaches for obtaining rate-1 FHE and CI hashing.
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6.1 Introduction

Consider the following scenario: Alice has a large private input X, Bob has a small private
input y, and Charlie wants to learn the output f(X, y) of some public function f evaluated
over the inputs of Alice and Bob. To achieve this with optimal communication cost, Bob
can simply send his input to Alice, who then computes the output f(X, y), and sends it to
Charlie. This simple, but clearly insecure, protocol achieves the following communication
complexity:

• The communication between Alice and Bob is only |y|, and in particular, independent
of the length of Alice’s input X and the output of the function f(X, y).

• The total communication to Charlie is simply the length of the function output (and,
in particular, independent of Alice and Bob’s input lengths).

Furthermore, this protocol requires only a single message from Bob to Alice, and then from
Alice to Charlie. In this chapter, we ask the following.

Can we design a secure computation protocol that preserves, to the extent possible, the
communication complexity and the communication pattern of the above insecure protocol?

Specifically, we will consider secure computation protocols [Yao86,GMW87] with security
against semi-honest adversaries who may corrupt either of the two input parties (Alice or
Bob) together with the output party (Charlie).

Simultaneous-Message and Succinct Secure Computation. To answer this question,
we investigate a minimal model of computation that we refer to as simultaneous-message and
succinct (SMS) secure computation. In an SMS scheme, following a setup phase that outputs
a common reference string (CRS),1 the interaction proceeds as follows:

• Encode: Alice and Bob encode their private inputs into public encoding peA and peB,
respectively, and exchange these encodings in a simultaneous round of communication.

• Decode: Given her private state and public encodings, Alice (resp., Bob) computes a
share zA (resp., zB) and sends it to Charlie, who can locally reconstruct the output.

Communication between parties in both encode and decode phases is simultaneous.
Moreover, for any big input X, small input y, and a function f , we require that the decoded
values zA and zB computed by Alice and Bob form an additive sharing of f(X, y), which
allows Charlie to reconstruct f(X, y) = zA ⊕ zB. Note that because additive shares are
information-theoretically the same size as the output, the communication cost of the decode
phase is only twice that of the insecure protocol. We further require the following succinctness
property for the encode phase: the size of the public encodings peA and peB is succinct with
respect to Alice’s input length |X| and the function output length.2 Finally, we require
standard simulation-based security against semi-honest adversaries.

In summary, compared to the “optimal” insecure protocol, SMS requires two additional
messages: one from Alice to Bob, and another message from Bob to Charlie. In the secure

1In our constructions, we only need a common random string.
2Note that by communication complexity lower bounds, we cannot expect to achieve communication

sublinear in the input lengths of both parties.
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setting, these additional messages are necessary to prevent input-resetting attacks [HLP11].
However, we show that Bob’s message can, in some cases, be as short as the security parameter
λ. In this sense, the communication model of SMS is minimal.

We investigate the feasibility of constructing SMS schemes and present positive results as
well as several applications. Before we proceed to describe our results, we first compare SMS
with some related notions in cryptography.

Comparison with succinct protocols. SMS can be viewed as extending the notion of
private simultaneous messages [FKN94] along two dimensions. First, SMS allows collusion
between an input party and the output party (and hence, requires an additional round of
communication). Second, SMS requires succinct communication in the input size and function
description.

The study of “circuit-succinct” secure communication has a rich history in cryptography.
Arguably, it was most popularized by fully homomorphic encryption [Gen09], which yields
secure communication with communication independent of the size of the circuit representation
of the function. If we relax the simultaneous-message requirement, and allow one party
to send its message after the other, we can also obtain “input-succinctness” in the size of
one of the party’s inputs by using FHE or its “dual” notion of laconic function evaluation
[CDG+17, QWW18]. However, neither of these two approaches yield SMS. For example,
using (circuit-private) FHE, one can attempt to design an SMS protocol as follows: (1)
Bob sends an encryption of his input y to Alice, (2) Alice homomorphically computes the
encryption of f(X, y) and sends it to Charlie, and (3) Bob sends his secret key to Charlie.
Clearly, this protocol is insecure against collusion with Alice, since Charlie gets the secret
key. Furthermore, the output phase does not admit additive reconstruction and requires
communicating more than just the function output.

SMS bears resemblance to the notion of homomorphic secret sharing (HSS) (e.g., [BGI16]),
most notably in the requirement of additive reconstruction and succinctness in the circuit
size. However, SMS and HSS are incomparable. For one, HSS (and the more powerful notion
of spooky encryption [DHRW16]) does not require succinctness in the input length. Moreover,
HSS and spooky encryption support an adaptive choice of functions: the function to be
computed can be determined after the input encoding phase. SMS, in contrast, does not
necessarily require this property (although, as we will discuss later, one of our constructions
achieves it).

Because of the input-succinctness requirement, SMS is closer to the recently-proposed
notion of succinct HSS [ARS24], which extends HSS to require succinctness with respect
to one of the inputs (in addition to succinctness with respect to the function description).
However, succinct HSS still requires a correlated randomness setup (thus, it cannot support
the minimal communication pattern of SMS) and current schemes are only suitable for very
restricted function classes.

Comparison with two-round secure computation. We note that SMS is stronger
than two-round secure computation [Yao86,BL18,GS18] because of the input and circuit
succinctness properties in addition to the additive reconstruction properties. Indeed, because
of the additive reconstruction requirement alone, SMS—even for a single AND computation—
implies non-interactive key exchange via the reduction of Boyle et al. [BGI+18], and therefore
is black-box separable from oblivious transfer [GKM+00].
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Applications. SMS implies the previously studied notion of trapdoor hashing (TDH)
Döttling et al. [DGI+19]. A trapdoor hash scheme is a protocol between two parties—a sender
and a receiver—in the common reference string (CRS) model. Given the CRS (referred to as
the hash key in the original work), the sender can compute a digest d of its input X, while
the receiver can encode a private function f into an evaluation key ek. Given these encoded
values, the sender and the receiver can compute an additive secret sharing of f(X, y). A TDH
scheme requires two properties: (1) sender succinctness, namely, the size of the digest d must
be sublinear in the sender’s input length, and (2) receiver privacy, namely, the evaluation key
must hide the function f .

It is easy to see that SMS implies TDH by assigning the role of the sender to Alice and
the role of the receiver to Bob. In fact, SMS is stronger than TDH since the function f is
“decoupled” from Bob’s input, and hence, we can require both Alice and Bob’s messages
to be of size sublinear in Alice’s input length. Döttling et al. [DGI+19] (and subsequent
works [BKM20,GHO20]) constructed TDH schemes for linear functions from a variety of
standard assumptions, and constructing TDH for larger function classes has remained open.
As we will discuss shortly, our positive results on SMS (combined with the above implication)
break this barrier by realizing the first TDH for all depth-d circuits from the learning with
errors assumption [Reg05]. By additionally assuming and the circular security of LWE, we
get the first TDH for all polynomial-size circuits.

We also demonstrate direct applications of SMS to other powerful primitives, including
rate-1 fully homomorphic encryption [BDGM19,GH19], correlation-intractable hash functions,
and output-succinct secure computation.

6.1.1 Our results

We initiate the study of SMS protocols and present several positive results and applications.

SMS from LWE. Our first result is an SMS scheme for all depth-bounded computations,
assuming the hardness of learning with errors (LWE). Specifically, for all depth-d circuits,
we construct an SMS scheme where the communication complexity of the encode phase
grows with d, but is otherwise sublinear in the input and output length of the function being
computed. This first result is captured in the following theorem:

Theorem 6.1.1 (Informal). Let F be the family of all functions that are computable by
depth-d circuits. Assuming the hardness of learning with errors (with a superpolynomial
modulus-to-noise ratio), there exists an SMS scheme for any function f ∈ F , where in
the encode phase, the size of Alice’s message is |f(X, y)|ϵ · poly(λ, d) and the size of Bob’s
message is (|y|+ |f(X, y)|ϵ) · poly(λ, d). Here, λ is the security parameter and ϵ = (2/3). By
additionally assuming the circular-security of LWE, we obtain an SMS scheme where the
message size is independent of the circuit size.

SMS from indistinguishability obfuscation. Our second result is an SMS scheme for
all polynomial-size batch computations, assuming the existence of sub-exponentially-secure
indistinguishability obfuscation [BGI+01,GGH+13,JLS21], sub-exponentially secure one-way
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functions and somewhere statistically-binding (SSB) hash functions [HW15].3 In the batch
setting, Alice holds as input a long vector X := (x1, . . . , xL) and Bob holds an input y;
and they wish to compute f(x1, y), . . . , f(xL, y) given a public function f in some function
family F . Here, we relax the succinctness requirement for the encoding phase: The total
communication must be at most polylogarithmically dependent on the batch size L, but can
grow with the size of the circuit description.

Theorem 6.1.2 (Informal). Let F be the family of all functions that are computable by
polynomial-size circuits. Assuming the existence of (1) sub-exponentially secure indistinguisha-
bility obfuscation, (2) sub-exponentially secure one-way functions, (3) somewhere statistically
binding hash functions (with perfect binding), and (4) the existence of injective one-way
functions, there exists an SMS scheme that supports batch computation of functions in F .
For any batch size L, the size of both Alice’ and Bob’s messages in the encode phase is
poly(λ, |f |, logL), where λ is the security parameter.

The above protocol supports adaptive choice of functions during the decode phase. That
is, the parties can compute their public encodings in the encode phase independently of the
function. Then, the public encodings can be reused for computing the decode phase for any
choice of batch functions.

We next discuss applications of the above results.

Application I: Trapdoor hashing beyond linear functions. Assuming the hardness
of LWE, we obtain a construction of trapdoor hash functions for all depth-d circuits. By
additionally assuming the circular-security of LWE, we obtain a construction of trapdoor
hash functions for all polynomial-size circuits. This significantly improves upon the state
of the art, where trapdoor hash functions were only known for linear functions. This result
follows immediately from Theorem 6.1.1 combined with the aforementioned direct implication
from SMS to trapdoor hashing, however, we provide a formal construction in Section 6.8 for
completeness.

Application II: Rate-1 fully homomorphic encryption, generically. In a rate-1
fully homomorphic encryption scheme, the message to ciphertext length ratio (i.e., rate) is
1−o(1). A rate-1 FHE scheme was first constructed under the LWE assumption by Brakerski,
Döttling, Garg, and Malavolta [BDGM19] and Gentry and Halevi [GH19]. At a high level,
their constructions intricately combine FHE schemes with rate-1 linearly homomorphic
encryption to compress ciphertexts.

We show that an SMS scheme can be used to transform any FHE scheme into a rate-1 FHE
scheme. Our construction is quite simple and generic. We briefly sketch the transformation
below and provide more details in Section 6.9.

Consider any FHE scheme with a poor rate and let the decryption algorithm of this FHE
scheme be described by a function f that takes as input a ciphertext ct and a secret key sk,
and outputs the message. To compress the ciphertexts of this scheme, we use an SMS scheme
that performs the computation of f . In more detail:

3We additionally require the existence of injective one-way functions and perfect binding for the SSB
hash.
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• New keys. Let (pk, sk) be a public key and secret key pair of the underlying FHE
scheme. The public key of the new FHE scheme consists of the tuple (pk, peB) where
peB is Bob’s public encoding output by the SMS scheme and computed using the secret
key sk as his private input. The new secret key is simply Bob’s private state stB output
by the SMS scheme.

• Ciphertext compression. Let ct be a homomorphically-evaluated ciphertext ct of the
underlying FHE scheme with poor rate. To compress this ciphertext, we first use ct as
the input to the SMS scheme to compute Alice’s public encoding peA in the encode
phase. Then, we use Bob’s public encoding peB (which is now part of the new public
key) to compute Alice’s decoded value zA. The compressed ciphertext is simply the
tuple (peA, zA).

• Decryption. To decrypt the ciphertext (peA, zA), we first use peA and Bob’s private
state stB (which is part of the new secret key) to compute Bob’s decoded value zB. The
plaintexts are recovered as zA ⊕ zB.

Arguing correctness and security. The correctness of the scheme follows by inspection.
Intuitively, we use SMS to decrypt the ciphertexts, which results in additive shares of the
messages. Because the public encodings are sublinear in the size of the ciphertext, the
rate asymptotically approaches 1. The security of the scheme follows from the security
of the underlying FHE scheme as well as security for Bob in the SMS scheme (we do not
require security for Alice here). The full transformation and proof of security are provided in
Section 6.9.

Application III: Correlation-intractable hash functions, generically. Correlation-
intractable (CI) hash functions [CGH98] are functions whose input-output pairs behave
in a similar way to a random function in that they do not satisfy any “bad” correlations.
Specifically, a hash function family Hhk is said to be correlation intractable for a relation
class R, if for any relation R ∈ R, no efficient adversary given the hash key hk can find an
input-output pair that satisfies R.

Recently, CI hashing has found numerous applications in cryptography, most notably in
achieving new constructions of non-interactive zero knowledge proofs (see, e.g., [CCH+19,PS19,
JJ21]) and succinct non-interactive arguments (see, e.g., [CHK+19,CJJ21,JKKZ21,CJJ22])
in the standard model. These applications are obtained by using CI hashing to securely
instantiate the Fiat–Shamir paradigm [FS87] for round-collapsing interactive proofs.

In Section 6.10, we show a simple and generic construction of CI hashing for efficiently-
searchable relations from SMS. Using Theorem 6.1.1, we obtain CI hashing for relations
searchable by depth-bounded circuits from LWE. Previously, CI hashing from LWE was
known using the work of Peikert and Shiehian [PS19]. However, our construction of CI hashing
from SMS is generic, and uses the observation of Brakerski, Koppula, and Mour [BKM20]
that CI hashing can be constructed from trapdoor hashing. See Section 6.10 for details on
our transformation.
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Assumption
Input

Succinctness
Output

Succinctness
Function

Class
[DHRW16] LWE / iO+DDH ✗ ✓ All Circuits
[OSY21] DCR / LWE ✗ ✗ Degree-2
[ARS24,BCM+24] DCR / QR / LWE ✓ ✓ Degree-2

Theorem 6.5.2 LWE ✓ ✓ Depth-d Circuits
Theorem 6.6.3 iO+SSB ✓ ✓ All Batch Circuits
Theorem 6.7.1 Circular LWE ✓ ✓ All Circuits

Table 6.1: Constructions of SMS.

6.1.2 Related work

In this section, we discuss some connections between SMS and other related notions in
cryptography.

Output-succinct secure computation. The work of Hubáček and Wichs [HW15]
investigated the feasibility of secure computation with total communication complexity
that is sublinear in the function output length. Using indistinguishability obfuscation
(iO) [BGI+01,GGH+13] and other standard assumptions, they constructed interactive proto-
cols with sublinear communication using a large common random string (or large random
tapes for the parties) of length proportional to the output length. In fact, they demonstrated
that the use of program obfuscation (with a large CRS) is necessary for this task. This
implication does not hold for SMS since the communication between the input parties and the
output party (Charlie) does grow with the output length. In particular, SMS only requires
the encodings (first round messages) to be succinct in the input and output size. Nonetheless,
in Section 6.7, we show that our iO-based construction of SMS can be extended to have
a succinct second round message from Bob to Charlie. This extension gives an alternative
construction of the secure computation protocols considered by Hubáček and Wichs.

Succinct homomorphic secret sharing. The recent work of Abram, Roy, and Scholl
[ARS24] constructs succinct homomorphic secret sharing (HSS). Similarly to the PSM model,
HSS allows a correlated setup to take place between between Alice and Bob. However, the
additional succinctness requirement considered in [ARS24], in conjunction with the collusion
guarantees of HSS, make the notion more closely related to SMS. In the construction of
succinct HSS, Alice with a large vector a and a short input x, and Bob with short input y,
can compute a function of the form ⟨a, f(x, y)⟩ with communication that is sublinear in |a|.
Concretely, their constructions result in

√
|a|+ |x|+ |y| communication and require three

rounds of interaction when including the correlated setup between the parties.
Indeed, the core primitive used to realize succinct HSS, that turns out to also be instru-

mental in realizing SMS (cf. Section 6.5.2), is the recently introduced notion of succinct
non-interactive VOLE (NIVOLE) [ARS24,BCM+24]. We show that succinct NIVOLE can
be cast as an SMS scheme for degree-2 functions, given that it does not require a correlated
setup between parties [BCM+24].

We give a comparison of our results with related notions in Table 6.1.
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6.1.3 Chapter organization

We begin with a technical overview of our constructions in Section 6.2. Section 6.3 introduces
the necessary preliminaries and notation. In Section 6.4, we formally define SMS and explore
its relationships with other primitives. Section 6.5 presents our LWE-based construction
for depth-d circuits, which we extend to all circuits in Section 6.7. We then detail our
iO-based construction for batch function evaluations in Section 6.6. Section 6.7 covers various
optimizations and extensions, including an extension to our iO-based construction of SMS
that compresses the second-round message to achieve output-succinct secure computation.
Finally, we demonstrate applications: a compiler to rate-1 FHE in Section 6.9 and a compiler
to correlation-intractable hashing in Section 6.10.

6.2 Technical Overview

In this section, we give an overview of our constructions of SMS schemes from LWE (Sec-
tion 6.2.1) and from indistinguishability obfuscation (Section 6.2.2).

6.2.1 Construction from LWE

The high-level idea is to start with the ABE scheme of Boneh et al. [BGG+14], which has two
useful algorithms EvalPK and EvalCT that can be used in a “black-box” way [GVW15,QWW18].
The CRS consists of α matrices A1, . . . ,Aα. Let C be a depth-d arithmetic circuit producing
m-bit outputs and let Ci be the circuit that outputs the i-th bit of C. The two algorithms
have the following syntax:

• EvalPK(crs, C)→ AC . Takes as input the CRS and a circuit description C producing
m bit outputs; it outputs a list AC := (ACi

)mi=1 of size m · poly(λ, d).
• EvalCT(crs, ct, C, x) → wC . Takes as input a ciphertext vector ct := (s⊤(Ai + xi ·
G) + e⊤i )i∈[α] encrypting each bit of the input x to the circuit C; it outputs wC :=
(s⊤(ACi

+ Ci(x) ·G) + ẽ⊤i )i∈[m], encrypting each bit of the output C(x).

Here, G is the standard gadget matrix (see Definition 6.5.1 for a formal definition).
Inspired by the ideas that underpin the predicate encryption scheme of Gorbunov,

Vaikuntanathan, and Wee [GVW15] and laconic function evaluation of Quach, Wee, and
Wichs [QWW18], our idea is to use EvalPK to commit Alice to her large input X by hard-
coding it into a large circuit C. More concretely, Alice defines C to be the circuit that only
takes as input an FHE-encrypted input of y and outputs the (encrypted) FHE evaluation of
f(X, y).4 Alice sends Bob AC—the output of EvalPK when evaluated on her large circuit C.
Bob, on the other hand, encrypts his input y under a suitable FHE scheme and sends it to
Alice. Surprisingly, we will show that with just a few tweaks, these values are sufficient to
construct an SMS scheme.

We now proceed to explain our initial attempt to realize SMS. While this first approach
does not work out-of-the-box, it gives us the right insights and framework to build off of.

4We need to assume that the FHE evaluation of a depth-d circuit can itself be represented by a depth-d′
circuit, for d, d′ ∈ poly(λ), which is the case for existing LWE-based FHE schemes.
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Setup. Let α denote the length (in bits) of an FHE ciphertext encrypting an ℓ-bit input.
For now, we define the common random string crs to simply consist of α random matrices
(A1, . . . ,Aα); later, we will add more matrices to crs, while still keeping it uniformly random.

Step 1: Generating the encodings. Alice computes EvalPK(crs, C) to obtain AC , where
C is as defined above. This AC implicitly commits Alice to X. Bob samples a secret vector
s such that the first coordinate of s is 1, and generates a secret key sk for a leveled fully
homomorphic encryption scheme (cf. Definition 6.3.2). He encrypts his input y under the
FHE scheme using sk to obtain the bits of the ciphertext ctFHE := (ct

(1)
FHE∥ . . . ∥ct

(α)
FHE) ∈ {0, 1}α.

Then, he generates
ct :=

(
s⊤(Ai + ct

(i)
FHE ·G) + e⊤i

)
i∈[α]

,

where each ei is sampled from a B-bounded error distribution. Note that Bob’s encoding is
independent of Alice’s input length L.

Step 2: Simultaneous communication. Alice sends AC to Bob, which is of size m ·
poly(λ, d), and Bob sends ct to Alice, which is of size ℓ · poly(λ, d). Here, d denotes the circuit
depth and is implicit in the LWE parameters.

Step 3: Local decoding. With the encodings from Step 1, Alice uses EvalCT to compute:

wC :=
(
s⊤(ACi

+ Ci(ctFHE) ·G) + ẽ⊤i
)
i∈[m]

=
(
s⊤(ACi

+ FHE.Enc(sk, f(X, y))[i] ·G) + ẽ⊤i
)
i∈[m]

.

Then, because we set s[1] = 1, the first coordinate of the i-th entry of wC is:

(s⊤ACi
)[1] + Ci(y) + ẽ⊤i [1] = (s⊤ACi

)[1] + FHE.Enc(sk, f(X, y))[i] + ẽ⊤i [1]. (6.1)

To see equality, it is helpful to note that the first column of the “gadget” matrix G (see
Definition 6.5.1) is the vector (1, 0, . . . , 0). Moreover, by using a suitable FHE scheme, we can
guarantee that FHE evaluation of a depth-d circuit can itself be evaluated by a bounded-depth
circuit C.

We can view Equation 6.1 as a “noisy” share zA of FHE.Enc(sk, f(X, y))[i], since Bob can
compute his corresponding “noisy” share as zB := (s⊤ACi

)[1] using his key s and the ACi
he

receives from Alice. With this, Alice and Bob now have “noisy shares” of the i-th bit of the
ciphertext FHE.Enc(sk, f(X, y)), since

zA − zB ≈ (s⊤ACi
)[1] + FHE.Enc(sk, f(X, y))[i]︸ ︷︷ ︸

Alice’s share from Equation 6.1

− (s⊤ACi
)[1]︸ ︷︷ ︸

Bob’s share

≈ FHE.Enc(sk, f(X, y))[i].

Unfortunately, it is easy to observe that this does not get us any closer to obtaining
an SMS scheme, since the two parties could just as easily have obtained a “trivial” secret
sharing of FHE.Enc(sk, f(X, y))[i] by having Alice compute the FHE evaluation directly (and
setting zA to the result) and Bob setting zB to zero. Jumping ahead, we will resolve this by
“non-interactively” decrypting the evaluated FHE ciphertext using extensions to the EvalPK
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and EvalCT algorithms. However, we first point out some additional problems we need to
resolve.

We briefly highlight the issues associated with the above attempt:

(1) It does not result in the parties having shares of f(X, y), rather they hold shares of the
encryption, which is trivial to achieve using just FHE.

(2) The parties have noisy shares, which does not correspond to the additive-reconstruction
we desire.

(4) It fails to provide privacy for Alice, since the algorithm EvalPK, as defined in [BGG+14],
makes no guarantees about the privacy of the circuit C given AC (recall that C contains
Alice’s input).

(3) While it does give input succinctness for Alice’s input, it does not have output succinct-
ness, since |AC | = m · poly(λ, d) grows linearly with the size of the output m.

We now explain how we resolve these obstacles in our construction.

Obliviously decrypting the FHE evaluation. The first problem to address is that Alice and
Bob obtain shares of the encryption of the result rather than a share of f(X, y). Therefore,
our first priority is letting Alice somehow “decrypt” the FHE ciphertext privately under Bob’s
secret key sk. Fortunately, this very problem was also faced in the predicate encryption
scheme of Gorbunov et al. [GVW15]. In particular, they show that (EvalPK,EvalCT) can be
“augmented” to compute circuits of the form IP ◦ C, where IP is the class of inner products.
Moreover, while the input to C needs to be public (known to Alice), the inner product can be
private (only known to Bob). Therefore, we can assume an FHE scheme with a near-linear
decryption property and let Bob input the FHE secret decryption key sk as the private “inner
product” input. With this modification, and by slightly abusing notation by using Ci to
denote IP ◦ C ′i (where C ′i is defined to output a vector in the ring Zq corresponding to the
FHE ciphertext encrypting the i-th bit of the circuit C), Alice and Bob obtain:

(s⊤ACi
)[1] +

(q/2)·fi(X,y)+noise

⟨FHE.Enc(sk, fi(X, y)), sk⟩︸ ︷︷ ︸
Alice’s share z

(i)
A

− (s⊤ACi
)[1]︸ ︷︷ ︸

Bob’s share z
(i)
B

≈ fi(X, y),

where fi computes the i-th bit of the function f . Note that this gives us a “noisy” secret
sharing of the correct result! Indeed, the output of the circuit C consists of m ·β ring elements,
corresponding to the bit-wise encryptions of f(X, y). Then, the inner product with the secret
key sk ∈ Zβ

q results in m noisy shares (over Zq) at the end, where the noise comes from the
near-linear decryption.

Rounding of noisy shares. To convert these noisy shares to additive shares we can apply the
“rounding lemma” [DHRW16,BKS19] to locally round-away the error:

Lemma 6.2.1 (Rounding of noisy secret shares [DHRW16,BKS19]). Let (p, q) be two integers
such that p divides q. Fix any z ∈ Zq and let (z0, z1) be any two random elements of Zq

subject to z0 + z1 = (q/p) · z + e mod q, where e is such that q/(p · |e|) ≥ λω(1). Then, with
probability at least 1− (|e|+ 1) · p/q ≥ 1− λ−ω(1), it holds that ⌊z0⌉p + ⌊z1⌉p = z mod p, and
the probability is over the random choice of (z0, z1) ∈ Zq × Zq.
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Using the rounding lemma, and setting the LWE parameters of the FHE scheme to have
a superpolynomial modulus-to-noise ratio, Alice and Bob locally derive shares z

(i)
A and z

(i)
B ,

for all i ∈ [m], such that z
(i)
A − z

(i)
B = fi(X, y), as desired. More concretely, we have:⌊

(s⊤ACi
)[1] + (q/2) · fi(X, y) + noise

⌉
2︸ ︷︷ ︸

Alice’s share z
(i)
A

−
⌊
(s⊤ACi

)[1]
⌉
2︸ ︷︷ ︸

Bob’s share z
(i)
B

= fi(X, y),

where noise corresponds to the sum of the FHE decryption and EvalCT errors. (In our actual
construction, we additionally add pseudorandom “shares of zero” to ensure the distribution is
near-uniform before applying the rounding lemma.)

Statistical hiding for Alice. The final problem we need to take care of is ensuring that AC leaks
no information about C (which contains Alice’s input X). Fortunately, a related problem
was faced by Quach et al. [QWW18] when constructing laconic function evaluation. They
show an efficient transformation that can be applied to EvalPK (and EvalCT) such that AC

statistically hides C, which also hides Alice’s input X in our construction.

Adding output succinctness. At this point we have a protocol that is input succinct: Bob’s
encoding is independent of f and only poly(λ, ℓ) bits in size (which is independent of Alice’s
input size L). However, the encoding still grows with the output length |f(X, y)|, since AC

has to be at least as large as the output length m. To get output succinctness, we observe that
we can cast Bob’s computation as a vector oblivious linear evaluation (VOLE) [ADI+17]: Alice
has input ACi

∈ Zn×k
q and Bob has input s ∈ Zn

q , and Bob needs to learn the linear evaluation
s⊤ACi

. It is therefore enough for Alice and Bob to compute shares of s⊤ACi
(in particular,

Bob never needs to have ACi
“in the clear”). To accomplish this, we “bootstrap” using using

SMS for VOLE. That is, using an SMS scheme for a “batched” variant of VOLE, Alice encodes
each matrix ACi

∈ Zn×k
q (Alice has m such matrices) and Bob encodes his secret s. Using

the public encodings, the two parties then locally (without further communication) obtain
additive shares of s⊤ACi

as output, for all i ∈ [m]. Moreover, using existing constructions of
succinct, non-interactive VOLE [ARS24,BCM+24], which we show can be cast as an SMS
scheme, the total communication of this protocol is O(m2/3) ·poly(λ, d), giving us sublinearity
in the output size.

6.2.2 Construction from indistinguishability obfuscation

We now overview our construction of SMS from iO, where we realize SMS for polynomially-
sized batch functions. In this setting, Alice has a vector of inputs X = (x1, . . . , xL) and Bob
has an ℓ-bit input y. At a high level, our protocol is reminiscent of the insecure protocol
sketched in Section 6.1, where Bob simply sends his input y to Alice. However, to provide
privacy for Bob, we use iO to hide y inside an obfuscated program.

In more detail, the main idea is to have Bob send an obfuscated program for a universal
circuit, with his short input y hardcoded in it. The program evaluates the function f(xi, y)⊕Ri,
where f and xi are given as input and Ri is a pseudorandom mask that depends on f and xi.
To allow Bob to compute Ri on his end, which becomes his share of f(xi, y), Alice commits
to her inputs X in such a way that she can locally decommit to any input xi later on. Then,
R is computed as the output of a PRF on the commitment to the batch and the index i of
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the input xi in the batch X. This allows Bob to locally derive his share of f(xi, y) without
knowledge of Alice’s inputs.

Concretely, we use SSB hashing [HW15], the standard tool to use in conjunction with iO.
The general template of SSB+ iO [HW15,OPWW15] is to hardcode the hash key hk and
commitment cX (informally, we will refer to the hash as a “commitment”) into the obfuscated
program. Then, when Alice runs the program, she can provide a local opening to xi. Because
the commitment is statistically binding at some index i, it becomes easy to prove security via
a hybrid argument that switches out where the SSB hash is statistically vs. computationally
binding. At a high level, this makes two adjacent hybrid programs functionally equivalent,
which then enables invoking iO security to prove computational indistinguishability between
the hybrids.

Unfortunately, we cannot directly apply this template to realize SMS. The problem is that
Bob does not have Alice’s commitment (hash) when he generates the obfuscated program
at encoding time! At first, this problem appears insurmountable, because Alice (who gets
the program that includes Bob’s input y) can potentially extract y by running it with many
different inputs X ′ ̸= X and learn information from the output (i.e., perform a resetting
attack [HLP11]). Indeed, given that the program cannot check whether Alice correctly opens
the xi’s relative to the hash she sent to Bob, it may appear that this approach is doomed to
fail. This very problem underpins the impossibility result of Hubáček and Wichs [HW15].

We get around this, however, by leaning on the fact that the output to the parties are
pseudorandom. That is, we only need to guarantee the output of Alice is a valid secret share
of the output if she provides the correct commitment—even if Alice equivocates, she obtains
a pseudorandom string that leaks no information on y.

We now turn to explaining our construction.

Setup. The setup consists of generating the public SSB hash key hk. For some specific
instantiations of the construction, we can have hk be randomly distributed and hence only
need a common random string setup (see Section 6.6).

Step 1: Generating the encodings. Alice computes a commitment to her large (batch)
input X using an SSB hash function with the key hk. Alice’s public encoding simply consists
of the hash output that we denote as cX . Bob, on the other hand, generates an obfuscation
of a program P that has a PRF key K and his input y hardwired inside. This program takes
as input some commitment c′X (which may be different from cX), a batch element xi, an
index i, an opening πi (generated with respect to c′X), and the description of a function f .
The program first checks that SSB.Verify(hk, c′X , xi, i, πi) = 1 (i.e., the opening is accepting)
and then outputs U(f, xi, y)⊕Ri, where U is the universal circuit and Ri is a pseudorandom
mask computed as FK(c

′
X∥f∥i). We emphasize that c′X that is fed as input to the program

need not match with cX that Alice sent to Bob as her public encoding. Moreover, we stress
that the PRF evaluation FK(c

′
X∥f∥i) used to compute the output mask does not include the

input xi nor opening πi, which are provided as input to the program. Jumping ahead, this
will be necessary so as to let Bob recompute the mask Ri “on his side” at decoding time,
without knowledge of (xi, πi).

Remark 33. We note that because the obfuscated program is generated for a universal circuit
U that takes the function f as input, neither Alice nor Bob need to know the function f (except
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its size) when generating their respective encodings. This makes our iO-based construction
satisfy a stronger, function-adaptive variant of SMS, which we define formally in Section 6.4.

Step 2: Simultaneous communication. Alice sends cX to Bob, which is of size poly(λ),
and Bob sends the obfuscated program P to Alice, which is of size ℓ · poly(λ, logL). In
particular, the program P sketched above grows logarithmically with the batch size due to
its dependence on the index i, for each input in the batch.

Step 3: Local decoding. For any function f (chosen adaptively at decoding time), Alice
evaluates the obfuscated program on input (c′X , xi, i, πi, f). Observe that if the verification
passes, the program outputs f(xi, y) ⊕ Ri. Bob, on his end, computes Ri := FK(cX∥fi∥i),
using his PRF key K. Observe that if cX = c′X , then Alice and Bob have shares of f(xi, y):

f(xi, y) = (f(xi, y)⊕Ri)︸ ︷︷ ︸
Alice’s share

⊕ Ri.︸ ︷︷ ︸
Bob’s share

They can repeat this process for all i ∈ [L], and also any f ∈ F , to obtain the shares of the
function computed over all of Alice’s L inputs xi ∈ X.

Ideas behind the proof of security. As mentioned above, the commitment sent by Alice
cannot be hardcoded into the program that is obfuscated by Bob. This makes the proof
security more involved, since we need to consider all possible commitments that Alice can
input into the program.

Let’s start with Alice’s security, which is the simpler case to analyze. Alice’s message
to Bob consists of an SSB hash of her private input. However, note that SSB hashing does
not guarantee hiding of the input, making it possible to learn something about Alice’s input
message from the resulting hash. Our solution to this problem is to have Alice individu-
ally commit to each input (in her batch of inputs) using a regular, perfectly-binding and
computationally-hiding commitment scheme, and then SSB hash the full set of commitments
rather than her “raw” inputs. This still ensures a one-to-one mapping from inputs to the
values hashed using the SSB hashing, and, in particular, preserves somewhere statistical
binding. We modify the program sent by Bob to take a local opening to the SSB hash and
also the opening to the underlying perfectly-binding commitment. With this modification,
Alice’s security reduces to the computational hiding of the commitment scheme.

Now we examine Bob’s security. Bob’s message to Alice consists of the obfuscated program
P that has his private input y hardwired inside it. This program outputs f(xi, y)⊕FK(c

′
X∥f∥i)

if Alice is able to produce valid openings to xi with respect to c′X . If we assume that the
obfuscation scheme satisfies VBB security [BGI+01], then the only thing that Alice can learn
is this output. Because the output is masked with a PRF evaluation, this should intuitively
provide no information about Bob’s input.5 However, as we detail below, care must be taken
as the obfuscation only satisfies indistinguishability-based security.

To argue Bob’s security, we change the obfuscated program P to a dummy program P sim

that just outputs FK(c
′
X∥f∥i). Once we make this change, we can rely on the security of iO

to remove the hardwired input y from the program. To switch the obfuscation from the real

5This requires a delicate argument as we must ensure that Alice can only provide valid openings to a
single xi for any i. This is argued using the somewhere binding property of the SSB hashing.
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program to this dummy program, we rely on the punctured programming approach of Sahai
and Waters [SW14]. Specifically, we consider a canonical ordering of the inputs (c′X∥f∥i) to
the PRF and replace the obfuscated program to output a dummy PRF evaluation rather
than the actual output, one input at a time, via a sequence of hybrids. But to make this
change at a specific input (c′X∥f∥i), and switch from one hybrid to the next, we need to
ensure that FK(c

′
X∥f∥i) is used to mask only one output in the program P . This means

that Alice should not be able to provide valid openings for two different xi’s with respect to
the same hash c′X . For this purpose, we rely on the somewhere binding property of the SSB
hashing and the binding property of the underlying commitment scheme. Specifically, c′X
statistically determines Alice’s input xi if the SSB hashing is made to be binding at position
i. Furthermore, the hiding property of SSB hashing allows us to switch the hashing key to
be binding at location i without the adversary noticing this change. This allows us to make
the security proof go through. Finally, because we have an exponential number of hybrids,
we need to complexity leverage and rely on the sub-exponential security of iO and the PRF
used to mask the outputs.

The full construction and proof are presented in Section 6.6.

6.3 Preliminaries

6.3.1 Notation

In this section, we cover the notation that we will use throughout the chapter.

Circuit and function classes. We define a class of circuits C to be a set of circuits, where each
circuit C ∈ C has associated depth and size parameters. Unless otherwise stated, we will
write C =

{
C : Zℓ

q → Zm
q

}
to mean the set of all depth-d arithmetic (or Boolean in the case

of q = 2) circuits of polynomial size that take ℓ inputs and produce m outputs in Zq. We
will occasionally write Ci to indicate the circuit that computes the i-th output of a circuit C.
Unless otherwise stated, we refer to a function family F as the set of functions represented
by circuits in C.

General notation. We let N denote the set of natural numbers. Unless otherwise stated, we
will use poly(·) to denote the set of all polynomials.

Sampling and assignment. We let x
R← S denote a uniformly random sample drawn from S.

We let x← A denote assignment from a possibly randomized algorithm A. We let x := y
denote initialization of x to the value of y.

Vectors and matrices. We denote a vector v using bold lowercase letters and a matrix A
using bold uppercase letters. The i-th coordinate of a vector v is denoted by v[i]. We will
occasionally write (vi)

n
i=1 to denote the vector (v1, . . . , vn). The i-th bit of a bit-string s is

denoted by si.

Rounding. We let ⌊x⌉ denote the rounding of a real number x to the nearest integer.
For integers q ≥ p ≥ 2, we define the modular rounding function ⌊·⌉p : Zq → Zp as
⌊v⌉p = ⌊(p/q) · v⌉.
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Efficiency. By an efficient algorithmA we mean thatA is modeled by a (possibly non-uniform)
Turing Machine that runs in probabilistic polynomial time.

Indistinguishability. We write D0 ≈c D1 to mean that two distributions D0 and D1 are
computationally indistinguishable to all efficient distinguishers D and D0 ≈s D1 to mean that
D0 and D1 are statistically indistinguishable distributions.

6.3.2 The learning with errors assumption

Here, we recall the learning with errors (LWE) assumption [Reg05].

Definition 6.3.1 (Learning With Errors). Let λ ∈ N be a security parameter and let χτ

denote a discrete Gaussian distribution over Zq with noise parameter τ . The learning with
errors (LWE) assumption LWEn,k,q,τ holds for the parameters n = n(λ), k = k(λ), q = q(λ),
τ = τ(λ) if (

A, s⊤A+ e⊤
)
≈c (A,u) ,

where A
R← Zn×k

q , s R← Zn
q , e

R← χk
τ , and u

R← Zk
q .

Fully homomorphic encryption. We recall here the definition of fully homomorphic
encryption (FHE) [Gen09].

Definition 6.3.2 (Fully Homomorphic Encryption). Let λ ∈ N be a security parameter and
M =M(λ) be a message space. A fully homomorphic encryption (FHE) scheme consists of
four algorithms FHE = (KeyGen,Enc,Eval,Dec) with the following syntax:

• KeyGen(1λ) → (pk, sk). The randomized key generation algorithm takes as input the
security parameter λ. It outputs a public key pk and a secret key sk.

• Enc(pk, x)→ ct. The randomized encryption algorithm takes as input the public key pk
and a message x ∈M. It outputs a ciphertext ct.

• Eval(pk, f, (ct1, . . . , ctℓ))→ ct′. The deterministic evaluation algorithm takes as input
the public key pk, an ℓ-argument, m-output function f , and a tuple of ℓ ciphertexts
(ct1, . . . , ctℓ) encrypting messages (x1, . . . , xℓ). It outputs a tuple of m evaluated cipher-
texts (ct′1, . . . , ct

′
m).

• Dec(sk, ct)→ x. The deterministic decryption algorithm takes as input the secret key
sk and a ciphertext ct. It outputs a message x.

When Dec takes as input a tuple of ciphertexts (ct1, . . . , ctm) it is understood to mean that
Dec is applied individually to each ciphertext in the tuple.
The above algorithms must satisfy the following properties:

Correctness. There exists a negligible function negl(·) such that for all sets of messages
x1, . . . , xℓ ∈ M and all ℓ-argument, m-output functions f that can be represented by a
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polynomial-size circuit, we have:

Pr

 Dec(sk, (ct′1, . . . , ct
′
m))

= f(x1, . . . , xℓ)
:

(pk, sk)← KeyGen(1λ)

cti ← Enc(pk, xi),∀i ∈ [ℓ]

(ct′1, . . . , ct
′
m)← Eval(pk, f, (ct1, . . . , ctℓ))

 ≥ 1− negl(λ),

where the probability is over the randomness of KeyGen and Enc.

Compactness. For all sets of messages x1, . . . , xℓ ∈ M and all ℓ-argument, m-output
functions f , it holds that:

|Eval(pk, f, ct1, . . . , ctℓ)| = poly(λ,m),

for some fixed polynomial poly(·). That is, the output length of Eval is independent of the
input length ℓ and function description f .

Security. For all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr

 b = b′ :

(pk, sk)← KeyGen(1λ)

(x0, x1, st)← A(pk)
b

R← {0, 1}
ct← Enc(pk, xb)

b′ ← A(st, ct)

 ≤
1

2
+ negl(λ)

Definition 6.3.3 (Secret-Key Fully Homomorphic Encryption). An FHE scheme FHE =
(KeyGen,Enc,Eval,Dec) is a secret-key FHE scheme if it satisfies the syntax, correctness, and
compactness properties of Definition 6.3.2 without the public key pk.

6.4 Defining SMS Secure Computation

In this section, we first present the formal definition of SMS, some natural extensions of it,
and discuss connections to other primitives.

Definition 6.4.1 (Simultaneous-Message and Succinct Secure Computation). Let λ be a
security parameter, L = L(λ) be the input length of Alice (who has the large input X), ℓ = ℓ(λ)
be the input length of Bob (who has the small input y), m = m(λ) be the output length, where
L, ℓ,m are all polynomial in λ, and let

F =
{
f : {0, 1}L × {0, 1}ℓ → {0, 1}m

}
be a family of functions. A simultaneous-message and succinct (SMS) secure computation
scheme for F consists of a tuple of five efficient algorithms,

SMS =
(
Setup, (EncodeA,DecodeA), (EncodeB,DecodeB)

)
,

with the following syntax:
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• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
and outputs a common reference string (CRS) crs.

• Encodeσ(crs, f, x)→ (peσ, stσ). The randomized encoding algorithm is parameterized by
a party identifier σ ∈ {A,B}. It takes as input the CRS crs, a description of a function
f ∈ F , and an input x. It outputs a public encoding peσ and secret state stσ.

• Decodeσ(crs, f, peσ, stσ)→ zσ. The deterministic decoding algorithm is parameterized
by a party identifier σ ∈ {A,B}. It takes as input the CRS crs, a description of a
function f ∈ F , the public encoding peσ belonging to party σ ̸= σ, and secret state stσ
belonging to party σ. It outputs an m-bit string zσ ∈ {0, 1}m.

The above functionality must satisfy correctness, and security, and succinctness:

Correctness. For all security parameters λ ∈ N, every pair of inputs (X, y) ∈ {0, 1}L×{0, 1}ℓ,
and all functions f ∈ F , an SMS scheme is said to be correct if there exists a negligible
function negl(·) such that:

Pr

 zA ⊕ zB = f(X, y) :

crs← Setup(1λ)

(peA, stA)← EncodeA(crs, f,X)

(peB, stB)← EncodeB(crs, f, y)

zA := DecodeA(crs, f, peB, stA)

zB := DecodeB(crs, f, peA, stB)

 ≥ 1− negl(λ).

Security. For all efficient adversaries A, for all σ ∈ {A,B}, there exists a negligible function
negl(·) such that:

Pr

 b = b′ :

crs← Setup(1λ)

(x0, x1, st)← A(crs)
b

R← {0, 1}
(peσ, stσ)← Encodeσ(crs, xb)

b′ ← A(st, peσ)

 ≤
1

2
+ negl(λ).

In words, the public encoding computationally hides the input of the party.

ϵ-Input Succinctness. An SMS scheme is said to be ϵ-input succinct, for some ϵ ∈ [0, 1),
if for all security parameters λ ∈ N, all σ ∈ {A,B}, every CRS crs, all inputs X, y ∈
{0, 1}L × {0, 1}ℓ, all output lengths m, and every peσ in the support of Encodeσ, it holds that

|peσ| ≤ poly(λ, ℓ,m) · Lϵ,

for some fixed polynomial poly. In words, the public encoding generated by each party is
sublinear in the size of the large input. If ϵ = 0, then we say the SMS scheme is fully input
succinct.

We now define an additional (optional) property of output succinctness for SMS schemes.
Similarly to the input succinctness property of Definition 6.4.1, output succinctness states
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that the encoding of each party must be sublinear in the function output length. In contrast
to input succinctness—which is an integral property of Definition 6.4.1—the notion of SMS
remains interesting even if the encodings are not succinct in the function output length.
Indeed, output succinctness can, in some cases, be meaningless (e.g., when computing
functions that output a single bit).

Definition 6.4.2 (ϵ-Output Succinctness). An SMS scheme is said to be ϵ-output succinct,
for some ϵ ∈ [0, 1), if for all security parameters λ ∈ N, all σ ∈ {A,B}, every CRS crs,
all inputs X, y ∈ {0, 1}L × {0, 1}ℓ, all output lengths m ∈ N, and all peσ in the support of
Encodeσ, it holds that

|peσ| ≤ poly(λ, L, ℓ) ·mϵ,

for some fixed polynomial poly(·). In words, the public encoding generated by both parties
is sublinear in the size of the output length. If ϵ = 0, then we say the SMS scheme is fully
output succinct.

Definition 6.4.3 (Succinctness). We say an SMS scheme is ϵ-succinct if it is both ϵ-input
and ϵ-output succinct. If ϵ = 0, we say it is fully succinct.

Definition 6.4.4 (Function Adaptive). We say an SMS scheme is function adaptive if
EncodeA and EncodeB take as input the function size |f | in place of the function f .

Definition 6.4.5 (Additive Reconstruction). We say an SMS scheme has additive (resp.
subtractive) reconstruction if the outputs of Decodeσ are defined over a finite Abelian group G
(resp. over the integers) and the correctness property requires zA+zB ∈ G (resp. zA−zB ∈ Z)
equals f(X, y).

Definition 6.4.6 (Batch-Succinct SMS). Let L, l, ℓ,m ∈ N be parameters of the SMS scheme.
Let F be a family of batch functions, such that for each f ∈ F , f takes a batch of inputs
X ∈ ({0, 1}l)L and an input y ∈ {0, 1}ℓ, and computes some function g(X[i], y) with m-bit
outputs, for each i ∈ [L]. An SMS scheme for the family F is said to be ϵ-batch-succinct if for
all security parameters λ ∈ N, all σ ∈ {A,B}, every CRS crs, all input batches X ∈ ({0, 1}l)L,
and all inputs y ∈ {0, 1}ℓ, it holds that

|peσ| ≤ poly(λ, ℓ, l,m) · Lϵ.

In words, the public encoding generated by each party grows sublinearly in the batch size.

Remarks on the definition of SMS. We provide some observations pertaining to Defini-
tions 6.4.1 and 6.4.2.

Remark 34 (Relation to a simulation-based definition). In Definition 6.4.1, we provide a
game-based definition where the adversary must distinguish between encodings of two different
adversarially-chosen messages. This definition is easier to work with and is conceptually sim-
pler. In Section 6.11, we prove that this game-based definition can be generically transformed
into a simulation-based definition modeled by an ideal functionality.
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Remark 35 (Common random string). We define the CRS as a common reference string
for generality. In particular, some NIVOLE protocols (e.g., [ARS24,BCM+24]) satisfying
Definition 6.4.1 have a structured common reference string. However, our constructions have
a common random string.

Remark 36 (On input succinctness). We note that input succinctness for both parties
simultaneously is information-theoretically impossible to achieve, as already observed by
Abram et al. [ARS24] in the context of succinct homomorphic secret sharing. In particular,
we cannot even have an insecure protocol satisfying input succinctness for both parties
simultaneously.

Remark 37 (On output succinctness). Unlike input succinctness, output succinctness is
only an interesting notion when satisfied for both parties. In particular, if only one of the
public encodings is output-succinct, then the exchange of encodings will not necessarily be
(i.e., if the information on the full output is present in one of the encodings).

Remark 38 (Post-composition with linear functions). Definition 6.4.1 can be used to
compute functions of the form: g ⊗ f(X, y), where the decoding algorithm additionally takes
the linear transformation g as input. Note that such post composition by linear functions
(e.g., see [BGI15]) is automatically implied by the additive reconstruction property of SMS.

Remark 39 (Public-key PCFs are not SMS). Interestingly, public-key pseudorandom correla-
tion functions (PCFs) [OSY21,BCM+24] (see also Chapters 3 and 5) can be viewed as fully
output-succinct instantiations of SMS but fail to achieve input succinctness! In particular, in
a public-key PCF, each party’s input is of size poly(λ) making the encoding linear in the input
size (PCF key). In contrast, the encoding size (a party’s public key, using PCF terminology)
is independent of the output length, making PCFs fully output-succinct.

6.4.1 Succinct, non-interactive VOLE as SMS

Here, we show how succinct Non-Interactive VOLE (NIVOLE) [ARS24,BCM+24] fits into
our SMS definition. In a succinct NIVOLE scheme, Alice with a length-L input vector a and
Bob with a scalar ∆ (here, Bob’s input length ℓ = 1) compute additive shares of the vector
∆ · a, in a semi-honest, simultaneous-message protocol. Moreover, the succinctness property
states that the communication of this single-round protocol is sublinear in L.

Definition 6.4.7 (Non-Interactive VOLE). We say that SMS instantiated with the func-
tion family F =

{
fp : ZL

p × Zp → ZL
p | fp : (a,∆) 7→ ∆ · a

}
p∈N, is an SMS scheme for non-

interactive VOLE, denoted NIVOLE. We drop the subscript p from fp when the ring Zp is
clear from context. We also omit the function fp from Encodeσ and Decodeσ when the ring
Zp is fixed.

Theorem 6.4.1 (Succinct NIVOLE from LWE [ARS24]). For any integer p, assuming the
hardness of LWE with a superpolynomial modulus-to-noise ratio, there exists an (2/3)-succinct
scheme for NIVOLE instantiated over Zp.
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Batch non-interactive VOLE. We remark that we can view NIVOLE itself as a batch
computation, since the same ∆ is applied to all entries of Alice’s large input a. We define
the following extension to NIVOLE which explicitly satisfies batch-SMS for NIVOLE.

Definition 6.4.8 (Batch NIVOLE). We define Batch NIVOLE for computing L matrix-vector
product using the same vector. Concretely,

BNIVOLE = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}),

where EncodeA takes as input a list of matrices (Ai)
L
i=1, where each Ai ∈ Zℓ×l

p , and EncodeB
takes as input a vector b ∈ Zℓ

p. Then, for all σ ∈ {A,B}, Decodeσ outputs an additive share
of (b⊤Ai)

L
i=1.

Lemma 6.4.1. If there exists a succinct NIVOLE scheme with ϵ-succinctness, then there
exists a batch NIVOLE scheme with ϵ-succinctness.

Proof sketch. The construction is very simple: It suffices to run ℓ instances of NIVOLE in
parallel, where Alice inputs the rows of the matrix H ∈ Z(ℓ×l)·L

p consisting of matrices (Ai)
L
i=1

concatenated together, and Bob inputs his vector b. By the succinctness of NIVOLE, multi-
plying each entry of b by the corresponding row vector of H requires (l · L)ϵ communication
(in particular, Alice’s public encoding is sublinear in L). Then, by the post-composition with
linear functions (cf. Remark 38), the columns of the resulting matrix can be summed together
to obtain b⊤H. Moreover, this protocol satisfies Definition 6.4.6, since Alice’s encoding is of
size poly(λ, ℓ) · (l · L)ϵ ≤ poly(λ, ℓ, l) · Lϵ. ■

Remark 40. We note, in passing, that in the case of succinct NIVOLE, input and output
succinctness are equivalent definitions, since the output length is identical to the input length
of the party with the large input vector.

6.5 Construction from LWE

In this section, we present our LWE-based construction of SMS achieving both input and
output succinctness.

6.5.1 Preliminaries

In this section, we present the necessary definitions and building blocks that we will use in
our LWE-based construction of SMS.

Auxiliary functions. Here, we recall the algorithms EvalPK and EvalCT introduced in
Boneh et al. [BGG+14] and the extensions of Gorbunov et al. [GVW15].

Definition 6.5.1 (Gadget Matrix [MP12]). Let q ≥ 2 be an integer. We call

g := (1, 2, . . . , 2⌈log q⌉−1) ∈ Z⌈log q⌉q

the gadget vector. We call G := g ⊗ In the gadget matrix.
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Definition 6.5.2 (Auxiliary Evaluation Algorithms [BGG+14,GVW15]). Let α, β be integer
parameters and let crs be a common random string (CRS). The auxiliary evaluation algorithms
are two efficient and deterministic procedures (EvalPK,EvalCT) with the following syntax:

• EvalPK(crs, C) → AIP◦C. Takes as input the CRS crs and a circuit C : {0, 1}α → Zβ
q ,

and outputs a matrix AIP◦C ∈ Zn×k
q .

• EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, C, x)→ wIP◦C . Takes as input the CRS crs, a list of
vectors (u1, . . . ,uα,v1, . . . ,vβ), the circuit C, and outputs a vector wIP◦C ∈ Zk

q .

Lemma 6.5.1 (Adapted from [GVW15]). Let λ ∈ N be a security parameter and B = B(λ) be
an integer bound. Under the LWEn,k,q,τ assumption with k := n⌈log q⌉, there exist algorithms
(EvalPK,EvalCT) satisfying Definition 6.5.2 for all integers α = α(λ), β = β(λ) that are
polynomial in the security parameter, such that for all common random strings of the form:
crs := (A1, . . . ,Aα,B1, . . . ,Bβ) ∈ (Zn×k

q )α+β, for all α+β vectors u1, . . . ,uα,v1, . . . ,vβ ∈ Zk
q ,

all s ∈ Zn
q , all (x,y) ∈ {0, 1}α × Zβ

q , and all arithmetic circuits C : {0, 1}α → Zβ
q of depth d,

if it holds that:

∀i ∈ [α], ui = s⊤(Ai + xi ·G) + e⊤i and ||ei||∞ ≤ B,

∀i ∈ [β], vi = s⊤(Bi + y[i] ·G) + e⊤i and ||ei||∞ ≤ B,

then it also holds that wIP◦C := EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, C, x) is of the form:

wIP◦C = s⊤(AIP◦C + ⟨C(x),y⟩ ·G) + e⊤ with ||e||∞ ≤ (k + 1)d ·B,

where AIP◦C := EvalPK(crs, C) and G is the gadget matrix from Definition 6.5.1.

Remark 41 (Public and private inputs). We stress that EvalCT does not take y as input.
As such, we can view EvalCT as taking a “public” input x and “private” input y (encoded in
the vectors v1, . . . ,vβ), and using these to evaluate functions of the form ⟨C(x),y⟩. Inspired
by Gorbunov et al. [GVW15]’s approach for building predicate encryption, we will use this
fact to let y be a secret decryption key that will allow Alice to obliviously decrypt an FHE
ciphertext output by C.

Function-hiding. We now formalize the transformation used implicitly in the work of Quach
et al. [QWW18] to make AC (as output by EvalPK) statistically hiding.

Lemma 6.5.2 (Function-hiding Public Keys). Let γ be an integer. There exist efficient
wrapper algorithms ẼvalPK and ẼvalCT defined as in Figure 6.1 such that:

(1) ẼvalPK and ẼvalCT satisfy the properties defined in Lemma 6.5.1,

(2) if it holds that ∀i ∈ [γ], ti = s⊤(Ci + e⊤i ), where ||ei||∞ ≤ B, then it holds that the
error magnitude in wIP◦C (output by ẼvalCT) is at most an additive factor γB larger
compared to the bound in Lemma 6.5.1, and

(3) if γ ≥ 2nk⌈log q⌉ and q is prime (see Lemma 6.5.1 for parameter details), then AC is
statistically close to the uniform distribution over Zn×k

q .
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QWW18 Function-Hiding Transformation

ẼvalPK(crs, C,C1, . . . ,Cγ)

1 : r
R← {0, 1}γ

2 : A′C ← EvalPK(crs, C)

3 : AC := A′C +
∑γ

i=1 riCi

4 : return (AC , r)

ẼvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, C, x, t1, . . . , tγ, r)

1 : parse r = r1∥ · · · ∥rγ
2 : ct′ ← EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, C, x)

3 : wIP◦C := w′IP◦C +
∑γ

i=1 riti

4 : return wIP◦C

Figure 6.1: Function-hiding transformation of Quach et al. [QWW18].

The transformation from Figure 6.1 is implicit in Appendix A of Quach et al. [QWW18]; we
extract it here as a standalone wrapper for algorithms EvalPK and EvalCT.

Theorem 6.5.1 (FHE with Near-linear Decryption [BV11,BGV12,GSW13]). Under the
LWEn,k,q,τ assumption (cf. Definition 6.3.1), there exists a fully homomorphic encryption
scheme FHE = (KeyGen,Enc,Eval,Dec) for computing depth-d circuits, where the secret keys
are vectors in Zβ

q and where the evaluation algorithm FHE.Eval outputs a vector ct ∈ Zβ
q such

that, for the corresponding secret key s, it holds that (with probability 1):

⟨ct, s⟩ = ⌊q/p⌉ · FHE.Dec(s, ct) + e mod q

for some error e ∈ Zq and where |e| < (k + 1)d · poly(λ). Under the circular-security of the
LWEn,k,q,τ assumption, FHE can be used to compute all polynomial-size circuits of unbounded
depth such that |e| < (k + 1) · poly(λ). Moreover, for all circuits C of depth d, FHE.Eval(C, ·)
can itself be computed by a circuit of depth d · polylog(λ) and size |C| · poly(λ, d).

6.5.2 Construction

Our construction is presented in Figure 6.2 and closely follows the technical overview.

6.5.3 Setting the parameters

For the LWE-based construction, we make use of Lemma 6.5.1 to evaluate an FHE evaluation
on a ciphertext. In the construction, the circuit C computes FHE.Eval(f, ·) on some input
ciphertext ct, where f is a function that is represented by a depth-d circuit. Therefore, using
Theorem 6.5.1, the circuit C must have depth d′ ≥ d · polylog(λ) ∈ poly(λ, d).

We can set the LWE parameters n, k, q, τ , required for Lemma 6.5.1 and Theorem 6.5.2, as
follows. Let n = poly(λ) and let B be an integer bound on the noise distribution determined
by the parameter τ . We let k = n⌈log q⌉. Then, for correctness, we need q > 2poly(λ,d

′), for
some polynomial poly(·), subject to q > 4 · (k + 1)d

′ ·B · λω(1).
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SMS from LWE

Public Parameters. Let m be the function output length, n, k, q, χτ be LWE
parameters (cf. Definition 6.3.1) as required by Lemma 6.5.1 and Theorem 6.5.1,
FHE = (KeyGen,Enc,Eval,Dec) be a secret-key FHE scheme satisfying Definition 6.3.3,
F : {0, 1}λ×[m]→ Zq be a PRF, α be the length (in bits) of an FHE ciphertext encrypting
ℓ bits, β be the length (in elements of Zq) of the FHE secret key from Theorem 6.5.1, and
γ be as required in Lemma 6.5.2.

SMS.Setup(1λ)

1 : crsaux := (A1, . . . ,Aα,B1, . . . ,Bβ)
R← (Zn×k

q )α+β

2 : crsrnd := (C1, . . . ,Cγ)
R← (Zn×k

q )γ

3 : crsbvole ← BNIVOLE.Setup(1λ) ▷ See Theorem 6.4.1.

4 : K
R← {0, 1}λ ▷ PRF key for randomizing output shares.

5 : return crs := (crsaux, crsrnd, crsbvole,K)

• See Figure 6.3 for the description of the encoding algorithms SMS.Encodeσ.

• See Figure 6.4 for the description of the decoding algorithms SMS.Decodeσ.

Figure 6.2: Simultaneous-Message Succinct Secure Computation from LWE.
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SMS from LWE: Encoding Algorithms

SMS.EncodeA(crs, f,X)

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : Define an arithmetic circuit C(·) computing FHE.Eval(f, (X, ct)) on input
ct ∈ {0, 1}α, where X is hardcoded as an input in C.

3 : Let Ci be the circuit that computes the i-th output bit of C.

4 : foreach i ∈ [m] :

5 : (ACi , ri)← ẼvalPK(crsaux, Ci, crsrnd) ▷ See Lemma 6.5.2.

6 : (pebvoleA , stbvoleA )← BNIVOLE.EncodeA(crsbvole, (ACi)
m
i=1) ▷ See Definition 6.4.8.

7 : peA := pebvoleA , stA := (stbvoleA , r1, . . . , rm)

8 : return (peA, stA)

SMS.EncodeB(crs, f, y)

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : s
R← Zn

q subject to s[1] = 1

3 : sk← FHE.KeyGen(1λ)

4 : cty ← FHE.Enc(sk, y)

5 : parse cty = c1∥c2∥ · · · ∥cα ∈ {0, 1}α

6 : foreach i ∈ [α] :

7 : ei
R← χk

τ , ui := s⊤(Ai + ci ·G) + e⊤i ▷ Bit-wise encryptions of cty.

8 : parse sk = sk1∥sk2∥ · · · ∥skβ ∈ Zβ
q ▷ See Theorem 6.5.1.

9 : foreach i ∈ [β] :

10 : e′i
R← χk

τ , vi := s⊤(Bi + ski ·G) + e′⊤i

11 : foreach i ∈ [γ] :

12 : e′′i
R← χk

τ , ti := s⊤Ci + e′′⊤i

13 : (pebvoleB , stbvoleB )← BNIVOLE.EncodeB(crsbvole, s)

14 : peB := (cty,u1, . . . ,uα,v1, . . . ,vβ, t1, . . . , tγ , pe
bvole
B ), stB := stbvoleB

15 : return (peB, stB)

Figure 6.3: Encoding algorithms for SMS from LWE (Figure 6.2).
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SMS from LWE: Decoding Algorithms

SMS.DecodeA(crs, f, peB, stA)

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : parse peB = (cty,u1, . . . ,uα,v1, . . . ,vβ, t1, . . . , tγ , pe
bvole
B )

3 : parse stA = (stbvoleA , r1, . . . , rm)

4 : foreach i ∈ [m] :

5 : wIP◦Ci
← ẼvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, Ci, cty, t1, . . . , tγ , ri)

6 : (d
(i)
A )mi=1 ← BNIVOLE.DecodeA(crsbvole, pe

bvole
B , stbvoleA )

7 : foreach i ∈ [m] :

8 : z
(i)
A :=

⌊
(d

(i)
A +wIP◦Ci

)[1] + FK(i)
⌉
2

9 : return (z
(1)
A , . . . , z

(m)
A )

SMS.DecodeB(crs, f, peA, stB)

1 : parse crs = (crsaux, crsrnd, crsbvole,K)

2 : parse peA = pebvoleA and stB = stbvoleB

3 : (d
(i)
B )mi=1 ← BNIVOLE.DecodeB(crsbvole, pe

bvole
A , stbvoleB )

4 : foreach i ∈ [m] :

5 : z
(i)
B :=

⌊
d
(i)
B [1] + FK(i)

⌉
2

6 : return (z
(1)
B , . . . , z

(m)
B )

Figure 6.4: Decoding algorithms for SMS from LWE (Figure 6.2).
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6.5.4 Security analysis

Here, we analyze the correctness and security of the SMS construction from Figure 6.2. We
prove the following theorem.

Theorem 6.5.2. Let λ be a security parameter and d = d(λ) ∈ poly(λ) be a circuit depth.
Assume that the LWE assumption holds with a superpolynomial modulus-to-noise ratio.
Then, Figure 6.2 is an SMS scheme satisfying Definition 6.4.1 for all functions that can be
represented by polynomial-size, depth-d circuits. Furthermore, the scheme achieves full input
succinctness and (2/3)-output succinctness (cf. Definition 6.4.2).

Proof. We prove each required property in turn.

Correctness. We argue correctness for the i-th output bit, for any i ∈ [m]. By construction,
we have that z

(i)
A , as computed by Alice, is:

wIP◦Ci
:= ẼvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, Ci, cty, t1, . . . , tγ, ri)

= s⊤(AC + ⟨Ci(cty), sk⟩ ·G) + e⊤ ▷ Follows from Lemmas 6.5.1 and 6.5.2.
= s⊤ (AC + ⟨FHE.Eval(fi, (X, cty)), sk⟩ ·G) + e⊤ ▷ Definition of Ci.
= s⊤ (AC + ⟨FHE.Enc(sk, fi(X, y)), sk⟩ ·G) + e⊤ ▷ Correctness of FHE.

= s⊤
(
AC +

(
fi(X, y)

q

2
+ e′⊤

)
·G
)
+ e⊤ ▷ Near-linear decryption.

= s⊤AC + s⊤
((

fi(X, y)
q

2
+ e′⊤

)
·G
)
+ e⊤,

where fi is the function that computes the i-th bit of f .
The first equality follows directly from the correctness of ẼvalCT, as defined in Lemmas 6.5.1

and 6.5.2. The second equality follows from the definition of the circuit Ci, the properties of
FHE.Eval from Theorem 6.5.1, and choice of parameters in Section 6.5.3. The third equality
follows from the correctness of the FHE scheme and the fact that X can, without loss of
generality, be converted to a ciphertext by having cty contain auxiliary encryptions of 0 and
1 (allowing any evaluator to convert their plaintext input into ciphertexts encrypted under
the secret key). The fourth equality follows from the near-linear decryption property of the
FHE scheme.

Then, because we set s[1] = 1, we have that wIP◦Ci
[1] = (s⊤AC)[1] + fi(X, y) q

2
+ e′ + e,

where e′ and e are the first entries of e′ and e, respectively. To see this, it is helpful to note
that the first column of G is of the form (1, 0, . . . , 0)⊤; see Definition 6.5.1.

Then, by correctness of BNIVOLE, we have that:

BNIVOLE.DecodeA(crsbvole, pe
bvole
B , stbvoleA )[i]

− BNIVOLE.DecodeB(crsbvole, pe
bvole
A , stbvoleB )[i] = d

(i)
A − d

(i)
B = s⊤ACi

,

with all but negligible probability.
Therefore, we have that with all but negligible probability, z(i)A and z

(i)
B , as computed in
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SMS.DecodeA and SMS.DecodeB, respectively, satisfy:

z
(i)
A − z

(i)
B = d

(i)
A +wIP◦Ci

− d
(i)
B

= wIP◦Ci
− s⊤ACi

=
(
s⊤ACi

+ s⊤
((

fi(X, y)
q

2
+ e′⊤

)
·G
)
+ e⊤

)
− s⊤ACi

.

And so it holds that, with all but negligible probability,

z
(i)
A [1]− z

(i)
B [1] = wIP◦Ci

[1]− s⊤ACi
[1] = fi(X, y)

q

2
+ e′ + e.

Importantly, we have that e′ (the FHE decryption error) and e (the EvalCT evaluation error)
are bounded in magnitude by Lemma 6.5.1 and Theorem 6.5.1. Specifically, we have that
max(|e|, |e′|) ≤ (k+ 1)d · poly(λ), and so it holds that |e+ e′| ≤ 2(k+ 1)d · poly(λ). Therefore,
if we have that q > 4(k + 1)d · λω(1) (which necessitates assuming LWE security holds with a
superpolynomial modulus-to-noise ratio), then by Lemma 6.2.1 and the above analysis, we
get that:

Pr
[ ⌊

z
(i)
A [1] + FK(i)

⌉
2
−
⌊
z
(i)
B [1] + FK(i)

⌉
2
=
⌊
z
(i)
A [1]− z

(i)
B [1]

⌉
2
= fi(X, y)

]
≥ 1− negl(λ),

where the probability is over randomness of s and the PRF key K. In particular, the
PRF ensures a pseudorandom distribution over Zq (and is equivalent to randomizing the
subtractive shares), which then allows us to apply Lemma 6.2.1. It follows that the outputs
of SMS.EncodeA and SMS.EncodeB form subtractive shares of all m output bits of f(X, y),
with all but negligible probability in λ.

This concludes the proof of correctness.

Succinctness. We now briefly analyze the input and output succinctness. For input
succinctness, observe that Alice’s encoding peA consists only of the BNIVOLE public encoding
of the batch NIVOLE SMS scheme involving m matrices, where each matrix is of size poly(λ, d)
by Definition 6.5.2. In particular, we get full input succinctness, since the size of peA is
independent of Alice’s input length |X| and only depends on the output length m.

Then, for output succinctness, by Lemma 6.4.1 and Theorem 6.4.1 we have that |stbvoleA | ≤
poly(λ, d) ·mϵ with ϵ = (2/3), where d is the circuit depth and is implicit in the choice of
modulus q. Moreover, Bob’s encoding peB consists of the batch NIVOLE public encoding,
which has size poly(λ, d) ·mϵ with ϵ = (2/3) along with (1) an FHE ciphertext encrypting
the input y under the secret key sk and (2) (α+ β + γ) ciphertexts encrypted under s. These
ciphertexts all have, at most, a linear dependence on |y|, and thus have a combined length of
|y| · poly(λ, d). Thus, Alice’s and Bob’s encoding are both sublinear in the output length m,
which proves the ϵ output succinctness property.

Security for Alice. We show that Alice’s encoding reveals no information on her private
input X. Note that Alice’s public encoding peA consists of AC computed according to
ẼvalPK(crs, C,C1, . . . ,Cγ), where C has X hardcoded inside it. By Lemma 6.5.2, we have
that AC is statistically close to uniform, and so indistinguishability holds trivially.

Security for Bob. We prove that the real view of the adversary is computationally
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indistinguishable to a simulated view. First, we construct the following efficient simulator S
for peB (Bob’s public encoding from Figure 6.2).

S: On input crs,

• Parse crs = (_,_, crsbvole).

• Sample u1, . . . ,uα, v1, . . . ,vβ, and t1, . . . , tγ uniformly at random.

• Sample sk← FHE.KeyGen(1λ).

• Compute cty ← FHE.Enc(sk, 0).

• Compute pebvoleB ← BNIVOLE.EncodeB(crsbvole, 0).

• Output peB := (cty,u1, . . . ,uα,v1, . . . ,vβ, t1, . . . , tγ, pe
bvole
B ).

We prove that the output of S is computationally indistinguishable from the real view under
the LWE assumption using a hybrid argument.

• Hybrid H0. This hybrid consists of peB computed exactly according to EncodeB in
Figure 6.2.

• Hybrid H1. In this hybrid, we replace pebvoleB in peB with the encoding of zero. That is,
pebvoleB is generated according to BNIVOLE.EncodeB(crsbvole, 0).

Claim. H0 ≈c H1 under the LWE assumption.

Proof. Computational indistinguishability between H0 and H1 follows immediately
from the security of BNIVOLE, which is realized under LWE with a superpolynomial
modulus-to-noise ratio (cf. Theorem 6.4.1). □

• Hybrid H2. In this hybrid, we make s uniformly random in Zn
q and no longer set

s[1] = 1.

Claim. H1 ≈c H2 under the LWE assumption.

Proof. Computational indistinguishability between H1 and H2 follows immediately
from the leakage-resilience of the LWE assumption [GKPV10]; in particular, the LWE
assumption is tolerant to any constant number of coordinates of the secret being set to
a fixed public value. □

• Hybrid H3. In this hybrid, we replace u1, . . . ,uα,v1, . . . ,vβ, t1, . . . , tβ in peB (which
all depend on the secret s) with uniformly random values sampled independently from
Zk

q .

Claim. H2 ≈c H3 under the LWE assumption.
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Proof. Suppose, towards contradiction, that H2 ̸≈c H3, then there exists an efficient
distinguisher A distinguishing between H2 and H3 with non-negligible advantage.

Let k′ := α + β + γ. We construct an efficient distinguisher B for the LWE problem
that receives as input k′ = k′(λ) ∈ poly(λ) LWE challenge samples (Ri, ri)

k′
i=1, where

(r1, . . . , rk′) are either all uniformly random and independent or distributed as s⊤Ri+ei,
for all i ∈ [k′].

B proceeds as follows:

1. Sample sk
R← FHE.KeyGen(1λ) and computes cty exactly as in Figure 6.2.

Let sk := (sk1, . . . , skβ) and cty = c1∥c2∥ · · · ∥cα ∈ {0, 1}α.

2. For each i ∈ [α], set ui := ri and set Ai := Ri − ciG.

3. For each i ∈ [β], set vi := rα+i and set Bi := Rα+i − skiG.

4. For each i ∈ [γ], set ti := rα+β+i and Ci := Rα+β+i.

5. Set crsaux := (A1, . . . ,Aα,B1, . . . ,Bβ), crsrnd := (C1, . . . ,Cγ).

6. Set crs := (crsaux, crsrnd, crsbvole, K), where crsrnd, crsbvole and K are sampled as in
Figure 6.2.

7. Set peB := (cty,u1, . . . ,uα,v1, . . . ,vβ, t1, . . . , tγ, pe
bvole
B ), where pebvoleB is distributed

exactly as in H2.

8. Output as A(crs, peB) does.

We now argue that B wins with the same advantage as A. Observe that when B receives
LWE samples (r1, . . . , rk′), then we have that:

• ui = ri = s⊤Ri + ei = s⊤(Ai + ciG) + ei, for all i ∈ [α].

• vi = rα+i = s⊤Rα+i + eα+i = s⊤(Bi + skiG) + eα+i, for all i ∈ [β].

• ti = rα+β+i = s⊤Rα+β+i + eα+β+i = s⊤Ci + eα+β+i, for all i ∈ [γ].

and so A receives peB distributed identically to hybrid H2.

In contrast, if B receives uniformly random samples (r1, . . . , rk′), then all ui, vi, ti are
uniformly random, which is distributed identically to hybrid H3. Therefore, B succeeds
with the same advantage as A, contradicting the LWE assumption. □

• Hybrid H4. In this hybrid, we replace cty with an encryption of zero.

Claim. H3 ≈c H4 under the LWE assumption.

Proof. Computational indistinguishability between H4 and H3 follows immediately
from the semantic security of FHE, and hence from LWE. □

At this point, it suffices to note that hybrid H4 is distributed identically to the output of S,
which concludes the proof of security for Bob.

This concludes the proof of Theorem 6.5.2. ■
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Construction without output-succinctness. We remark that the proof of Theorem 6.5.2
does not make use of the BNIVOLE hiding property when arguing security for Alice; only
when arguing security for Bob. This is because we already have statistical hiding for Alice’s
input thanks to the function-hiding transformation from Figure 6.1. Alternatively, we could
avoid using the statistical-hiding transformation and just rely on BNIVOLE security to hide
Alice’s matrices as output by EvalPK; however, this would make the scheme less modular in
the following sense. If the output-succinctness property (Definition 6.4.2) is not required,
the construction from Figure 6.2 can simply have Alice’s public encoding consist of (ACi

)mi=1

such that Bob can locally compute (s⊤ACi
)mi=1. Specifically, we can simply remove the use of

BNIVOLE in Figure 6.2, without changing the proof of security.

6.6 Construction from Indistinguishability Obfuscation

In this section, we construct SMS from iO in conjunction with other assumptions. Our
construction supports the computation of batch functions over a large batch of short inputs
provided by Alice and a short input provided by Bob. Concretely, we assume that Alice has a
large batch of inputs X = (x1, . . . , xL) and Bob has a small input y, such that |xi| ≈ |y|. Using
our construction, Alice and Bob can compute f(xi, y) for all i ∈ [L], and for any function
f ∈ P/poly determined adaptively at decoding time. We obtain input-output succinctness
with respect to the batch size L.

Compared to our LWE-based construction from Section 6.5, our iO-based construction
supports all circuits in P/poly and is function adaptive (cf. Definition 6.4.4), allowing Alice
and Bob to agree on the function they wish to compute over the entire batch or even for each
individual entry in the batch.

6.6.1 Preliminaries

In this section, we provide the necessary preliminaries related to the iO-based construction.

Indistinguishability obfuscation. Indistinguishability obfuscation (iO) [BGI+01] satisfies
the property that the obfuscation of two “functionally equivalent” circuits C0 and C1 are
computationally indistinguishable.

Definition 6.6.1 (Indistinguishability Obfuscation [BGI+01]). An efficient uniform algorithm
iO is said to be an indistinguishability obfuscator for a class of circuits {Cλ}λ∈N if the following
properties hold:

Correctness. For all λ ∈ N, for all C ∈ Cλ, and for every input x to C:

Pr
[
C̃ ← iO(1λ, C) : C̃(x) = C(x)

]
= 1,

where the probability is over the randomness of iO.

Security. For all efficient distinguishers D, there exists a negligible function negl(·) such that
for all λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that C0(x) = C1(x) on all inputs x,∣∣∣Pr[ D(C̃0) : C̃0 ← iO(1λ, C0)

]
− Pr

[
D(C̃1) : C̃1 ← iO(1λ, C1)

]∣∣∣ ≤ negl(λ),
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where the probability is over the randomness of iO and D.

Somewhere statistically binding hashing. Here, we recall the definition of somewhere
statistically binding (SSB) hashing [HW15].

Definition 6.6.2 (Somewhere Statistically Binding Hashing [HW15]). Let λ be a security
parameter, s be a block length and Σ = {0, 1}s be the block alphabet, and m = m(s) ∈ poly(λ)
be the output length of the hash. Let p = p(s) ∈ poly(λ) be the opening size. A somewhere
statistically binding (SSB) hash with local opening consists of four efficient algorithms SSB =
(KeyGen,Hash,Open,Verify) with the following syntax:

• KeyGen(1λ, 1s, L, i)→ hk. The randomized key generation algorithm takes as input the
security parameter λ, a block length s, an input length L ≤ 2λ, and an index i ∈ [L]. It
outputs a public hashing key hk.

• Hash(hk, X)→ cX . The deterministic hashing algorithm takes as input the hash key hk
and an input X = (x1, . . . , xL) ∈ ΣL. It outputs the hash value cX ∈ {0, 1}m.

• Open(hk, xj, j)→ π. The (possibly randomized) opening algorithm takes as input the
hash key hk, a value xj ∈ Σ, and an index j ∈ [L]. It creates an opening π ∈ {0, 1}p.

• Verify(hk, cX , u, j, π) → 0/1. The deterministic verification algorithm takes as input
the hash key hk, a hash output cX ∈ {0, 1}m, a value u ∈ Σ, an index j ∈ [L], and an
opening π ∈ {0, 1}p. It outputs a 0 (reject) or 1 (accept).

The above functionality must satisfy the following properties:

Correctness. For any block length s, any input length L, any pair of indices i, j ∈ [L], and
all X = (x1, . . . , xL) ∈ ΣL, it holds that:

Pr

 Verify(hk, cX , xj, j, π) = 1 :

hk← KeyGen(1λ, 1s, L, i)

cX := Hash(hk, X)

π ← Open(hk, xj, j)

 = 1.

Index Hiding. For all block lengths s, all input lengths L ≤ 2λ, and all pairs of indices
i0, i1 ∈ [L],{

hk
∣∣∣ hk← KeyGen(1λ, 1s, L, i0)

}
≈c

{
hk

∣∣∣ hk← KeyGen(1λ, 1s, L, i1)
}
.

Somewhere Statistically Binding. The hash key hk is said to be statistically binding with
respect to the opening for an index i ∈ [L] if there do not exist any values cX , xi ̸= x′i, and
openings π, π′ such that Verify(hk, cX , xi, i, π) = Verify(hk, cX , x

′
i, i, π

′) = 1. Formally, there
exists a negligible function negl(·) such that for all block lengths s, all input lengths L, and
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any index i ∈ [L],

Pr


∃xi, x

′
i ∈ Σ such that xi ̸= x′i

∧
Verify(hk, cX , xi, i, π) = 1

∧
Verify(hk, cX , x

′
i, i, π

′) = 1

: hk← KeyGen(1λ, 1s, L, i)

 = 1− negl(λ).

The hash function is said to be perfectly binding with respect to the opening if the above
probability is zero.

Remark 42 (On perfect binding). Any perfectly-correct, rate-1 oblivious transfer (OT)
scheme implies an SSB hash function with perfect binding via the transformation given in the
work of Kalai et al. [KLVW23]. Moreover, the hash key is guaranteed to be indistinguishable
from random if the OT receiver’s message in the OT scheme is pseudorandom (which is
indeed the case for constructions based on QR/DCR). We note that the construction of
Hubáček and Wichs [HW15] when instantiated with a perfectly-correct FHE scheme (based on
LWE) [BGV12] also gives an SSB hash construction with perfect binding with respect to the
opening.

Theorem 6.6.1 ([HW15,KLVW23]). Under either the QR, DCR, or the LWE assumption,
there exists a construction of SSB hashing that has perfect binding with respect to the opening.

Puncturable PRFs. We recall the notion of puncturable PRFs (PPRFs).

Definition 6.6.3 (Puncturable Pseudorandom Function [BW13,KPTZ13,BGI14]). Let λ be a
security parameter, X = Xλ be the domain, and Y be the range. A puncturable pseudorandom
function (PPRF) consists of three efficient algorithms PPRF = (KeyGen,Puncture,Eval) with
the following syntax:

• KeyGen(1λ)→ K. The randomized key generation algorithm takes as input the security
parameter λ and outputs a master key K.

• Puncture(K, x∗) → K∗. The randomized puncture algorithm takes as input a master
key K and an input x∗ ∈ X . It outputs a punctured key K∗.

• Eval(K, x)→ y. The deterministic evaluation algorithm takes as input a key K (which
may be the punctured key) and an input x ∈ X . It outputs a value y ∈ Y.

The above functionality must satisfy the following properties:

Correctness. For all λ ∈ N, every choice of punctured input x∗ ∈ X , and every x ∈ X \{x∗},
it holds that:

Pr

[
PPRF.Eval(K, x) = PPRF.Eval(K∗, x) :

K ← KeyGen(1λ)

K∗ ← Puncture(K, x∗)

]
= 1.
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Security. A puncturable PRF is a said to be selective-puncturing secure if for all efficient
adversaries A, the advantage of A in the following security experiment ExpsecA,b(λ) is negligible
in λ. Here, b denotes the challenge bit.

1. The challenger runs A(1λ).
2. The adversary A sends a challenge x∗ ∈ X to the challenger.

3. The challenger samples a master key K ← KeyGen(1λ), and computes the punctured
key K∗ ← Puncture(K, x∗). Then, the challenges does the following:

• If b = 0, compute y := PPRF.Eval(K, x∗) and respond with (K∗, y).

• If b = 1, sample y
R← Y and respond with (K∗, y).

4. A outputs a guess b′, which is the output of the experiment.

A wins if b′ = b, and its advantage AdvsecA (λ) is defined as

AdvsecA (λ) :=
∣∣Pr[ExpsecA,0(λ) = 1]− Pr[ExpsecA,1(λ) = 1]

∣∣ ,
where the probability is over the randomness of A and KeyGen and Puncture.

Remark 43 (t-puncturable PRF). We will also use the notion of a t-puncturable PRF
[BCG+19a], which can be realized in a black-box way using a 1-puncturable PPRF. A t-
puncturable PRF is defined exactly as in Definition 6.6.3, except that the adversary is given
a key punctured on t inputs and obtains t (real-or-random) challenges from the challenger.
A simple and black-box construction of a t-puncturable PRF involves running t independent
instances of a 1-puncturable PRF and defining the output to be the bit-wise XOR of all
instances [BCG+19a].

Theorem 6.6.2 (Existence of PPRFs [BW13,KPTZ13,BGI14]). Assuming the existence of
sub-exponentially-secure one-way functions, there exits a sub-exponentially-secure puncturable
PRF (resp. t-puncturable PRF) with selective puncturing security.

Commitment scheme. We require any commitment scheme with perfect binding. Such
commitment schemes are known from injective one-way functions [BOV03].

Definition 6.6.4 (Perfectly-Binding Commitment Scheme). Let λ be a security parameter
and M be a commitment message space. A perfectly-binding commitment scheme consists of
an efficient algorithm Commit(x; r)→ x̂ that takes as input a message x ∈M and randomness
r ∈ {0, 1}λ, and outputs a commitment x̂. Commit must satisfy the following properties:

Perfect Binding. For all x, x′ ∈M and every r, r′ ∈ {0, 1}λ,

Pr
[
x ̸= x′ : Commit(x; r) = Commit(x′; r′)

]
= 0.

Computational Hiding. For all efficient adversaries A, there exists a negligible function
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negl(·) such that:

Pr

 A(x̂b, st) :

(x0, x1, st)← A(1λ)
r

R← {0, 1}λ

b
R← {0, 1}

x̂b := Commit(xb; r)

 ≤ 1

2
+ negl(λ).

6.6.2 Construction

We present our construction in Figure 6.5. Our construction follows closely the ideas presented
in Section 6.2.2 and makes use of an SSB hash function with perfect binding and iO. Because
the SSB hashing is performed over the set of commitments to Alice’s inputs, we set the
SSB hash input block length (denoted s) to be poly(λ, l) to accommodate the size of the
commitment.

Remark 44 (On the use of the puncturable PRF). We note that the construction itself does
not make use of the puncturable PRF, and instead treats it as a regular PRF. The requirement
for a puncturable PRF appears only in the proof of security (see Section 6.12.1).

The obfuscated program. Bob’s obfuscated program is defined in Program 1 and is parameter-
ized by a universal circuit U ∈ P/poly that takes as input the tuple (f, xi, y), consisting of
a function description f , an input xi, and an input y. The circuit U outputs f(xi, y). We
assume that the size of U is polynomial in the security parameter λ, Alice’s input length l
and Bob’s input length ℓ.

6.6.3 Setting the parameters

Here, we explain how we need to set the parameters for the underlying primitives to achieve
security for our full construction by complexity leveraging.

Let λ be the security parameter for the iO-based SMS construction. We let the security
parameter of the SSB hash, denoted λssb, be the same as λ. Let λio = q(λ) and λpprf = q(λ)
be polynomial in the security parameter λ, for some polynomial q(λ) ∈ poly(λ), which we
will set later.

Next, we let ϵio, ϵpprf , and ϵssb, denote the advantage of any efficient distinguisher D in the
iO security game (cf. Definition 6.6.1), the PPRF security game (cf. Definition 6.6.3), and the
SSB index-hiding game (cf. Definition 6.6.2), respectively. Furthermore, let the PPRF domain
length be n = poly(λ, logL), where L is Alice’s batch length. Define ϵ ≥ max(ϵio, ϵpprf). Then,
we have that 1/2q

ϵ bounds the advantage of the D in the iO game and the PPRF game.
Now, we need to set q such that 2n/2qϵ is negligible in λ. This can be achieved by choosing

q such that qϵ ≥ O(n+ λ), which remains polynomial in the security parameter.

6.6.4 Security analysis

In this section, we analyze the correctness and security of our iO-based construction of SMS
from Figure 6.5. We prove the following theorem:
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SMS from iO

Public Parameters. We let L denote the size of Alice’s batch of inputs X = (x1, . . . , xL),
l denote the size of each input in the batch, such that xi ∈ {0, 1}l for all i ∈ [L], ℓ denote
the size of Bob’s input y, Commit be a commitment scheme with perfect binding as
defined in Definition 6.6.4, SSB = (KeyGen,Hash,Open,Verify) be an SSB hash function
(cf. Definition 6.6.2), and PPRF = (KeyGen,Puncture,Eval) be a puncturable PRF.

SMS.Setup(1λ)

1 : s := poly(λ, l)

2 : hk← KeyGen(1λ, 1s, L, 0)

3 : return crs := hk

SMS.EncodeA(crs, 1
|F|, X)

1 : parse crs = hk

2 : parse X = (x1, . . . , xL)

3 : foreach i ∈ [L] :

4 : ri
R← {0, 1}λ

5 : x̂i := Commit(xi; ri)

6 : X̂ := (x̂1, . . . , x̂L)

7 : c
X̂

:= SSB.Hash(hk, X̂)

8 : peA := c
X̂

9 : stA := (X, X̂, c
X̂
, r1, . . . , rL)

10 : return (peA, stA)

SMS.EncodeB(crs, 1
|F|, y)

1 : parse crs = hk

2 : K ← PPRF.KeyGen(1λ)

3 : P̃ ← iO(1λ, P ), where P has
(hk,K, y) hardcoded in it.

4 : peB := P̃

5 : stB := K

6 : return (peB, stB)

SMS.DecodeA(crs, f, peB, stA)

1 : parse crs = hk and peB = P̃

2 : parse stA = (X, X̂, c
X̂
, r1, . . . , rL)

3 : parse X = (x1, . . . , xL) and X̂ = (x̂1, . . . , x̂L)

4 : foreach i ∈ [L] :

5 : πi := Open(hk, x̂i, i)

6 : z
(i)
A := P̃ (c

X̂
, xi, (x̂i, ri), i, πi, f)

7 : return zA := (z
(1)
A , . . . , z

(L)
A )

SMS.DecodeB(crs, f, peA, stB)

1 : parse crs = hk and peA = c
X̂

and stB = K

2 : foreach i ∈ [L] :

3 : z
(i)
B := PPRF.Eval(K, c

X̂
∥f∥i)

4 : return zB := (z
(1)
B , . . . , z

(L)
B )

Figure 6.5: Simultaneous-Message and Succinct Secure Computation from iO.
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Program 1: (Parameterized by a universal circuit U)
Hardcoded: (hk,K, y).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

2: Ri := PPRF.Eval(K, cX̂∥f∥i)
3: d := U(f, xi, y)

4: return d⊕Ri

5: else return ⊥

Figure 6.6: Program obfuscated by Bob in Figure 6.5.

Theorem 6.6.3. Assuming the existence of sub-exponentially-secure indistinguishability
obfuscation and the existence of sub-exponentially-secure one-way functions, in addition to the
existence of somewhere statistically binding hash functions (with perfect binding) and injective
one-way function, Figure 6.5 is a O(log logL/ logL)-succinct SMS scheme supporting all
batched function families in P/poly, where L is the batch size.

In Proposition 6.6.1 we prove the correctness and succinctness of the construction. In
Proposition 6.6.2, we prove security for Alice. Then, in Proposition 6.6.2, we prove security
for Bob.

Proposition 6.6.1. Figure 6.5 satisfies the correctness properties of Definition 6.4.1 and
achieves O(log logL/ logL)-batch-succinctness (cf. Definition 6.4.6).

Proof. Consider Program 1. For each i ∈ [L], notice that if πi is a valid opening for x̂i with
respect to the SSB hash value cX̂ and index i, and (xi, ri) is a valid decommitment for x̂i,
then the output of the obfuscated program is z

(i)
A := f(xi, y)⊕ PPRF.Eval(K, cX̂∥f∥i). Bob’s

output, on the other hand, is z(i)B := PPRF.Eval(K, cX̂∥f∥i). The parties thus obtain additive
shares of f(xi, y), by the correctness of iO. Furthermore, because this holds for all i ∈ [L],
the output of Decodeσ is an additive share of the function applied to components of Alice’s
batch of inputs X, as required.

Finally, we note that the size of the obfuscated circuit depends polynomially on the
input and output lengths ℓ, l, m, but only depends logarithmically on the batch size L (the
dependence on L comes from domain of the PRF needing to be large enough to accommodate
the index i of the batch input). Hence, we have that the size of the program obfuscated
by Bob is of size poly(λ, ℓ, l,m, logL), which gives ϵ = O(log logL/ logL) batch-succinctness
since LO(log logL/ logL) = polylog(L). ■

Security for Alice. Proving security for Alice is relatively straightforward and comes down
to the computational-hiding property of the commitment scheme. We prove the following
proposition.

Proposition 6.6.2. Figure 6.5 satisfies the security property of Definition 6.4.1 for Alice
assuming the commitment scheme Commit is computationally hiding.

Proof. Consider the following efficient simulator S for peA.
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S: On input crs,

- Parse crs = hk.

- Sample r1, . . . , rL
R← {0, 1}λ.

- Set x̂i := Commit(0; ri), for all i ∈ [L].

- cX̂ := SSB.Hash(hk, (x̂1, . . . , x̂L)).

- Output peA := cX̂ .

We now argue that the output of S is computationally indistinguishable to the output
of EncodeA. Suppose, towards contradiction, that there exists an efficient distinguisher A
that distinguishes, with non-negligible advantage, between the view produced by S and peA
produced by EncodeA in Figure 6.5. Notice that the only difference in the simulated view
compared to EncodeA is that each x̂i is a commitment to zero. As such, by a straightforward
hybrid argument, A breaks the computational hiding of Commit, which raises a contradiction.
This concludes the proof. ■

Security for Bob. Proving security for Bob is more involved and requires carefully removing
the presence of Bob’s input y from the obfuscated program via a sequence of hybrids. More
concretely, our proof strategy involves iterating over all possible inputs (cX̂ , xi, (x̂i, ri), i, πi, f)
to Bob’s program and carefully “puncturing” the program at the j-th canonical input to the
PRF by programming the output to be a uniformly random string that is independent of the
input y. In the process, we make use of the SSB hash to guarantee functional equivalence
and index hiding, which then allows us to invoke iO security.

This overall strategy requires us to consider an exponential (in the SSB hash security
parameter) number of hybrids, which requires complexity leveraging and assuming sub-
exponential security of the underlying primitives (namely, sub-exponentially secure iO and
one-way functions). See Section 6.6.3 for how we set parameters to obtain sub-exponential
security.

Proposition 6.6.3. Figure 6.5 satisfies the security property of Definition 6.4.1 for Bob
assuming the security of the SSB hash (cf. Definition 6.6.2), the existence of injective one-
way functions, the existence of sub-exponentially secure indistinguishability obfuscation (cf.
Definition 6.6.1), and the existence of sub-exponentially secure one-way functions.

Proof. Deferred to Section 6.12.1. ■

6.7 Optimizations

In this section, we discuss optimizations that we can make to our LWE-based and iO-based
constructions that further push the communication and computational efficiency.

6.7.1 Unbounded computations

We show that our LWE-based construction can be upgraded to support unbounded computa-
tions assuming the circular security of LWE. In particular, the recent result of Hsieh, Lin, and
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Luo [HLL23] show how to construct algorithms EvalPK and EvalCT supporting unbounded
computations while satisfying the properties of Lemma 6.5.1. In particular, we can use the
following lemma (where the highlighted parts indicate the difference with Lemma 6.5.1).

Lemma 6.7.1 (Adapted from [HLL23, Theorem 13] and [GVW15, Lemma 3.2]). Let λ ∈ N
be a security parameter. Under the circular security of the LWEn,k,q,τ assumption (as defined
in [HLL23, Assumption 1]) with k := n⌈log q⌉, there exist algorithms (EvalPK,EvalCT)
satisfying Definition 6.5.2 for all integers α = α(λ), β = β(λ) that are polynomial in the
security parameter, such that for all common random strings of the form:

crs := (A1, . . . ,Aα,B1, . . . ,Bβ) ∈ (Zn×k
q )α+β,

for all α+ β vectors u1, . . . ,uα,v1, . . . ,vβ ∈ Zk
q , all s ∈ Zn

q , all (x,y) ∈ {0, 1}α×Zβ
q , and all

arithmetic circuits C : {0, 1}α → Zβ
q of polynomial size and unbounded depth, if it holds that:

∀i ∈ [α], ui = s⊤(Ai + xi ·G) + e⊤i and ||ei||∞ ≤ B,

∀i ∈ [β], vi = s⊤(Bi + y[i] ·G) + e⊤i and ||ei||∞ ≤ B,

then it also holds that for wIP◦C := EvalCT(crs,u1, . . . ,uα,v1, . . . ,vβ, C, x),

wIP◦C = s⊤(AIP◦C + ⟨C(x),y⟩ ·G) + e⊤ with ||e||∞ ≤ B,

where AIP◦C := EvalPK(crs, C) and G is the gadget matrix from Definition 6.5.1.

Proof (sketch). The lemma follows from [HLL23, Theorem 13] coupled with [GVW15, Lemma
3.2]. [HLL23, Theorem 13] proves the existence of EvalPK and EvalCT as defined in Defini-
tion 6.5.2 (without the extension to the class IP ◦ C) while [GVW15, Lemma 3.2] provides a
generic extension to the class IP ◦C. In particular, the proof of [GVW15, Lemma 3.2] follows
directly from the properties satisfied by these two algorithms and therefore also applies to
the (unbounded) variants.

■

As an immediate corollary of Lemma 6.7.1, we have that the LWE-based construction of
SMS works for any unbounded depth function (with a polynomially-sized circuit representation)
assuming the circular security of LWE. In particular, we note that Lemma 6.5.2 (the function-
hiding transformation), introduces a fixed additive factor overhead to the error and is not
impacted by the underlying instantiation of EvalPK and EvalCT. As such, we have all the
ingredients to instantiate Figure 6.2 for unbounded-depth computations. We obtain the
following theorem:

Theorem 6.7.1. Let λ be a security parameter. Assume that the circular security of the
LWE with a superpolynomial modulus-to-noise ratio. Then, Figure 6.2 is an SMS scheme
satisfying Definition 6.4.1 for all functions that can be represented by polynomial-size circuits.
Furthermore, the scheme achieves full input succinctness and (2/3)-output succinctness.
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6.7.2 Minimizing communication from Bob to Charlie

We observe that in our iO-based construction (cf. Figure 6.5), Bob’s output consists solely
of a pseudorandom string computed by the PRF evaluated on input (cX̂∥f∥i), for i ranging
from 1 to L.

At first glance, it may appear that Bob can simply send the PRF key K to Charlie, making
the communication overhead from Bob to Charlie optimal (similarly to the communication
overhead in the naive FHE-based example described in Section 6.1). However, this idea is
obviously insecure in the case where Charlie colludes with Alice, since it would allow Alice
to recover the PRF value on all inputs to the obfuscated program and perform a resetting
attack.

Nonetheless, we show that we can easily tweak this idea by resorting to a constrained
PRF (CPRF), which restricts the domain of the PRF that Charlie is allowed to evaluate.
Specifically, a CPRF generalizes the notion of a puncturable PRF and can be constrained
on an arbitrary predicate (not just the puncturing “index” predicate). We recall the formal
definition of CPRFs from Chapter 2.

Our idea is to have Bob constrain the PRF on all inputs outside of the set

S =
{
(cX̂∥f)∥i | i ∈ [L]

}
.

In particular, given a constrained key constrained to the set S, only L values of the PRF can
be evaluated, and these values correspond exactly to the output of Bob. However, because
the predicate has a succinct description of size O(logL), the communication from Bob to
Charlie is only polylogarithmic in the batch size L (ignoring polynomial factors in the security
parameter).

Connection to Hubáček–Wichs. We additionally observe that when the communication
from Bob to Charlie is made succinct, the resulting SMS scheme immediately implies a
two-round secure computation protocol that is succinct in the output length. This shares
a close connection with the protocol of Hubáček and Wichs [HW15] (and thus inherits the
same impossibility results discussed therein related to secure computation protocols where
the total communication is succinct in the output length). Specifically, in an SMS scheme,
we can assume that Alice and Charlie are colluding. Therefore, Bob can simply send the
succinct output message to Alice, who can then locally recover the output. This protocol
is two rounds and is similar in flavor to the “multi-decryption” protocol of Hubáček and
Wichs [HW15, Section 3.2] (indeed, our construction generalizes their notion to any batch
computation).

Programming the output. Interestingly, to prove our optimized construction secure, we
need to resort to the same techniques used by Hubáček and Wichs [HW15]. That is, in order
to simulate the view of Alice, the simulator needs to program the output (which is now much
longer than the view of Bob) and therefore, the simulator has no choice but to program the
output into the random coins of Alice. This makes the construction only possible in the
honest-but-curious model, where the simulator can specify the randomness used by Alice.6

6We note that this model can be upgraded to a malicious setting in the random oracle model, since the
random oracle can be programmed to produce the correct random coins needed for the simulation.
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Hubáček and Wichs [HW15] provide several impossibility results ruling out the alternative
approaches, and even a weaker “honest-but-deterministic” adversarial model.

Compressed decoding and construction. In Definition 6.7.1, we formalize the notion of
a compressed decoding procedure for Bob, which we will instantiate by adapting the iO-based
construction from Figure 6.5 in Figure 6.7.

Definition 6.7.1 (Compressed Decoding). We say an SMS scheme supports a compressed
decoding procedure for Bob if the algorithm DecodeB can be decomposed into two efficient
algorithms (DecodeCompressed,DecodeExpand) with the following syntax:

• DecodeCompressed(crs, f, peA, stB)→ z̃B. The deterministic compressed decoding algo-
rithm takes as input the CRS crs, a function f ∈ F , the public encoding peA belonging
to Alice, and secret state stB belonging to Bob. It outputs a compressed string z̃B.

• DecodeExpand(z̃B) → zB. The deterministic expansion algorithm takes as input the
string z̃B output by DecodeCompressed. It outputs an m-bit string zB ∈ {0, 1}m.

The above algorithms must satisfy the following correctness, succinctness, and security prop-
erties.

Correctness. For all inputs input in the domain of DecodeB, it holds that:

Pr
[
DecodeB(input) = DecodeExpand(DecodeCompressed(input))

]
= 1.

Compactness. There exists an ϵ ∈ [0, 1) such that for all security parameters λ ∈ N, every
input input in the domain of DecodeB, it holds that:

|DecodeCompressed(input)| ≤ poly(λ) · |Decode(input)|ϵ.

Security. Let poly(·) be a fixed polynomial. There exists an efficient simulator S such that
for all crs in the support Setup, for all f ∈ F , and all inputs X, y, (coins, peB, z̃B)

∣∣∣∣∣∣∣∣∣∣
coins

R← {0, 1}poly(λ,|X|)

(peA, stA)← EncodeA(crs, f,X; coins)

(peB, stB)← EncodeB(crs, f, y)

z̃B := DecodeCompressed(crs, f, peA, stB)

 ≈c S(crs, f, f(X, y), X).
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Compressed Decoding

Parameters. Let CPRF = (KeyGen,Eval,Constrain,CEval) be a constrained PRF.

Changes to EncodeA and EncodeB in Figure 6.5.

- EncodeA “augments” X = (x1, . . . , xL) to consist of L tuples

Xaug :=
(
(x1, r1), . . . , (xL, rL)

)
,

where r1, . . . , rL
R← {0, 1}m are random and of the same length as the output length m.

- EncodeB obfuscates an augmented program described in Program 2, which ignores the
randomness component of each input tuple but is otherwise identical to Program 1.

SMS.DecodeCompressedB(crs, f, peA, stB)

1 : parse crs = hk and peA = c
X̂

and stB = K

2 : S :=
{
c
X̂
∥f∥i | i ∈ [L]

}
3 : Define the predicate P : x 7→ x ∈ S

4 : csk← CPRF.Constrain(K,P )

5 : z̃B := (c
X̂
, f, csk)

6 : return z̃B

SMS.DecodeExpand(z̃B)

1 : parse z̃B = (c
X̂
, f, csk)

2 : foreach i ∈ [L] :

3 : z
(i)
B := CPRF.CEval(csk, c

X̂
∥f∥i)

4 : return zB := (z
(1)
B , . . . , z

(L)
B )

Figure 6.7: Compressed decoding procedure for the iO-based SMS scheme from Figure 6.5.

Program 2: (Parameterized by a universal circuit U)
Hardcoded: (hk,K, y).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

2: parse xi = (x′
i,_) ▷ Parse xi as a tuple and ignore the second component.

3: Ri := PPRF.Eval(K, cX̂∥f∥i)
4: d := U(f, x′

i, y)

5: return d⊕Ri

6: else return ⊥

Figure 6.8: Program obfuscated by Bob in Figure 6.7.

Proposition 6.7.1. The compressed decoding procedure from Figure 6.7 satisfies Defini-
tion 6.7.1 with respect to the iO-based SMS scheme from Figure 6.5.

Proof. We prove each property in turn. We note, in passing, that CPRFs are known for all
constraint predicates assuming iO and one-way functions [BZ14,BLW17].

Correctness. We first note that Program 1 and Program 2 are functionally equivalent and so
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the output computed by Alice in DecodeA is unchanged. Correctness then follows immediately
from the correctness of the CPRF (cf. Definition 2.3.1 in Chapter 2). In particular, the CPRF
correctness guarantees that the evaluation on all inputs in the set S matches the evaluation
of the CPRF on under the master key K. Therefore, when considering the subset of the
domain on which the PRF is evaluated in DecodeB as defined in Figure 6.5, the evaluation
using the constrained key csk is guaranteed to be identical.

Compactness. The CPRF already guarantees that |csk| ∈ poly(λ, |P |), where P is predicate.
Then, because our predicate is a range predicate over the domain [L], it has size O(logL).
We therefore have that |csk| = mϵ · poly(λ) with ϵ = log logL/ logL, where m is the output
length.

Security. We first describe the simulator S.

S: On input (crs, f , f(X, y), X):

- Parse crs = hk, f(X, y) =
(
f(x1, y), . . . , f(xL, y)

)
, X = (x1, . . . , xL).

- Sample rnd
R← ({0, 1}λ)L and r1, . . . , rL

R← {0, 1}m.

- Set Xaug :=
(
(x1, r1 ⊕ f(x1, y)), . . . , (xL, rL ⊕ f(xL, y))

)
.

- (peA, stA) := EncodeA(crs, 1
|F|, Xaug; rnd). ▷ Run EncodeA from Figure 6.5 with coins rnd.

- Parse peA = cX̂ .

- Sample K ← CPRF.KeyGen(1λ) and K0 ← CPRF.KeyGen(1λ).

- Compute P̃ sim ← iO(1λ, P sim), where P sim is as described in Program 3 and has hard-
coded inputs (hk, K0, csk, cX̂ , f).

- Define the set S :=
{
cX̂∥f∥i | i ∈ [L]

}
.

- Compute csk← CPRF.Constrain(K,S).

- Set peB := P̃ sim and z̃B := (cX̂ , f, csk).

- Set coins := (rnd, r1 ⊕ f(x1, y), . . . , rL ⊕ f(xL, y)).

- Output (coins, peB, z̃B).

Program 3: The Simulated Program
Hardcoded:

(
hk,K0, csk, cX̂ , f

)
.

Input: (c′
X̂
, (xi, ri), (x̂i, r

′
i), i, πi, f

′).
Procedure:
1: if x̂i = Commit((xi, ri); r

′
i) ∧ SSB.Verify(hk, c′

X̂
, x̂i, i, πi) = 1 then

if c′
X̂

= cX̂ ∧ f ′ = f then else

1: Ri := PPRF.CEval(csk, cX̂∥f∥i)
2: return Ri ⊕ ri

1: Ri := PPRF.Eval(K0, c
′
X̂
∥f ′∥i)

2: return Ri ⊕ ri

2: else return ⊥

We now prove security via a hybrid argument.
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• Hybrid H0. This hybrid consists of (crs, coins, peB, z̃B), where peB is an obfuscation of
Program 1.

• Hybrid H1. In this hybrid, we set coins to be as computed by S.

Claim. H1 ≈s H0.

Proof. H1 is perfectly indistinguishable from H0 since ri⊕ f(xi, y) is distributed identi-
cally to a uniformly random value when ri is sampled uniformly. □

• Hybrid H2. In this hybrid, we replace peB with an obfuscation of Program 3.

Claim. H2 ≈c H1 under the same assumptions as required for Lemma 6.12.1.

Proof (sketch). The proof follows as a corollary of the proof of Lemma 6.12.1. The
sequence of hybrids in the proof of Proposition 6.6.3 are used to prove that a program
that just outputs a PRF evaluation on all inputs is computationally indistinguishable
from a program that outputs a PRF evaluation under a key K0 for all inputs smaller
than the j-th canonical input and output a secret masked by a PRF evaluation under a
key K on all other inputs.

Without loss of generality, we can reorder the hybrids such that all inputs to the PRF
that are prefixed by cX̂∥f are evaluated under PRF key K and all other inputs are
evaluated using the independent PRF key K0. In doing so, we use the CPRF (rather
than the puncturable PRF) to go from one hybrid to the next.

Eventually, K0 is only used on inputs that are not prefixed by cX̂∥f , and the key K
is used on all other inputs. Then, because of the fact that csk is the constrained key
derived from K, and the evaluation using csk is equivalent to the evaluation under K
for all inputs prefixed by cX̂∥f , we can replace K with csk while keeping the programs
functionally equivalent. □

At this point, H2 is identical to the output of S, which concludes the proof. ■

6.7.3 Minimizing computation for Bob

We show an additional optimization allowing us reduce the computational complexity for Bob
in certain cases. In particular, we consider the case where the output of the batch function is
summed together, using Remark 38 (post-composition with a linear function). In this case,
while the intermediate result held by Alice and Bob is of length l · L, the final output is just
one block of length l. Having Bob compute the full intermediate shares in this scenario results
in “wasteful” computation, since the final output computed by Bob is just a pseudorandom
share of length l rather than l ·L. As we will show, Bob’s computation can be reduced to just
poly(λ, logL) as opposed to poly(λ, L) by resorting to an aggregatable PRF [CGV15]. In a
nutshell, an aggregatable PRF allows the party with the PRF key K to compute

⊕b
i=a FK(i),
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for any range [a, b] in the domain, in the same time it takes to evaluate the PRF FK on a
single input in the domain.

As was observed in Section 6.7.2, Bob’s output consists of the PRF evaluated on input
(cX̂∥f∥i), for i ranging from 1 to L. In particular, this share is computed by evaluating
the PRF on a finite range of consecutive inputs in the domain, which are then summed
together to derive the final share. Therefore, using an aggregatable PRF, the computation
can be performed in poly(λ, logL) time. However, because we require a puncturable PRF for
the security proof, we must first construct what we call a puncturable aggregatable PRF
(PAPRF) to be able to apply this optimization.

6.7.3.1 Puncturable and aggregatable PRF

A PRF that is both puncturable and aggregatable allows aggregating the PRF over a range
[a, b] using the master key, while given the punctured key, it should not be possible to evaluate
the PRF on the punctured input c ∈ [a, b] (or aggregate over a range that includes the
punctured input).

Before explaining how we construct a puncturable aggregatable PRF (PAPRF), we first
recall the black-box construction of Cohen, Goldwasser, and Vaikuntanathan [CGV15] for
aggregatable PRFs supporting summation over a finite range.7 Let G be any PRF. The
aggregatable PRF F is constructed as:

GK(x) =

{
FK(0) : x = 0,

FK(x)⊕ FK(x− 1) : x ̸= 0.

Note that the PRF FK is efficiently aggregatable on any range [a, b] in the domain:⊕
x∈[a,b]

GK(x) = FK(b)⊕ FK(a− 1).

If we want to puncture the above PRF on some input c ∈ [a, b], then we need to puncture
FK on two points in the range, namely c and c + 1, using a “t-puncturable” PRF (cf.
Remark 43). In particular, if the punctured key only prevents evaluating the aggregatable
PRF on input c ∈ [a, b] but still enables aggregation elsewhere, then the punctured key can
be used to recover FK(c), breaking puncturing security. To see this, note that it is possible
to compute the aggregate over three ranges: [a, c− 1], [c+ 1, b] and [a, b] to then recover the
PRF value on c by computing:⊕

x∈[a,b]

FK(x)⊕
∑

x∈[a,c−1]

FK(x)⊕
⊕

x∈[c+1,b]

FK(x) = FK(c).

To get around this issue, we therefore require puncturing two consecutive inputs at a time.
We explain our construction next.

7We will not formally define the notion of aggregatable PRFs since we only focus on the simple case of
summation over a range, which has a simple black-box construction.
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PAPRF construction. We present the black-box construction of PAPRF in Figure 6.9.
Our construction simply instantiates the aggregatable PRF using a 2-puncturable PRF.

Puncturable Aggregatable PRF

Parameters. Let F be a 2-puncturable PRF constructed (cf. Remark 43).

PAPRF.KeyGen(1λ)

1 : K ← F.KeyGen(1λ)

2 : return K

PAPRF.Puncture(K, x)

1 : S := {x, x+ 1}
2 : K∗ ← F.Puncture(K,S)

3 : return K∗

PAPRF.Eval(K, x)

1 : if x = 0: y := FK(x)

2 : else y := FK(x)⊕ FK(x− 1)

3 : return y

Figure 6.9: Puncturable Aggregatable PRF.

Lemma 6.7.2. The PAPRF construction in Figure 6.9 is puncturable on any pair of
consecutive inputs in the domain.

Proof. Suppose, towards contradiction, that there exists an efficient adversary A that wins
the puncturable PRF security game (extended to the 2-puncturing case in the natural way)
with non-negligible advantage ν(λ) against the PAPRF construction.

Now, consider the following sequence of hybrid games.

• Hybrid H0. This hybrid consists of the 2-puncturable PRF game.

• Hybrid H1. In this hybrid game, the 2-puncturing PRF challenger outputs a real-or-
random challenge on one of the two punctured inputs (the other input is now always
pseudorandom). It follows that A’s advantage in H1 is at least ν/2. Specifically, recall
that we are considering F to be a 2-puncturable PRF as constructed in Remark 43
by taking the bit-wise XOR of the output of two independent 1-puncturable PRF
evaluations.

We can now construct an efficient B breaking the 1-puncturing security of an underlying
puncturable PRF instance used to realize the 2-puncturing PRF via Remark 43. B proceeds
as follows:

1. Receive input x∗ as the 1-punctured PRF challenge from A.

2. Forward x∗ to the challenger and receive the 1-punctured PRF key K∗0 .

3. Generate a fresh 1-puncturable PRF master key K1 along with the corresponding
punctured key K∗1 , punctured on input x∗ + 1.

4. Define the 2-punctured key K∗ = (K∗0 , K
∗
1).

5. Respond to A with K∗.

6. For each query x issued by A:
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• Query the challenger on x to get response y
(x)
0 and compute y

(x)
1 := FK1(x).

• Compute y
(x−1)
0 := FK∗

0
(x− 1) and y

(x−1)
1 := FK1(x− 1).

• Respond with (y
(x)
0 ⊕ y

(x)
1 )⊕ (y

(x−1)
0 ⊕ y

(x−1)
1 ).

7. Output as A does.

First, an admissible A never queries B on input x∗ + 1, so B answers all queries correctly
and the responses are distributed identically to either H0 or H1, depending on the challenge.
Therefore, B has advantage ν/2 in breaking the 1-puncturing security game against F , which
contradicts the puncturing security of F . ■

Lemma 6.7.3. The PAPRF construction in Figure 6.9 is aggregatable over interval subsets
of the domain.

Proof. The construction is the same as the one of Cohen et al. [CGV15]. It follows that:⊕
x∈[a,b]

PAPRF.Eval(K, x) = FK(b)⊕ FK(a− 1).

■

Remark 45 (Using a PAPRF with Figure 6.5). By using a PAPRF instead of a PPRF in
Figure 6.5, Bob’s computation time in the case where Alice and Bob compute an aggregation
over their intermediate shares is reduced to poly(λ, logL). Moreover, the security proof from
Proposition 6.6.3 remains nearly identical with the only exception being that the PPRF is
replaced with a 2-puncturable PRF. This requires puncturing two consecutive inputs at a time
in the relevant hybrids but does not otherwise change the proof and analysis.

6.8 Trapdoor Hashing from SMS

In this section, we show that an SMS scheme implies a trapdoor hashing scheme for all
predicates that can be computed by the class of functions supported by the SMS scheme. In
particular, this results in a TDH scheme for all predicates represented by polynomial-depth
circuits under the LWE assumption (or all polynomial-size predicates if we additionally
assume circular security of LWE).

6.8.1 Background on TDH and relation to SMS

We first recall the definition of trapdoor hashing (TDH) [DGI+19]. We adapt the definition
of Döttling et al. [DGI+19] to only consider rate-1 trapdoor hash schemes (which is our SMS
scheme will imply).

Definition 6.8.1 (Trapdoor Hash Scheme [DGI+19]). Let λ ∈ N be a security parameter
and let F = {FL}L∈N be a class of predicates, where each FL is a set of predicates defined
over {0, 1}L. A trapdoor hash (TDH) scheme for F consists of efficient algorithms TDH =
(Setup,KeyGen,Hash,Encode,Decode) with the following syntax:
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• Setup(1λ, 1L)→ hk. The randomized setup algorithm takes as input a security parameter
and an input length L. It outputs a public hash key hk.

• KeyGen(hk, f)→ (ek, td). The randomized generation algorithm takes as input a hash
key hk and a predicate f ∈ FL. It outputs an encoding key ek and a trapdoor td.

• Hash(hk, X; ρ)→ d. The deterministic hashing algorithm takes as input a hash key hk,
a string X ∈ {0, 1}L and random coins ρ ∈ {0, 1}∗. It outputs a digest d ∈ {0, 1}ℓ.

• Encode(ek, X; ρ)→ e. The deterministic encoding algorithm takes as input an encoding
key ek, a string X ∈ {0, 1}L and random coins ρ ∈ {0, 1}∗. It outputs a bit e.

• Decode(td, d)→ (e0, e1). The deterministic decoding algorithm takes as input a trapdoor
td, a digest d ∈ {0, 1}ℓ, and outputs a pair of bits (e0, e1).

Correctness. A TDH scheme is correct if for all security parameters λ ∈ N, all X ∈ {0, 1}L,
and all predicates f ∈ FL, there exists a negligible function negl(·) such that:

Pr


e = ef(X) ∧ e ̸= e1−f(X) :

hk← Setup(1λ, 1L)

(ek, td)← KeyGen(hk, f)

ρ
R← {0, 1}⋆

d := Hash(hk, X; ρ)

e := Encode(ek, X; ρ)

(e0, e1) := Decode(td, d)


≥ 1− negl(λ).

Function Privacy. A TDH scheme is function-private if for all L = L(λ) ∈ poly(λ), and
all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr

 b = b′ :

hk← Setup(1λ, 1L)

(f0, f1, st)← A(hk)
b

R← {0, 1}
(ek, td)← KeyGen(hk, fb)

b′ ← A(st, ek)

 ≤
1

2
+ negl(λ),

where f0, f1 ∈ FL.

Input Privacy. A TDH scheme is input-private if for all L = L(λ) ∈ poly(λ), and all
efficient adversaries A, there exists a negligible function negl(·) such that:

Pr

 b = b′ :

hk← Setup(1λ, 1L)

(X0, X1, st)← A(hk)
ρ

R← {0, 1}⋆, b
R← {0, 1}

d := Hash(hk, Xb; ρ)

b′ ← A(st, d)

 ≤
1

2
+ negl(λ),
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where X0, X1 ∈ {0, 1}L.

Compactness. A TDH scheme is compact if the digest length ℓ = ℓ(λ) ∈ poly(λ) is
independent of the input length L.

6.8.2 Construction from SMS

We construct TDH from SMS in Figure 6.10. We briefly provide some intuition for the
relationship between TDH and SMS, which helps understand the construction.

Relationship between TDH and SMS. A trapdoor hash (TDH) scheme defines a publicly
parameterized hash function Hashhk : {0, 1}L → {0, 1}ℓ which allows Alice and Bob to execute
the following functionality, described by Döttling et al. [DGI+19]. Here, we explain how it
relates to SMS, which gives some intuition for our construction.

• Step 1: Generate a key and encoding. Bob with a private predicate f ∈ F over {0, 1}L,
for some class of predicates F , generates an encoding key ek and a trapdoor td. The
encoding key ek can be made public and hides the function f , thanks to the function-
privacy property. This step can be emulated by using Bob’s SMS encoding algorithm
SMS.EncodeB with input f .

• Step 2: Hashing. Alice, who has a (long) private input X ∈ {0, 1}L, can use the public
hash key hk to compute a short digest d := Hashhk(X) that does not reveal X thanks
to the input-privacy property, and send it to Bob. This step can be emulated by using
Alice’s SMS encoding algorithm SMS.EncodeA with input X.

• Step 3: Encoding. Using the encoding key ek, anyone (including Alice), can compute
an encoding e := Encode(ek, X) for an input X ∈ {0, 1}L. This step can be emulated
using SMS.DecodeA with input X.

• Step 4: Decoding. Bob, who has the secret trapdoor td, can decode the encoding e to
recover f(X), given only the digest d. This step can be emulated using SMS.DecodeB
with input f .

Observe that the above functionality is similar to SMS yet is strictly weaker in several respects.
First, TDH does not require output-succinctness, since it is defined around predicates (which
output a single bit) rather than computing shares of a function. As such, SMS (satisfying
output succinctness, cf. Definition 6.4.2) is stronger. Similarly, TDH does not require
succinctness for Bob’s encoding key ek (which may grow, for example, with the size of X).
In contrast, SMS requires input succinctness for both parties’ encodings, which makes our
TDH construction achieve this extra feature “for free.”
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Trapdoor Hashing from SMS

Public Parameters. Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme,
and let C be a circuit that takes as input a function f and input X and outputs f(X).

TDH.Setup(1λ, 1L):
1 : crs← SMS.Setup(1λ)

2 : return hk := crs

TDH.KeyGen(hk, f ; ρ):
1 : parse hk = crs

2 : (peB, stB) := SMS.EncodeB(crs, C, f ; ρ)

3 : td := (crs, f, stB)

4 : ek := peB

5 : return (ek, td)

TDH.Hash(hk, X; ρ):
1 : parse hk := crs

2 : (peA,_) := SMS.EncodeA(crs, C,X; ρ)

3 : return d := peA

TDH.Encode(ek, X; ρ):
1 : parse ek := peB

2 : (peA, stA) := SMS.EncodeA(crs, C,X; ρ)

3 : zA := SMS.DecodeA(crs, peB, stA)

4 : return e := zA

TDH.Decode(td, d):
1 : parse td := (crs, f, stB)

2 : parse d = peA

3 : zB := SMS.DecodeB(crs, f, peA, stB)

4 : e0 := zB

5 : e1 := zB ⊕ 1

6 : return (e0, e1)

Figure 6.10: Trapdoor Hashing from SMS.

Proposition 6.8.1. Assume the existence of an SMS scheme for a family of functions F
satisfying full succinctness (cf. Definition 6.4.3) where, additionally, Alice’s public encoding
is of size poly(λ). The TDH construction from Figure 6.10 is a trapdoor hashing scheme
(cf. Definition 6.8.1) for any class of predicates computable via F .

Proof. We prove each property in turn, we note that all the properties of TDH are are almost
immediately implied by SMS.

Correctness. To see correctness, observe that when the predicate outputs zero, i.e., f(X) = 0,
then by inspection and by the correctness of SMS, it holds that

Pr[e⊕ e0 = f(X)] ≥ 1− negl(λ)
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and so it holds that Pr[e = e0] ≥ 1 − negl(λ), when f(X) = 0. Similarly, by noting that
e1 = (e0 ⊕ 1), we have that

Pr[e⊕ e1 = f(X)⊕ 1] ≥ 1− negl(λ),

and so we have that Pr[e ̸= e1] ≥ 1− negl(λ).
The case where f(X) = 1 follows by symmetry. Thus, correctness holds.

Function and Input Privacy. Function and input privacy follow directly from the SMS
privacy for Bob and Alice, respectively. Specifically, the hashing key hk consists only of the
CRS.

To see function privacy, it suffices to note that the encoding key ek is simply the SMS
public encoding of Bob with input y := f (i.e., the description of the function, which is
private to Bob). As such, SMS guarantees privacy of the function in the resulting TDH
scheme.

To see input privacy, it suffices to note that the digest d is simply the public encoding of
Alice computed over her input X. As such, SMS guarantees privacy of the input in the TDH
scheme.

Compactness. Since the digest consists solely of Alice’s public encoding in the SMS scheme,
the size of the digest is poly(λ) when using a fully input-succinct SMS scheme satisfying the
theorem statement (i.e., where Alice’s public encoding is independent of |X|). ■

Remark 46. We note that Bob’s encoding in Figure 6.10 may grow with the size of |X| in
the case where the predicate does not admit a succinct description, since SMS only guarantees
succinctness in Alice’s input but not Bob’s input. However, this is admissible in the context
of TDH where there are no restrictions on the size of Bob’s encoding key ek.

Using the fact that our LWE construction of SMS from Section 6.5 supports polynomial-
depth circuits (or all circuits under circular-security of LWE) and, in addition, Alice’s public
encoding in our construction is of size poly(λ), we obtain the following corollary:

Corollary 6.8.1. Under the LWE assumption (with a superpolynomial modulus-to-noise
ratio), there exists a TDH scheme for all polynomial-depth predicates. By additionally
assuming the circular security of LWE, there exists a TDH scheme for all polynomial-size
predicates.

6.9 Rate-1 FHE from SMS

In this section, we show that SMS can be used to compile any fully homomorphic encryption
scheme into a rate-1 FHE scheme. We recall the definition of a rate-1 FHE [BDGM19].

At a high level, a rate-1 FHE scheme is an FHE scheme (cf. Definition 6.3.2) adorned
with additional algorithms to compress a vector of ciphertexts into a compact representation
that approaches the message length, asymptotically.

Definition 6.9.1 (Rate-1 Fully Homomorphic Encryption [BDGM19]). A rate-1 FHE scheme
consists of an FHE scheme FHE = (KeyGen,Enc,Eval,Dec) adorned with additional algorithms
(Compress,CompressDec) with the following syntax:
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• Compress(pk, (ct1, . . . , ctm))→ ct∗. The deterministic compression algorithm takes as
input the public key pk and m (possibly evaluated) ciphertexts (ct1, . . . , ctm). It outputs
a compressed ciphertext ct∗.

• CompressDec(sk, ct∗)→ x. The deterministic compressed decryption algorithm takes as
input a compressed ciphertext, the secret key sk, and a compressed ciphertext ct∗. It
outputs the message x.

The above algorithms must satisfy the following properties:

Compressed Correctness. There exists a negligible function negl(·) such that for all
messages x1, . . . , xℓ ∈M and all ℓ-argument, m-output functions f that can be represented
by polynomial-size circuits, we have that:

Pr

 CompressDec(sk, ct∗)

= f(x1, . . . , xℓ)
:

(pk, sk)← KeyGen(1λ)

cti ← Enc(pk, xi),∀i ∈ [ℓ]

ct′j ← Eval(pk, f, (ct1, . . . , ctℓ)),∀j ∈ [m]

ct∗ ← Compress(pk, (ct′1, . . . , ct
′
m))

 ≥ 1− negl(λ),

where the probability is over the randomness of KeyGen and Enc.

Rate-1. For any (pk, sk) in the support of KeyGen and for all ciphertexts ct1, . . . , ctm in the
support of either Enc(pk, ·) or Eval(pk, ·), it holds that:

lim
m→∞

m · |M|
|Compress(pk, (ct1, . . . , ctm))|

= 1.

That is, the compressed ciphertext output by Compress is asymptotically of the same length as
the tuple of m messages it encrypts.

6.9.1 Generic construction from SMS

In Figure 6.11, we present the construction of rate-1 FHE using a sufficiently powerful SMS
scheme. Our construction closely follows the overview from Section 6.1.1.

Remark 47. We briefly remark that, if the underlying (non-compact) FHE scheme satisfies
near-linear decryption (cf. Theorem 6.5.1), then we can obtain a rate-1 FHE using the
transformation described in Figure 6.11 and SMS for just degree-2 functions (e.g., succinct
NIVOLE, for instance). This is because the decryption can be described as a linear function
and we can replace SMS.Decode with a rounding operation to round-away the error, resulting
in additive shares. In other words, we can use the same trick we exploit in our LWE-based
construction in Figure 6.2 and round-away the error from the noisy shares of the decryption
using Lemma 6.2.1. However, we stress that Figure 6.11 is generic and thus works using any
black-box FHE scheme (which may not necessarily have a near-linear decryption).
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Rate-1 FHE from SMS

Public Parameters. Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme,
let FHE = (KeyGen,Enc,Eval,Dec) be an FHE scheme (cf. Definition 6.3.2), and f be
the function that takes as input any FHE secret key s̃k and any L FHE ciphertexts
c̃t1, . . . , c̃tL, and outputs FHE.Dec(s̃k, (c̃t1, . . . , c̃tL)).

FHE1.KeyGen(1λ)

1 : crs← Setup(1λ)

2 : (pk′, sk′)← FHE.KeyGen(1λ)

3 : (peB, stB)← EncodeB(crs, f, sk
′)

4 : pk := (crs, pk′, peB)

5 : sk := (crs, sk′, stB)

6 : return (pk, sk)

FHE1.Compress(pk, (ct1, . . . , ctL))

1 : parse pk = (crs, pk′, peB)

2 : X := (ct1, . . . , ctL)

3 : (peA, stA)← EncodeA(crs, f,X)

4 : zA := DecodeA(crs, f, peB, stA)

5 : ct∗ := (peA, zA)

6 : return ct∗

FHE1.CompressDec(sk, ct∗)

1 : parse sk = (crs, sk′, stB)

2 : parse ct∗ = (peA, zA)

3 : zB := DecodeB(crs, f, peA, stB)

4 : x := zA ⊕ zB

5 : return x

FHE1.Enc(pk, x)

1 : parse pk = (crs, pk′, peB)

2 : return FHE.Enc(pk′, x)

FHE1.Eval(pk, f, ct)

1 : parse pk = (crs, pk′, peB)

2 : return FHE.Eval(pk′, ct)

FHE1.Dec(sk, ct)

1 : parse sk = (crs, sk′, stB)

2 : return FHE.Dec(sk′, ct)

Figure 6.11: Rate-1 FHE from SMS.

6.9.2 Security analysis

We now prove security of our construction.

Proposition 6.9.1. Assume that FHE is an FHE scheme satisfying Definition 6.3.2. The
construction of FHE1 from Figure 6.11 is a rate-1 FHE scheme satisfying Definition 6.9.1.

Proof. We prove each required property in turn.
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Correctness. Correctness of FHE1.Enc, FHE1.Eval, and FHE1.Dec follow immediately from
the correctness of FHE. In fact, our transformation does not modify these algorithms.

Compressed Correctness. We now examine the correctness of FHE1.CompressDec. Notice
that from the correctness of SMS, we have that:

Pr
[
zA ⊕ zB = FHE.Dec(sk′, (ct1, . . . , ctL))

]
≥ 1− negl(λ).

Separately, by the correctness of FHE and a simple union bound over all L = L(λ) ∈ poly(λ)
decryptions, we have that:

Pr
[
FHE.Dec(sk′, (ct1, . . . , ctL) = (x1, . . . , xL)

]
≥ 1− negl(λ).

Therefore, we have that:

Pr
[
zA ⊕ zB = (x1, . . . , xL)

]
≥ 1− negl(λ).

This concludes the proof of the compressed correctness property.

Compactness. Similarly to correctness, the compactness follows directly from the compact-
ness property of FHE.

Rate-1. We recall that the compressed ciphertext ct∗ output by FHE1.Compress is of the
form (peA, zA). Because of the additive reconstruction property of SMS (cf. Definition 6.4.1),
we have that:

|zA| = |(x1, . . . , xL)| = |M| · L.

Moreover, from the ϵ-succinctness property of SMS (cf. Definition 6.4.3), it follows that

|peA| ≤ |M| · Lϵ · poly(λ).

Therefore, we have that |ct∗| ≤ |M| · L+ |M| · Lϵ · poly(λ), which asymptotically approaches
|M| · L.

Security. To prove security, consider the following sequence of hybrids.

• Hybrid H0. This hybrid corresponds to the distribution where x0 is encrypted. That is,
H0 is defined as: {

(pk, ct0)

∣∣∣∣∣ (pk,_)← FHE1.KeyGen(1λ)

ct0 ← FHE1.Enc(pk, x0)

}
.

• Hybrid H1. In this hybrid, we change FHE1.KeyGen to output pk = (crs, pk′, p̃eB),
where crs and pk are distributed identically to H0 but where p̃e← EncodeA(crs, f, 0).

It follows that H1 ≈c H0 by the security of SMS.
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• Hybrid H2. In this hybrid, we encrypt x1. That is,

H2 :=

{
(pk, ct1)

∣∣∣∣∣ (pk,_)← FHE1.KeyGen(1λ)

ct0 ← FHE1.Enc(pk, x1)

}
.

It follows that H2 ≈c H1 by the security of FHE, given that Enc simply outputs FHE.Enc.

• Hybrid H3. In this hybrid, we revert the changes made in H1 and output pk distributed
identically to KeyGen in H0.

It follows that H3 ≈c H2 by the security of SMS. Note that H3 is distributed identically
to: {

(pk, ct1)

∣∣∣∣∣ (pk,_)← KeyGen(1λ)

ct1 ← Enc(pk, x1)

}
.

It follows that no efficient adversary can distinguish between an encryption of x0 and x1

with better than negligible advantage. This concludes the proof of security. ■

6.10 Correlation-Intractable Hashing from SMS

In this section, we show that an SMS scheme implies a correlation-intractable (CI) hashing
for all efficiently searchable relations.

Definition 6.10.1 (Searchable Relations [PS19]). We say that a relation R ⊆ X × Y is
searchable in size S if there exists a function f computable by a size S circuit, such that for
any (x, y) ∈ R, it holds that f(x) = y. This, in particular, means that for every x, there is at
most one witness y for its membership in the relation.

Definition 6.10.2 (Correlation-Intractable Hash Function). Let λ ∈ N be a security param-
eter and let S(λ) ∈ poly(λ) be a circuit size parameter. Let n = n(λ) be the input length
parameter and m = m(λ) be the output length parameter. Let R = {Rλ}λ be a class of rela-
tions that is searchable by circuits of size S(λ) via functions F = {fλ : {0, 1}n → {0, 1}m}λ. A
correlation-intractable (CI) hash function is given by a tuple of algorithms CI = (KeyGen,Hash)
with the following syntax:

• KeyGen(1λ, f) → hk. The randomized key generation algorithm takes as input the
security parameter λ and a function description f ∈ F . It outputs a hash key hk.

• Hash(hk, x)→ d. The deterministic hashing algorithm takes as input the hash key and
an input x ∈ {0, 1}n. It outputs a digest d ∈ {0, 1}m.

The above algorithms must satisfy the following properties:

Indistinguishability. For all security parameters λ ∈ N and all functions f ∈ F , it holds
that: {

hk
∣∣∣ hk← KeyGen(1λ, f)

}
≈c

{
hk

∣∣∣ hk← KeyGen(1λ,0)
}
,

where 0 is the all-zeroes function padded to size S(λ).
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Correlation-Intractability. A hash function family (KeyGen,Hash) is said to be correlation-
intractable for the relation R if for all efficient adversaries A, there exists a negligible function
negl(·) such that:

Pr

[
d = Hash(hk, x) ∧ (x, y) ∈ Rλ :

hk← KeyGen(1λ, fλ)

(x, d)← A(hk)

]
≤ negl(λ),

where the probability is over the randomness of KeyGen and A.

6.10.1 Generic construction from SMS

The construction from SMS is nearly identical to the one described by Brakerski et al. [BKM20]
using trapdoor hash functions. We note that the digest of the CI hash need not be succinct
(and the transformation does not output a succinct digest). Instead, the succinctness property
of SMS is used to argue correlation intractability.

Correlation-Intractable Hashing from SMS
Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme, F be a family of
functions (represented by circuits of size S = S(λ)) that map n = n(λ) bits to m = m(λ)
bits. Let U be the a universal circuit that takes as input a function f ∈ F and an input
x and outputs f(x).

CI.KeyGen(1λ, f)

1 : crs← Setup(1λ)

2 : (peB,_)← EncodeB(crs,U , f)

3 : z
R← {0, 1}m

4 : r
R← {0, 1}λ

5 : hk := (crs, peB, z, r)

6 : return hk

CI.Hash(hk, x)

1 : parse hk = (crs, stB, z, r)

2 : (peA, stA)← EncodeA(crs,U , x; r)
▷ EncodeA uses fixed randomness r.

3 : zA := DecodeA(crs,U , peB, stA)
4 : d := z ⊕ zA

5 : return d

Figure 6.12: Correlation-Intractable Hashing from SMS.

Proposition 6.10.1. Assume the existence of an SMS scheme satisfying full succinctness
(cf. Definition 6.4.3). The CI construction from Figure 6.12 is a correlation-intractable hash
function family satisfying Definition 6.10.2.

Proof. We prove each property in turn.

Indistinguishability. The indistinguishability of the hashing keys follows directly from the
SMS security of Bob. In particular, the choice of function f is equivalent to Bob’s private
input in SMS, and indistinguishability follows trivially from Definition 6.4.1.
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Correlation-Intractability. Suppose, towards contradiction, that there exists an efficient
adversary A that breaks the correlation-intractability property with non-negligible probability
ν(λ). That is,

Pr

[
d = Hash(hk, x) ∧ (x, y) ∈ Rλ :

hk← KeyGen(1λ, fλ)

(x, d)← A(hk)

]
≥ ν(λ).

Then, because (x, y) ∈ Rλ, we have that d = fλ(x), and so we can equivalently write
d = z ⊕ zA, as defined in Hash. That is, we have that:

Pr

[
fλ(x) = z ⊕ zA :

hk← KeyGen(1λ, fλ)

(x, d)← A(hk)

]
≥ ν(λ).

Next, by the correctness of SMS, we have that fλ(x) = zA ⊕ DecodeB(crs, peA, stB), and so
we have that:

Pr

[
zA ⊕ zB = z ⊕ zA :

hk← KeyGen(1λ, fλ)

(x, d)← A(hk)

]
≥ ν(λ)− negl(λ),

where zB = DecodeB(crs, peA, stB).
Therefore, we have that, with probability at least ν(λ)− negl(λ) over the randomness of

KeyGen and A, it holds that z = zB. We will show that this raises a contradiction.
Let m = m(λ) ∈ poly(λ) be the length of the output of the hash. Note that fixing both

crs and stB, the set of all possible zB is bounded by the set of all possible peB, given that
DecodeB is deterministic.

From the ϵ-output succinctness of the SMS scheme, we have |peA| ≤ mϵ · poly(λ). Thus,
the set of all possible zB values has size at most 2mϵ·poly(λ). Recall that z is a randomly and
independently chosen string of size m. Therefore, the probability that z belongs to this set
is at most 2m

ϵ·poly(λ)

2m
, which is negligible when m is a large enough polynomial in λ. This

contradicts the inequality we derived above, assuming that ν(·) is a non-negligible function.
This concludes the proof of correlation-intractability and the proof of Proposition 6.10.1.

■

6.11 Generic Upgrade to a Simulation-Based Definition

In this section, we show that Definition 6.4.1 can be generically upgraded to satisfy a
simulation-based definition for secure computation. Specifically, we show that any SMS
scheme can be generically made to satisfy the (corruptible) ideal functionality presented in
Functionality 1.

Transformation. To transform any SMS scheme satisfying Definition 6.4.1 into one that
instantiates the ideal functionality presented in Functionality 1, we need to “re-randomize”
the output shares (otherwise the simulator would be unable to properly simulate the output
in the case where both parties are honest). This randomization can be achieved with the help
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Functionality Fsms

Procedure. The functionality is instantiated between parties Alice and Bob and an
adversary A playing the role of Charlie and possibly corrupting either Alice or Bob. The
functionality aborts if it receives any incorrectly formatted messages.

• If both parties are honest:

1: Wait for input (X, f) from Alice and (y, f) from Bob.
2: Sample Ri

R← {0, 1}|f(·,·)|.
3: Output f(X, y)⊕Ri to Alice, Ri to Bob, and (f(X, y)⊕Ri, Ri) to A.

• If Alice is corrupted:

1: Wait for input (X, f, out) from A and (y, f) from Bob.
2: Output (f(X, y)⊕ out, out) to A, f(X, y)⊕ out to Bob.

• If Bob is corrupted:

1: Wait for input (y, out) from A and X from Alice.
2: Output (f(X, y)⊕ out, out) to A, f(X, y)⊕ out to Alice.

Functionality 1: Corruptible ideal functionality for SMS.

of a pseudorandom function that the parties use to generate pseudorandom shares of zero,
and does not require introducing any new assumptions. The transformation is described in
Figure 6.13 and uses a non-interactive key exchange (NIKE), which we recall is implied by
Definition 6.4.1 using the reduction of Boyle et al. [BGI+18]. We formally define NIKE in
Definition 6.11.1.

Definition 6.11.1 (Non-Interactive Key Exchange [DH76,CKS08,FHKP13]). Let λ ∈ N be
a security parameter. A non-interactive key exchange (NIKE) scheme consists of algorithms
NIKE = (Setup,KeyGen,KeyDer) with the following syntax:

• Setup(1λ)→ crs. The randomized setup algorithm takes as input the security parameter
λ and outputs a common reference string crs.

• KeyGen(crs) → (pk, sk). The randomized key generation algorithm takes as input the
CRS crs. It outputs a public key pk and secret key sk.

• KeyDer(crs, pki, skj)→ K. The deterministic key derivation algorithm takes as input
the CRS crs, a public key pki, and a secret key skj. It outputs a key K ∈ {0, 1}λ.

The above algorithms must satisfy the following properties:
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Correctness. For all security parameters λ ∈ N, it holds that:

Pr

 KA = KB :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB, skB)← KeyGen(crs)

KA ← KeyDer(crs, pkB, skA)

KB ← KeyDer(crs, pkA, skB)

 = 1.

Security. For all efficient adversaries A, there exists a negligible function negl(·) such that:

Pr


b = b′ :

crs← Setup(1λ)

(pkA, skA)← KeyGen(crs)

(pkB, skB)← KeyGen(crs)

K0 ← KeyDer(crs, pkA, skB)

K1
R← {0, 1}λ

b
R← {0, 1}

b′ ← A(crs, pkA, pkB, Kb)


≤ 1

2
+ negl(λ).

In particular, this security definition for NIKE is known as “CKS-light” security [FHKP13],
which is known to be polynomially equivalent to stronger notions of NIKE.
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Simulation-Secure SMS Transformation
Let SMS = (Setup, (Encodeσ,Decodeσ)σ∈{A,B}) be an SMS scheme, NIKE =
(Setup,KeyGen,KeyDer) be a NIKE scheme, and let F : {0, 1}λ × {0, 1}⋆ → {0, 1}m be a
PRF. We let σ := {A,B} \ {σ}.

SMS∗.Setup(1λ):
1 : crssms ← SMS.Setup(1λ)

2 : crsnike ← NIKE.Setup(1λ)

3 : return crs := (crssms, crsnike)

SMS∗.Encodeσ(crs, f, xσ):
1 : parse crs = (crssms, crsnike)

2 : (pe′σ, st
′
σ)← SMS.Encodeσ(crs, f, xσ)

3 : (pkσ, skσ)← NIKE.KeyGen(crsnike)

4 : peσ := (pe′σ, pkσ)

5 : return (peσ, stσ)

SMS∗.Decodeσ(crs, f, peσ, stσ):
1 : parse crs = (crssms, crsnike)

2 : parse peσ = (pe′σ, pkσ)

3 : z′σ := SMS.Decodeσ(crs, pe
′
σ, stσ)

4 : K := NIKE.KeyDer(pkσ, skσ)

5 : zσ := z′σ ⊕ FK(f)

Figure 6.13: Generic transformation to simulation-security.

Claim. The transformed SMS scheme SMS∗ described in Figure 6.13, when viewed as an
interactive protocol between Alice, Bob, and Charlie, securely instantiates Fsms.

Proof. We consider the three possible cases:
Case 1: Both parties are honest. On input the CRS crs and f(X, y), the simulator generates
zA uniformly at random and defines zB := zA⊕ f(X, y) and outputs (zA, zB) as the simulated
view of the adversary, which matches the output of Fsms. We prove that this simulated view
is computationally indistinguishable to the real view of the adversary via a hybrid argument:

• Hybrid H0. This hybrid corresponds to the output (zA, zB) in the real view.

• Hybrid H1. In this hybrid, we define zB := zA ⊕ f(X, y). This hybrid is statistically
indistinguishable to the previous one by the correctness property of the underlying SMS
scheme.

• Hybrid H2. In this hybrid, the key K is sampled uniformly at random. This hybrid
is computationally indistinguishable to the previous one by the security of the NIKE
scheme.

• Hybrid H3. In this hybrid, zA is sampled uniformly at random from {0, 1}m. This hybrid
is computationally indistinguishable to the previous one by the pseudorandomness of
the PRF.
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At this point, it suffices to note that the distribution in H3 is identical to the simulated
distribution, concluding the proof.

Case 2: Party A is corrupted. Suppose that Alice is corrupted by the adversary A. We
construct an efficient simulator S that interacts with Fsms to simulate the view of the adversary
A, which matches the output of Fsms. We start with the description of S.

S: On input the CRS crs, Alice’s input (X, f), and the random coins of A,

- Compute (peB,_)← SMS.EncodeB(crs, 0).

- Use the private state stA of Alice (which is can be obtained from the random coins of A
in the semi-honest setting) to compute zA := DecodeA(crs, f, peB, stA).

- Send (X, f, zA) to Fsms on behalf of A, and receive (f(X, y)⊕ zA, zA) from Fsms.

- Define zB := f(X, y)⊕ zA.

- Output (X, f, zA, peB, zB).

We now show that the view generated by S is computationally indistinguishable to the
view of A in the real protocol execution via the following sequence of hybrids.

• Hybrid H0. This hybrid consists of the view (X, f, zA, peB, zB) of the adversary A in
the real execution of the protocol, where A corrupts Alice and plays the role of Charlie.

• Hybrid H1. In this hybrid, we define zB as zB := zA⊕f(X, y). This hybrid is statistically
close to the previous one by the correctness property of the SMS scheme.

• Hybrid H2. In this hybrid, we generate peB as the output of SMS.EncodeB(crs, 0) and
derive zA using SMS.DecodeA. This hybrid is indistinguishable to the previous one
from security the property of the SMS scheme.

At this point, it suffices to note that H2 is distributed identically to the view generated
by S in the ideal world, which concludes the proof.

Case 3: Party B is corrupted. This case follows by symmetry.
■

6.12 Deferred Proofs

6.12.1 Proof of Proposition 6.6.3

We prove that the real view of the adversary is computationally indistinguishable to a
simulated view. First, we describe the simulator S for peB.
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S: On input crs,

- Parse crs = hk.

- Sample K ← PPRF.KeyGen(1λ)

- Compute P̃ sim ← iO(1λ, P sim), where P sim is as described in Program 4 with hardcoded
inputs (hk, K). Notice that the program does not contain y.

- Output peB := P̃ sim

Program 4: The Simulated Program
Hardcoded: (hk,K).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

2: Ri := PPRF.Eval(K, cX̂∥f∥i)
3: return Ri

4: else return ⊥

We now turn to proving that the output of S is computationally indistinguishable to peB as
computed by EncodeB in Figure 6.5.

Notation. Let n denote the domain length (in bits) of the puncturable PRF PPRF and
consider the 2n possible inputs to PPRF. Let (cj∥fj∥ij), parsed as a binary string of length
n, denote the j-th canonical input in the domain of the PPRF.

Circuit padding. We assume, without loss of generality, that all obfuscated programs (including
Bob’s Program 1 and the simulated Program 4) have a polynomial amount of padding added
to the circuit so as to make all the obfuscations used in the security proof have the same
circuit size as Program 1.

Consider the following sequence of hybrids.

• Hybrid H0. This hybrid consists of the peB computed exactly according to EncodeB
in Figure 6.5. In particular, peB consists of an obfuscation of program P described in
Program 1.

• Hybrid H1,j. We define H1,j to be the hybrid distribution where we replace the obfus-
cation of the program P with an obfuscation of the program P

(1,j)
hyb . The program P

(1,j)
hyb

is described in Hybrid 1. Moreover, in this hybrid, we set hk← SSB.KeyGen(1λ, L, ij).
That is, we make the SSB hash statistically binding on index ij as parsed from the j-th
canonical input (cj∥fj∥ij).

P
(1,j)
hyb has a PPRF master key K0, along with the j-th canonical input in the PPRF

domain (denoted (cj∥fj∥ij)), as additional harcoded inputs. Additionally, it uses the out-
put mask Ri, computed as Ri := PPRF.Eval(K0, cX̂∥f∥i), for all inputs (cX̂ , xi, (x̂i, ri), i, πi, f)
where (cX̂∥f∥i) is smaller than (cj∥fj∥ij) (the comparison is performed with respect to
some arbitrary total ordering assigned to all the inputs in the PPRF domain).
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Hybrid 1: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂∥f∥i) < (cj∥fj∥ij) if (cX̂∥f∥i) ≥ (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂ , f, i)

2: return R

1: Ri := PPRF.Eval(K, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H1,0 ≈c H0 assuming the security of iO.

Proof. The only difference between H1,0 and H0 is the inclusion of additional hardcoded
inputs since the PPRF key K0 is not used when j = 0. In particular, P (1,0)

hyb and P are
functionally equivalent (and of equivalent size due to padding). Indistinguishability
thus follows directly from the security of iO. □

• Hybrid H2,j. We define H2,j to be the hybrid distribution where we replace the
obfuscation of the program P

(1,j)
hyb with an obfuscation of the program P

(2,j)
hyb . The

program P
(2,j)
hyb is described in Hybrid 2 and has the hardcoded master PPRF key

K replaced with a punctured PPRF key K∗ ← PPRF.Puncture(K, (cj∥fj∥ij)), and
additionally has the value R∗ := PPRF.Eval(K, cj∥fj∥ij) as a hardcoded input.

Hybrid 2: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K

∗, R∗, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂∥f∥i) < (cj∥fj∥ij) if (cX̂∥f∥i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂∥f∥i)
2: return Ri

1: d := U(f, xi, y)

2: return d⊕R∗
1:

Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H2,j ≈c H1,j assuming the security of iO.

Proof. Note that the program P
(2,j)
hyb outputs the same mask value as the program P

(1,j)
hyb

on the punctured PPRF input (cj∥fj∥ij), given that R∗ = PPRF.Eval(K, cj∥fj∥ij).
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Furthermore, since PPRF.Eval(K, ·) and PPRF.Eval(K∗, ·) agree on all other inputs, the
two programs are functionally equivalent. The claim then follows directly from the
security of iO. □

• Hybrid H3,j. We define H3,j to be the hybrid distribution where we replace the
obfuscation of the program P

(2,j)
hyb with an obfuscation of the program P

(3,j)
hyb . The

program P
(3,j)
hyb is described in Hybrid 3 and has the hardcoded mask R∗ replaced with

a uniformly random output R sampled from the support of the PPRF.

Hybrid 3: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K

∗, R, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂∥f∥i) < (cj∥fj∥ij) if (cX̂∥f∥i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂∥f∥i)
2: return Ri

1: d := U(f, xi, y)

2: return d⊕R

1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H3,j ≈c H2,j assuming the security of the PPRF.

Proof. Notice that any distinguisher between H3,j ≈c H2,j is also a distinguisher for
the PPRF security game, given that R∗ is distributed identically to the case where the
challenger outputs the PPRF evaluation and R is distributed identically to the case
where the challenger outputs a uniformly random output. The claim then follows from
the security of the PPRF. □

• Hybrid H4,j. This hybrid depends on a preprocessing phase.

1. In the preprocessing phase, the value xij is computed by finding any tuple of values
(x̂ij , xij , πi, ri) such that:

x̂cj = Commit(xij ; ri) ∧ SSB.Verify(hk, cj, x̂ij , πij) = 1.

Then, the value dij is computed by evaluating dij := U(fj, xij , y).

2. We then define H4,j to be the hybrid distribution where we replace the obfuscation
of the program P

(3,j)
hyb with an obfuscation of the program P

(4,j)
hyb . The program

P
(4,j)
hyb is described in Hybrid 4 and has the value dj ⊕ R hardcoded as an input,

where R is as defined in H3,j.
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Hybrid 4: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K0,K

∗, dj ⊕R, y, (cj∥fj∥ij)).
Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂ , f, i) < (cj∥fj∥ij) if (cX̂ , f, i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K0, cX̂∥f∥i)
2: return Ri

1: return dj ⊕R 1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H4,j ≈c H3,j assuming the security of iO, the somewhere perfect binding of
the SSB hash function, and the perfect binding of the commitment scheme.

Proof. At a high level, we prove that there is only one input to the program P
(3,j)
hyb that

makes it output d⊕R at the punctured input. Then, because dj ⊕R is hardcoded in
P

(3,j)
hyb , and is identical to the output on the punctured input in P

(4,j)
hyb , we can invoke

the security of iO to finish proving the claim.

Formally, suppose, towards contradiction, that there exists a pair of inputs on which
P

(3,j)
hyb outputs d⊕R and d′ ⊕R, respectively, using the same hardcoded value of R and

some d ̸= d′.8 Let this pair of inputs be:

(cX̂ , x, (x̂, r), i, π, f) ̸= (c′
X̂
, x′, (x̂′, r′), i′, π′, f ′).

By inspection of P (3,j)
hyb (described in Hybrid 3), it is clear that if these inputs produce

outputs d⊕R and d′ ⊕R, respectively, then the following three conditions must hold
simultaneously:

(1) (cX̂ , f, i) = (cj, fj, ij) = (c′
X̂
, f ′, i′), ▷ Otherwise, R is not used.

(2) x̂ = Commit(x; r) ∧ x̂′ = Commit(x′; r′), and ▷ Otherwise, the output is ⊥.

(3) SSB.Verify(hk, cX̂ , x̂, i, π) = SSB.Verify(hk, c′
X̂
, x̂′, i′, π′) = 1.

By (1) we have that f = f ′, and so it must be the case that x ̸= x′ given that
d = f(x, y) ̸= f(x′, y) = d′. Moreover, because Commit is perfectly binding, we also
have that x̂ ̸= x̂′. Then, using (1), we can rewrite (3) as:

SSB.Verify(hk, cX̂ , x̂, i, π) = SSB.Verify(hk, cX̂ , x̂
′, i, π′) = 1.

This implies that there exist at least two openings x̂′ ̸= x̂ for the same index i, such that
8While there may be other inputs that produce collisions in the PPRF outputs such that Ri = R, we only

need to examine the case where the hardcoded value R is used twice. For all other inputs, the two programs
behave identically.
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SSB.Verify accepts under the same hash key hk and hash cX̂ . However, in P
(3,j)
hyb , the

SSB hash hk was set to be perfectly binding on index ij = i, which raises a contradiction.
Intuitively, the PPRF evaluation forces cX̂ and i to be consistent with c′

X̂
and i′.

At this point, we conclude that the hardcoded value R is only used to mask a single
output value d in P

(3,j)
hyb . Moreover, by the analysis above, the output value dj (as

computed in the preprocessing phase of P (4,j)
hyb ) must be equal to d (as output by P

(3,j)
hyb ).

To see this, first note that cX̂ = cj since otherwise d is not output. Then, by our
analysis above, we have that the inputs xij = x and fj = f are uniquely determined by
cj = cX̂ . So the preprocessing outputs dj = d, as output by P

(3,j)
hyb on the punctured

input.

It follows that P (4,j)
hyb is functionally equivalent to P

(3,j)
hyb on the punctured input. Since

the two programs also agree on all other inputs, the two programs are therefore
functionally equivalent and the claim follows from the security of iO against a non-
uniform distinguishing adversary that is given the preprocessing as non-uniform advice.

□

• Hybrid H5,j. We define H5,j to be the hybrid distribution where we replace the
obfuscation of the program P

(4,j)
hyb with an obfuscation of the program P

(5,j)
hyb . The

program P
(5,j)
hyb is described in Hybrid 5 and has the hardcoded master PPRF key K0

replaced with a punctured PPRF key K∗0 ← PPRF.Puncture(K0, (cj∥fj∥ij)).

Hybrid 5: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K∗

0 ,K
∗, dj ⊕R, y, (cj∥fj∥ij)).

Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂ , f, i) < (cj∥fj∥ij) if (cX̂ , f, i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K∗
0 , cX̂∥f∥i)

2: return Ri

1: return dj ⊕R 1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H5,j ≈c H4,j assuming the security of iO.

Proof. The master PPRF key K0 is never used to evaluate the punctured input in H4,j

and so we can conclude the two programs are functionally equivalent. The claim follows
from the security of iO against non-uniform distinguishing adversaries (we still require
the preprocessing to compute dj ⊕R as non-uniform advice). □
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• Hybrid H6,j. We define H6,j to be the hybrid distribution where we replace the
obfuscation of the program P

(5,j)
hyb with an obfuscation of the program P

(6,j)
hyb . The

program P
(6,j)
hyb is described in Hybrid 6 and has the hardcoded output dj ⊕R replaced

with the value R∗ := PPRF.Eval(K0, cj∥fj∥ij), computed using the PPRF master key
K0.

Hybrid 6: (Parameterized by j ∈ {0, 1, . . . , 2n} and a universal circuit U)
Hardcoded: (hk,K∗

0 ,K
∗, R∗, y, (cj∥fj∥ij)).

Input: (cX̂ , xi, (x̂i, ri), i, πi, f).
Procedure:
1: if x̂i = Commit(xi; ri) ∧ SSB.Verify(hk, cX̂ , x̂i, i, πi) = 1 then

if (cX̂ , f, i) < (cj∥fj∥ij) if (cX̂ , f, i) = (cj∥fj∥ij) if (cX̂∥f∥i) > (cj∥fj∥ij)

1: Ri := PPRF.Eval(K∗
0 , cX̂ , f, i)

2: return Ri

1: return R∗ 1: Ri := PPRF.Eval(K∗, cX̂∥f∥i)
2: d := U(f, xi, y)

3: return d⊕Ri

2: else return ⊥

Claim. H6,j ≈c H5,j assuming the security of the PPRF.

Proof. The proof is almost identical to the proof for H3,j ≈c H2,j . In particular, observe
that dj ⊕R is distributed as a uniformly random string, by the fact that R is uniformly
random. As such, indistinguishability is implied by the puncturing security of the
PPRF. □

• Hybrid H7,j. We define H7,j to be the hybrid distribution where we set

hk← SSB.KeyGen(1λ, L, ij+1).

That is, we make the SSB hash statistically binding on index ij, as parsed from the
(j + 1)-st canonical input (cj+1∥fj+1∥ij+1).

Claim. H7,j ≈c H6,j assuming the index-hiding of the SSB hash function.

Proof. On the one hand, if the switch from H6,j to H7,j has ij = ij+1 (recall that we are
switching over from one canonical input to the next, which may not change the value
of ij and ij+1), the claim follows trivially. On the other hand, if the switch from H6,j

to H7,j has ij ̸= ij+1, then the claim follows directly from the index-hiding property of
the SSB hash. □

Claim. H1,j+1 ≈c H7,j assuming the security of iO.

Proof. The claim follows immediately by noticing that the two programs compute identical
values at the punctured input, making them functionally equivalent. The claim then follows
directly from the security of iO. □
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Lemma 6.12.1. H1,2n ≈c H1,0 assuming the sub-exponential security of iO, the existence
of sub-exponentially secure one-way functions, the existence of injective one-way functions
(for perfectly-binding commitments), and the security of somewhere statistical binding hash
functions with (perfect) binding.

Proof. First, following Section 6.6.3, we can complexity leverage by assuming sub-exponential
security of iO and one-way functions. Then, we have that H1,j+1 ≈c H7,j and H7,j ≈c H1,j,
which implies that H1,j ≈c H1,j+1. It then follows from Section 6.6.3 that we can set
parameters such that there does not exist an efficient distinguisher D with a sub-exponential
distinguishing advantage between hybrids H1,0 and H1,2n .

Finally, we note that injective one-way functions give us perfectly-binding commitment
schemes (cf. Definition 6.6.4). This concludes the proof of the lemma. □

Corollary 6.12.1. S(crs) ≈c H1,2n assuming the security of iO.

Proof. Indistinguishability follows from the fact that the program P
(1,2n)
hyb (cf. Hybrid 1) does

not use the hardcoded input y at all which, by the security of iO, makes the obfuscation
of P (1,2n)

hyb computationally indistinguishable to the obfuscation of P sim. This concludes the
proof of the corollary. □

This concludes the proof of Proposition 6.6.3. ■

Remark 48 (On the security of the SSB hash). Note that though the above proof relies on
2n hybrids, the number of times that index hiding security of SSB hashing is invoked is only
L (which is the batch size). Therefore, it is sufficient to rely on polynomially-secure SSB
hashing rather than a sub-exponential secure version.
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