Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions

Sacha Servan-Schreiber

This talk: New ways of building constrained PRFs

Overview

- Background on PRFs and constrained PRFs
- A secret sharing perspective on constrained PRFs
- Construction in the random oracle model
- Our framework and instantiations
- Implementation
- Open problems

Constrained PRFs

A function $F:\mathcal{K} imes\mathcal{X} o\mathcal{Y}$ is a PRF if:

A function $F:\mathcal{K} imes\mathcal{X} o\mathcal{Y}$ is a PRF if:

Setup phase (one time)

Challenger

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

$$k \overset{R}{\leftarrow} \mathcal{K}$$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

Challenger

2 $R \leftarrow \overline{\mathcal{F}uns(\mathcal{X}, \mathcal{Y})}$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

- 2 $R \stackrel{R}{\leftarrow} \overline{\mathcal{F}uns}\left(\mathcal{X}, \mathcal{Y}\right)$
- $3 \quad b \overset{R}{\leftarrow} \{0,1\}$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

Challenger

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- $\mathbf{3} \ b \overset{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

Challenger

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- $\boxed{\mathbf{3}} \ b \overset{R}{\leftarrow} \ \{0,1\}$

Query phase (repeatable)

$$egin{array}{cccc} oldsymbol{4} & y_i \,:=\, egin{cases} F\left(k,\,x_i
ight) & ext{if } b=0 \ R\left(x_i
ight) & ext{if } b=1 \end{cases}$$

A function $F:\mathcal{K} imes\mathcal{X} o\mathcal{Y}$ is a PRF if:

Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- $3 \quad b \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

$$egin{array}{cccc} oldsymbol{4} & y_i \,:=\, egin{cases} F\left(k,\,x_i
ight) & ext{if } b=0 \ R\left(x_i
ight) & ext{if } b=1 \end{cases}$$

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a PRF if:

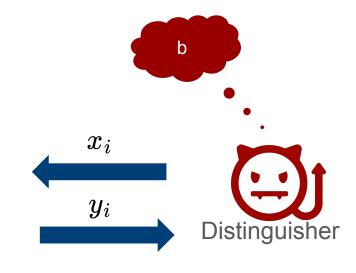
Setup phase (one time)

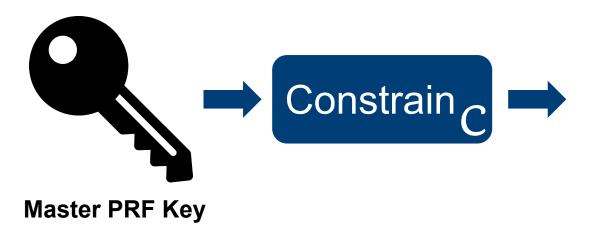
- $1 \quad k \stackrel{R}{\leftarrow} \mathcal{K}$
- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- $3 \quad b \stackrel{R}{\leftarrow} \{0,1\}$

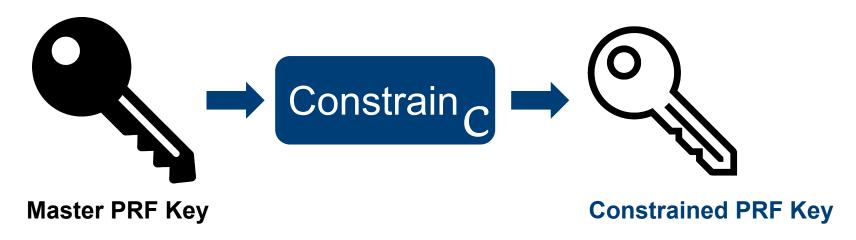
Query phase (repeatable)

 $egin{array}{cccc} oldsymbol{4} & y_i \, := \, egin{cases} F\left(k,\,x_i
ight) & ext{if } b = 0 \ R\left(x_i
ight) & ext{if } b = 1 \end{cases}$

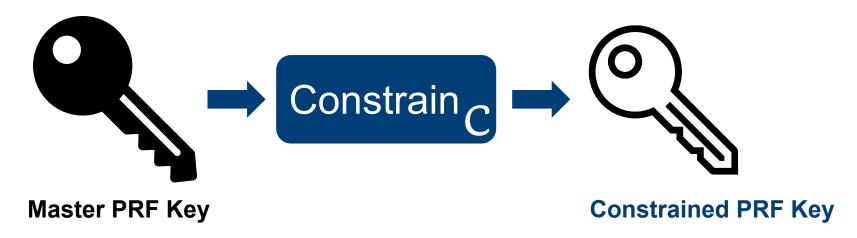
Challenger

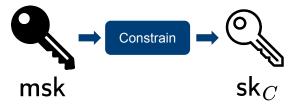


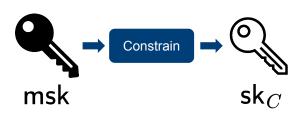




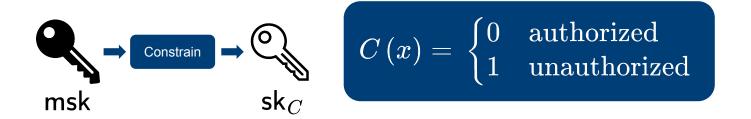
CPRFs have an additional constrain functionality:







$$C\left(x
ight) =egin{cases} 0 & ext{authorized} \ 1 & ext{unauthorized} \end{cases}$$



Correctness: If $C\left(x\right)=0$ then $F\left(\mathsf{msk},x\right)=F\left(\mathsf{sk}_{C},\,x\right)$

Constrain
$$\rightarrow$$
 Constrain \rightarrow C

Correctness: If C(x) = 0 then $F(\mathsf{msk}, x) = F(\mathsf{sk}_C, x)$

Pseudorandomness: If $C\left(x
ight)
eq 0$ then $F\left(\mathsf{msk},x
ight)$ is pseudorandom given sk_{C}

Constrain
$$\rightarrow$$
 Constrain \rightarrow C

Correctness: If C(x) = 0 then $F(\mathsf{msk}, x) = F(\mathsf{sk}_C, x)$

Pseudorandomness: If $C\left(x
ight)
eq 0$ then $F\left(\mathsf{msk},x
ight)$ is pseudorandom given sk_{C}

Hiding (optional): C is hidden given sk_C

Our focus: Inner-product predicates

Our focus: Inner-product predicates

$$C\left(\mathbf{x}
ight) = \left\langle \mathbf{z}, \mathbf{x}
ight
angle \, \in \, \mathbb{F} \, ext{ where } \mathbf{z}, \mathbf{x} \, \in \mathbb{F}^{\ell}$$

Our focus: Inr

Predicate satisfied if and only if the inner product is zero

$$C\left(\mathbf{x}
ight) = \left\langle \mathbf{z}, \mathbf{x}
ight
angle \, \in \, \mathbb{F} \, ext{ where } \mathbf{z}, \mathbf{x} \, \in \mathbb{F}^{\ell}$$

Our focus: Inr

Predicate satisfied if and only if the inner product is zero

$$C\left(\mathbf{x}
ight) = \left\langle \mathbf{z}, \mathbf{x}
ight
angle \, \in \, \mathbb{F} \, ext{ where } \mathbf{z}, \mathbf{x} \, \in \mathbb{F}^{\ell}$$

Can be used to build other predicates, generically:

Our focus: Inr

Predicate satisfied if and only if the inner product is zero

$$C\left(\mathbf{x}
ight) = \left\langle \mathbf{z}, \mathbf{x}
ight
angle \, \in \, \mathbb{F} \, ext{ where } \mathbf{z}, \mathbf{x} \, \in \mathbb{F}^{\ell} \, .$$

Can be used to build other predicates, generically:

t-CNF predicates (for constant t) [DKN+20]

Our focus: Inr

Predicate satisfied if and only if the inner product is zero

$$C\left(\mathbf{x}
ight) = \left\langle \mathbf{z}, \mathbf{x}
ight
angle \, \in \, \mathbb{F} \, ext{ where } \mathbf{z}, \mathbf{x} \, \in \mathbb{F}^{\ell} \, .$$

Can be used to build other predicates, generically:

- t-CNF predicates (for constant t) [DKN+20]
- Bit-fixing predicates (special case of t-CNF) [DKN+20]

Our focus: Inr

Predicate satisfied if and only if the inner product is zero

$$C\left(\mathbf{x}
ight) = \left\langle \mathbf{z}, \mathbf{x}
ight
angle \, \in \, \mathbb{F} \, ext{ where } \mathbf{z}, \mathbf{x} \, \in \mathbb{F}^{\ell} \, .$$

Can be used to build other predicates, generically:

- t-CNF predicates (for constant t) [DKN+20]
- Bit-fixing predicates (special case of t-CNF) [DKN+20]
- Matrix-product predicates (folklore & this work)

Security Definitions

Setup phase (one time)

Setup phase (one time)

 $\mathsf{msk} \overset{\scriptscriptstyle R}{\leftarrow} \mathcal{K}$

Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

Challenger

2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns(\mathcal{X}, \mathcal{Y})$

Setup phase (one time)

- 1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$
- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$

Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

Challenger

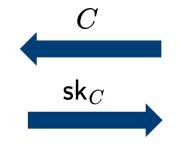
2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$

Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

Challenger

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$

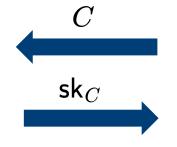


Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

Challenger

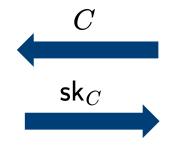
- 2 $R \overset{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \overline{\mathcal{Y}}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$
- $4 \quad b \stackrel{R}{\leftarrow} \{0,1\}$



Setup phase (one time)

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$
- $4 \quad b \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)



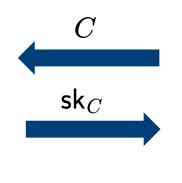
Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

Challenger

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$
- $4 \quad b \stackrel{\overline{R}}{\leftarrow} \overline{\{0,1\}}$

Query phase (repeatable)



Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

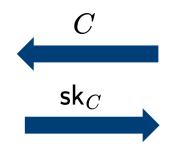
Challenger

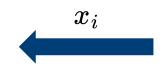
- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$
- $4 \quad b \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

 $egin{array}{|c|c|c|c|c|} oldsymbol{5} & y_i := egin{array}{ccc} F\left(\mathsf{msk},\,x_i
ight) & ext{if } b = 0 \ R\left(x_i
ight) & ext{if } b = 1 \end{array}$

Need: $\overline{C}(x_i)
eq 0$ for all $\overline{x_i \in \mathcal{X}}$.





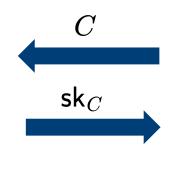
Setup phase (one time)

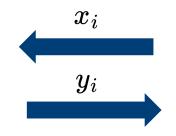
Challenger

- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$
- $4 \quad b \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

5 $y_i := egin{cases} F\left(\mathsf{msk},\,x_i
ight) & ext{if } b = 0 \ R\left(x_i
ight) & ext{if } b = 1 \end{cases}$ Need: $C\left(x_i
ight)
eq 0 ext{ for all } x_i \in \mathcal{X}.$





Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

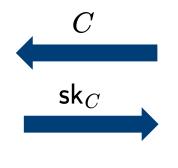
Challenger

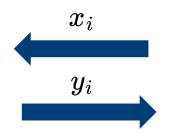
- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$
- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constrain}\left(\mathsf{msk},C\right)$
- $4 \quad b \stackrel{R}{\leftarrow} \{0,1\}$

Query phase (repeatable)

 $egin{array}{|c|c|c|c|c|} oldsymbol{5} & y_i := egin{array}{ccc} F\left(\mathsf{msk},\,x_i
ight) & ext{if } b = 0 \ R\left(x_i
ight) & ext{if } b = 1 \end{array}$

Need: $\overline{C}(x_i)
eq 0$ for all $\overline{x_i \in \mathcal{X}}$.

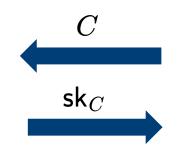




(1-key, adaptive) CPRF security game

Setup phase (one time)

- 1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$
- 2 $R \stackrel{R}{\leftarrow} \mathcal{F}uns\left(\mathcal{X}, \mathcal{Y}\right)$

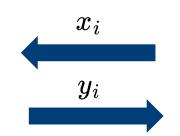


- 3 $\mathsf{sk}_C \leftarrow \mathsf{Constract}$ 4 $b \overset{R}{\leftarrow} \{0,1\}$
- Adaptive security lets the adversary query the challenger before sending the constraint.

Query phase (repeatable)

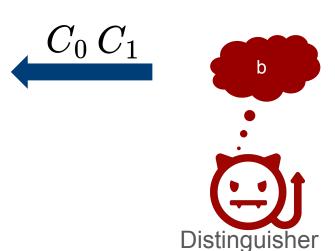
$$5 \quad y_i \, := \, \begin{cases} F\left(\mathsf{msk}, \, x_i\right) & \text{if } b = 0 \\ R\left(x_i\right) & \text{if } b = 1 \end{cases}$$

Need: $C\left(x_{i}
ight)
eq 0 ext{ for all } x_{i} \in \mathcal{X}.$



Setup phase (one time)

- 1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$
- $2 \quad b \xleftarrow{R} \{0,1\}$



Setup phase (one time)

Challenger

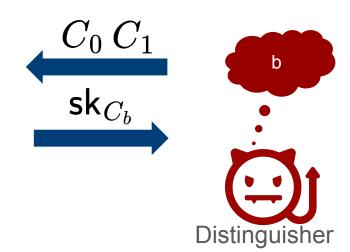
- 1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$
- $2 \quad b \stackrel{R}{\leftarrow} \{0,1\}$
- $\overline{\mathbf{3}} \ \mathsf{sk}_{C_b} \leftarrow \mathsf{Constrain}\left(\mathsf{msk}, C_b\right)$

Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

Challenger

- $2 \quad b \overset{R}{\leftarrow} \{0,1\}$
- $\overline{\mathbf{3}} \ \mathsf{sk}_{C_b} \leftarrow \mathsf{Constrain}\left(\mathsf{msk}, C_b\right)$



Setup phase (one time)

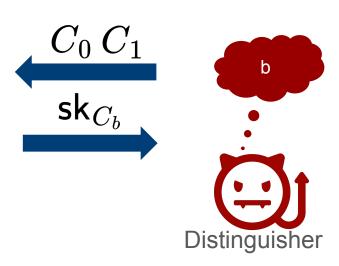
1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

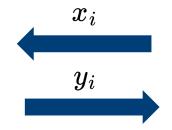
Challenger

- $2 \quad b \stackrel{R}{\leftarrow} \{0,1\}$
- 3 $\mathsf{sk}_{C_b} \leftarrow \mathsf{Constrain}\left(\mathsf{msk}, C_b\right)$

Query phase (repeatable)

 $4 \quad y_i := F\left(\mathsf{msk}, x_i\right)$





Setup phase (one time)

1 msk $\stackrel{R}{\leftarrow} \mathcal{K}$

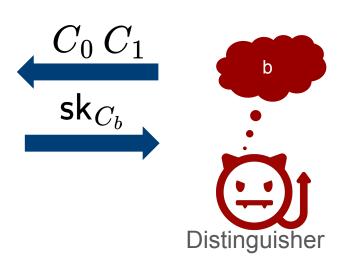
Challenger

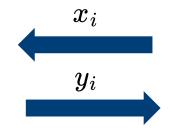
- $2 \quad b \stackrel{R}{\leftarrow} \{0,1\}$
- 3 $\mathsf{sk}_{C_b} \leftarrow \mathsf{Constrain}\left(\mathsf{msk}, C_b\right)$

Query phase (repeatable)

 $4 \quad y_i := F(\mathsf{msk}, x_i)$

Must satisfy $C_{0}\left(x
ight)=C_{1}\left(x
ight)$ for all queries $x_{i}\in\mathcal{X}$





Assumptions	Security	Hiding	Comments

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	√	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	×	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	×	For NC ¹

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	

Can we build CPRFs from weaker assumptions?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	

Can we build CPRFs for inner-product predicates using random oracles?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	✓	

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	1	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	1	

Can we build CPRFs for inner-product predicates from DDH?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	1	
This work	ROM	Adaptive	✓	
This work	DDH	Selective	✓	

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	✓	
This work	DDH	Selective	✓	

Can we build CPRFs for inner-product predicates from LPN?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	1	
This work	DDH	Selective	✓	
This work	VDLPN	Selective	✓	Weak CPRF (random inputs)

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	✓	
This work	DDH	Selective	✓	
This work	VDLPN	Selective	✓	Weak CPRF (random inputs)

Can we build CPRFs for inner-product predicates from OWF?

	Assumptions	Security	Hiding	Comments
Generic CPRFs	LWE or iO	Selective	✓	For NC and P/poly
[AMN+18]	L-DDHI + DDH	Selective	X	For NC ¹
[AMN+18]	L-DDHI + ROM	Adaptive	X	For NC ¹
[CMPR23]	DCR	Selective	✓	
This work	ROM	Adaptive	✓	
This work	DDH	Selective	✓	
This work	VDLPN	Selective	✓	Weak CPRF (random inputs)
This work	OWF	Selective	✓	Only for a polynomial domain

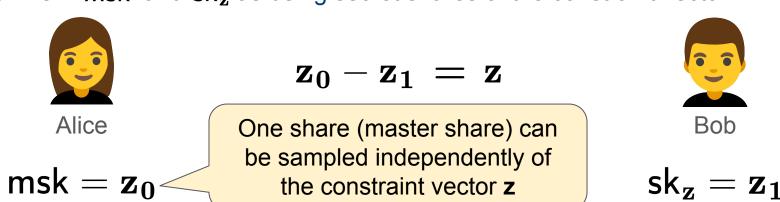
A secret sharing perspective on constrained PRFs

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

$$\mathsf{msk} = \mathbf{z_0}$$

$$\mathsf{sk}_{\mathbf{z}} = \mathbf{z_1}$$



Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

$$\mathsf{msk} = \mathbf{z_0}$$

For an input **X**:

$$\mathsf{sk}_{\mathbf{z}} = \mathbf{z}_{\mathbf{1}}$$

Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

$$\mathsf{msk} = \mathbf{z_0}$$

For an input **X**:

$$\mathsf{sk}_{\mathbf{z}} = \mathbf{z_1}$$

$$k_A := \langle \mathbf{z_0}, \mathbf{x}
angle$$

$$k_B := \langle \mathbf{z_1}, \mathbf{x}
angle$$

A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

$$\mathsf{msk} = \mathbf{z_0}$$

$$k_A := \langle \mathbf{z_0}, \mathbf{x}
angle$$

For an input **X**:

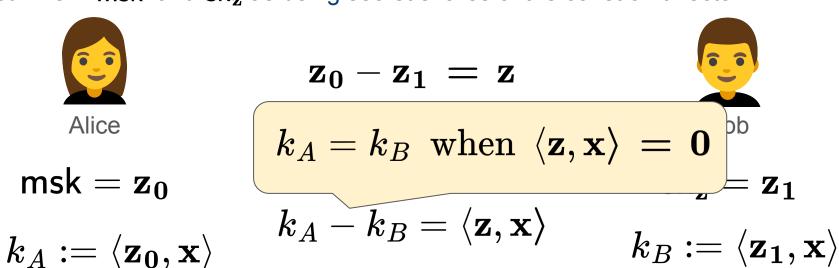
$$k_A-k_B=\langle {f z},{f x}
angle$$

$$\mathsf{sk}_{\mathbf{z}} = \mathbf{z_1}$$

$$k_B := \langle \mathbf{z_1}, \mathbf{x}
angle$$

A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector z:



A secret-sharing perspective

Idea: view msk and sk_z as being secret shares of the constraint vector z:

$$\mathbf{z}_0 - \mathbf{z}_1 = \mathbf{z}$$

$$\mathsf{msk} = \mathbf{z_0}$$

$$113K - 20$$

$$k_A := \langle \mathbf{z_0}, \mathbf{x}
angle$$

$$F(k_A, \mathbf{x})$$

For an input **X**:

$$k_A-k_B=\langle \mathbf{z},\mathbf{x}
angle$$

$$\mathsf{sk}_{\mathbf{z}} = \mathbf{z}_{\mathbf{1}}$$

$$k_B := \langle \mathbf{z_1}, \mathbf{x}
angle$$

$$F\left(k_{B},\mathbf{x}
ight)$$

Same PRF output

 $\mathsf{msk} := \mathbf{z_0}$

For a constraint vector **Z**:

 $\mathsf{msk} := \mathbf{z_0}$

$$\mathsf{msk} := \mathbf{z_0}$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

Eval
$$(\mathsf{msk},\mathbf{x})$$
:

1. $k:=\langle \mathbf{z_0},\mathbf{x}
angle$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, ${f x}$):
 1. $k:=\langle {f z_0},{f x}
 angle$ 2. Return $F(k,{f x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval(
$$sk_z$$
, x):

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

CEval
$$(\mathbf{sk_z}, \mathbf{x})$$
:

1. $k := \langle \mathbf{z_1}, \mathbf{x} \rangle$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk}_{\bf z}$, ${\bf x}$):

 1. $k:=\langle {\bf z_1},{\bf x}
 angle$ 2. Output $F\left(k,{\bf x}
 ight)$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

Is this correct?

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk}_{f z}$, ${f x}$):

 1. $k:=\langle {f z}_1,{f x}
 angle$ 2. Output $F(k,{f x})$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk}_{f z}$, ${f x}$):

 1. $k:=\langle {f z}_1,{f x}
 angle$ 2. Output $F(k,{f x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk_z}$, ${f x}$):

 1. $k:=\langle {f z_1}, {f x}
 angle$ 2. Output $F(k, {f x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

 $\mathsf{msk} := \mathbf{z_0}$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk_z}$, ${f x}$):

 1. $k:=\langle {f z_1}, {f x}
 angle$ 2. Output $F(k, {f x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

$$\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval $(\mathsf{sk}_{\mathbf{z}}\,,\mathbf{x})$:

 1. $k:=\langle \mathbf{z_1},\mathbf{x}
 angle$ 2. Output $F(k,\mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure?

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval $(\operatorname{sk}_{\mathbf{z}},\mathbf{x})$:

 1. $k:=\langle \mathbf{z_1},\mathbf{x}
 angle$ 2. Output $F(k,\mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure? No, because $z_0 = z_1 + z$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval $(\operatorname{sk}_{\mathbf{z}},\mathbf{x})$:

 1. $k:=\langle \mathbf{z_1},\mathbf{x}
 angle$ 2. Output $F(k,\mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure? No, because $z_0 = z_1 + z$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval $(\mathsf{msk},\mathbf{x})$:

 1. $k:=\langle \mathbf{z_0},\mathbf{x}
 angle$ 2. Return $F(k,\mathbf{x})$

For a constraint vector **Z**:

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk}_{f z}$, ${f x}$):

 1. $k:=\langle {f z}_1,{f x}
 angle$ 2. Output $F(k,{f x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

Is this secure? No, because $z_0 = z_1 + z$; possible to recover the master key!

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_1 = \mathbf{z}_0 - \mathbf{z}$$

- CEval(${\sf sk}_{f z}$, ${f x}$):

 1. $k:=\langle {f z}_{f 1},{f x}
 angle$ 2. Output $F\left(k,{f x}
 ight)$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval $(\mathsf{msk},\mathbf{x})$:

 1. $k:=\langle \mathbf{z_0},\mathbf{x}
 angle$ 2. Return $F(k,\mathbf{x})$

$$\Delta \overset{R}{\leftarrow} \mathbb{F}$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \Delta \mathbf{z}$$

- CEval($\operatorname{sk}_{\mathbf{z}}$, \mathbf{x}):

 1. $k := \langle \mathbf{z_1}, \mathbf{x} \rangle$ 2. Output $F(k, \mathbf{x})$

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\Delta \overset{R}{\leftarrow} \mathbb{F}$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \Delta \mathbf{z}$$

- CEval($\operatorname{sk}_{\mathbf{z}}$, \mathbf{x}):

 1. $k := \langle \mathbf{z_1}, \mathbf{x} \rangle$ 2. Output $F(k, \mathbf{x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

$$\mathsf{msk} := \mathbf{z_0}$$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$\Delta \overset{R}{\leftarrow} \mathbb{F}$$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z_1} = \mathbf{z_0} - \Delta \mathbf{z}$$

- CEval(${\sf sk_z}$, ${f x}$):

 1. $k:=\langle {f z_1}, {f x}
 angle$ 2. Output $F(k, {f x})$

Is this correct? Yes, because when $\langle \mathbf{z}, \mathbf{x} \rangle = 0$ then $\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$.

$$\langle \mathbf{z_0}, \mathbf{x} \rangle = \langle \Delta \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \Delta \langle \mathbf{z}, \mathbf{x} \rangle + \langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_1}, \mathbf{x} \rangle$$

Problem: keys are highly correlated

$$\mathsf{msk} := \mathbf{z}_0$$

Eval(msk,x):

- 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
- 2. Return $F(k, \mathbf{x})$

$$egin{array}{l} \Delta \stackrel{R}{\leftarrow} \mathbb{F} \ \mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1} \end{array}$$

- 1. $k:=\langle \mathbf{z_1}, \mathbf{x}
 angle$ 2. Output $F\left(k, \mathbf{x}
 ight)$

Problem: keys are highly correlated

$$\mathsf{msk} := \mathbf{z}_0$$

Eval(msk,x):

- 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
- 2. Return $F(k, \mathbf{x})$

$$egin{array}{l} \Delta \stackrel{R}{\leftarrow} \mathbb{F} \ \mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1} \end{array}$$

- 1. $k:=\langle \mathbf{z_1}, \mathbf{x} \rangle$ 2. Output $F(k, \mathbf{x})$

Problem: keys are highly correlated

$$msk := \mathbf{z}_0$$

Eval(msk,x):

- 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
- 2. Return $H(k, \mathbf{x})$

Okay if we replace the PRF with a RO

For a constraint vector **Z**:

$$egin{array}{l} \Delta \stackrel{R}{\leftarrow} \mathbb{F} \ \mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1} \end{array}$$

CEval(sk_z, x):

- 1. $k:=\langle \mathbf{z_1}, \mathbf{x}
 angle$ 2. Output $H(k, \mathbf{x})$

Let $H: \mathbb{F} \times \mathbb{F}^n \to \mathcal{Y}$ be a random oracle (RO).

Let $H: \mathbb{F} \times \mathbb{F}^{\ell} \to \mathcal{Y}$ be a random oracle (RO).

1.
$$\mathbf{z_0} \overset{R}{\leftarrow} \mathbb{F}^{\ell}$$

KeyGen(1^{λ}):Constrain(msk, \mathbf{z}):1. $\mathbf{z_0} \overset{R}{\leftarrow} \mathbb{F}^{\ell}$ 1. $\Delta \overset{R}{\leftarrow} \mathbb{F}$ 2. Return msk := $\mathbf{z_0}$ 2. $\mathbf{z_1} := \mathbf{z_0} - \Delta \mathbf{z}$ 3. Return sk $_{\mathbf{z}} := \mathbf{z_1}$

1.
$$\Delta \stackrel{R}{\leftarrow} \mathbb{F}$$

Simplified construction. See paper for full details.

Proof of security

1. Think of $\mathbf{z_0}$ as $\mathbf{z_1} + \Delta \mathbf{z}$.

Proof of security

- 1. Think of $\mathbf{z_0}$ as $\mathbf{z_1} + \Delta \mathbf{z}$.
- 2. For all \mathbf{z} and \mathbf{x} such that $\langle \mathbf{z}, \mathbf{x} \rangle \neq 0$, $\langle \mathbf{z_1}, \mathbf{x} \rangle$ is independent of $\langle \mathbf{z_0}, \mathbf{x} \rangle$

Proof of security

- 1. Think of $\mathbf{z_0}$ as $\mathbf{z_1} + \Delta \mathbf{z}$.
- 2. For all \mathbf{z} and \mathbf{x} such that $\langle \mathbf{z}, \mathbf{x} \rangle \neq 0$, $\langle \mathbf{z_1}, \mathbf{x} \rangle$ is independent of $\langle \mathbf{z_0}, \mathbf{x} \rangle$ because Δ is chosen uniformly and independently of $\mathbf{z_0}$ and we can write:

$$\langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_0}, \mathbf{x} \rangle + \Delta \langle \mathbf{z}, \mathbf{x} \rangle.$$

Proof of security

- 1. Think of $\mathbf{z_0}$ as $\mathbf{z_1} + \Delta \mathbf{z}$.
- 2. For all \mathbf{z} and \mathbf{x} such that $\langle \mathbf{z}, \mathbf{x} \rangle \neq 0$, $\langle \mathbf{z_1}, \mathbf{x} \rangle$ is independent of $\langle \mathbf{z_0}, \mathbf{x} \rangle$ because Δ is chosen uniformly and independently of $\mathbf{z_0}$ and we can write:

$$\langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_0}, \mathbf{x} \rangle + \Delta \langle \mathbf{z}, \mathbf{x} \rangle.$$

3. Therefore, **one constrained evaluation query** is equivalent to a evaluating the PRF using an independent key from the point of view of the adversary.

Proof of security

- 1. Think of $\mathbf{z_0}$ as $\mathbf{z_1} + \Delta \mathbf{z}$.
- 2. For all \mathbf{z} and \mathbf{x} such that $\langle \mathbf{z}, \mathbf{x} \rangle \neq 0$, $\langle \mathbf{z_1}, \mathbf{x} \rangle$ is independent of $\langle \mathbf{z_0}, \mathbf{x} \rangle$ because Δ is chosen uniformly and independently of $\mathbf{z_0}$ and we can write:

$$\langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_0}, \mathbf{x} \rangle + \Delta \langle \mathbf{z}, \mathbf{x} \rangle.$$

- 3. Therefore, **one constrained evaluation query** is equivalent to a evaluating the PRF using an independent key from the point of view of the adversary.
- [AMN+18]: any CPRF that satisfies security with one constrained evaluation query can be made to provide adaptive security with a random oracle.

A general framework

Problem: keys are highly correlated

$$\mathsf{msk} := \mathbf{z}_0$$

Eval(msk,x):

- 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
- 2. Return $F(k,\mathbf{x})$

$$egin{array}{l} \Delta \stackrel{R}{\leftarrow} \mathbb{F} \ \mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1} \end{array}$$

- 1. $k:=\langle \mathbf{z_1}, \mathbf{x}
 angle$ 2. Output $F(k, \mathbf{x})$

Problem: keys are highly correlated

$$\mathsf{msk} := \mathbf{z}_0$$

Eval(msk,x):

- 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
- 2. Return $F(k, \mathbf{x})$

For a constraint vector **7**:

$$egin{array}{cccc} \Delta \stackrel{R}{\leftarrow} & \mathbb{F} \ \mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1} \end{array}$$

- 1. $k:=\langle \mathbf{z_1}, \mathbf{x}
 angle$ 2. Output $F(k, \mathbf{x})$

Requires security against correlated keys

Problem: keys are highly correlated

$$msk := \mathbf{z_0}$$

Eval(msk,x):

- 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$
- 2. Return $F(k, \mathbf{x})$

For a constraint vector **Z**:

$$egin{array}{l} \Delta \stackrel{R}{\leftarrow} \mathbb{F} \ \mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1} \end{array}$$

CEval(sk_z,x):

- 1. $k:=\langle \mathbf{z_1},\mathbf{x}
 angle$
- 2. Output $F(k, \mathbf{x})$

Requires security against correlated keys

Let $F: \mathbb{F} imes \mathbb{F}^n o \mathcal{Y}$ be a related-key attack (RKA) security.

Regular security for a PRF

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is a secure PRF if:

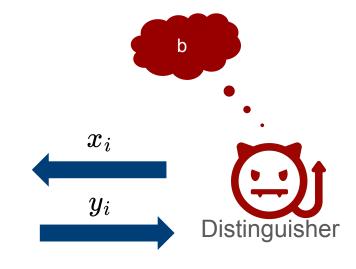
Setup phase (one time)

$$3 \quad b \stackrel{R}{\leftarrow} \{0,1\}$$

Query phase (repeatable)

$$egin{aligned} oldsymbol{5} & y_i \, := \, egin{cases} F\left(k,\,x_i
ight) & ext{if } b = 0 \ R\left(x_i
ight) & ext{if } b = 1 \end{cases} \end{aligned}$$

Challenger



Related Key Attack (RKA) security for a PRF

A function $F:\mathcal{K}\times\mathcal{X}\to\mathcal{Y}$ is an **RKA-secure** PRF if:

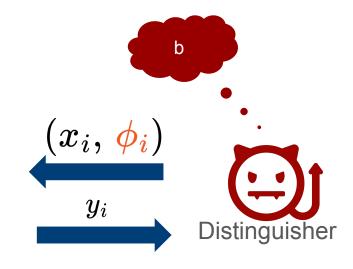
Setup phase (one time)

1
$$k \stackrel{R}{\leftarrow} \mathcal{K}$$

Challenger

- 2 $R \stackrel{\overline{R}}{\leftarrow} \mathcal{F}uns\left((\mathcal{X}, \overline{\Phi}), \mathcal{Y}\right)$
- $3 \quad b \overset{R}{\leftarrow} \ \{0,1\}$

Query phase (repeatable)



For a class of key derivation functions $\Phi:\mathcal{K}\to\mathcal{K}$

The inner product $\langle {f z_1, x}
angle = \langle {f z_0, x}
angle - \Delta \langle {f z, x}
angle$

The inner product $\langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_0}, \mathbf{x} \rangle - \Delta \langle \mathbf{z}, \mathbf{x} \rangle$ is an *affine* function of Δ , determined by \mathbf{x}

The inner product $\langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_0}, \mathbf{x} \rangle - \Delta \langle \mathbf{z}, \mathbf{x} \rangle$

is an **affine** function of Δ , determined by \mathbf{x}

$\mathsf{msk} := \mathbf{z_0}$

- Eval(msk, \mathbf{x}):

 1. $k := \langle \mathbf{z_0}, \mathbf{x} \rangle$ 2. Return $F(k, \mathbf{x})$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z_0} - \Delta \mathbf{z} = \mathbf{z_1}$$

- CEval $(\operatorname{sk}_{\mathbf{z}},\mathbf{x})$:

 1. $k:=\langle \mathbf{z_1},\mathbf{x} \rangle$ 2. Output $F(k,\mathbf{x})$

The inner product $\langle \mathbf{z_1}, \mathbf{x} \rangle = \langle \mathbf{z_0}, \mathbf{x} \rangle - \Delta \langle \mathbf{z}, \mathbf{x} \rangle$

is an **affine** function of Δ , determined by \mathbf{x}

 $\mathsf{msk} := \mathbf{z_0}$

Eval(msk,x):

- 1. $k:=\langle \mathbf{z_0}, \mathbf{x}
 angle$ 2. Return $F(k,\mathbf{x})$

 $\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{0}} - \Delta \mathbf{z} = \mathbf{z}_{\mathbf{1}}$

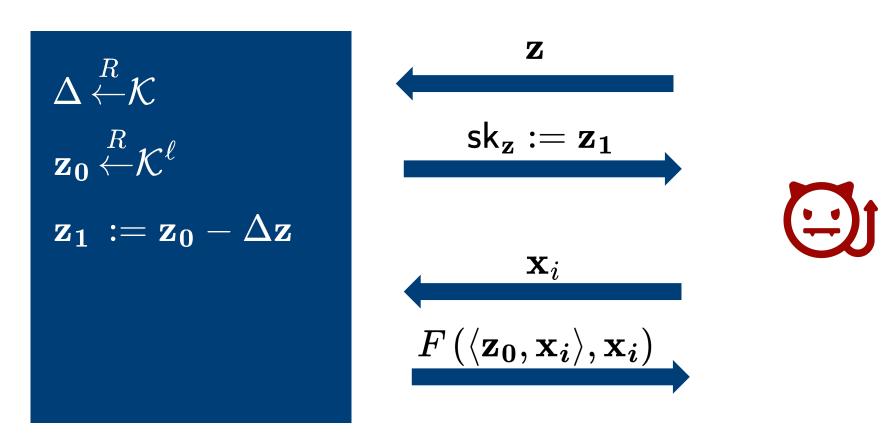
- CEval $(\operatorname{sk}_{\mathbf{z}},\mathbf{x})$:

 1. $k:=\langle \mathbf{z_1},\mathbf{x} \rangle$ 2. Output $F(k,\mathbf{x})$

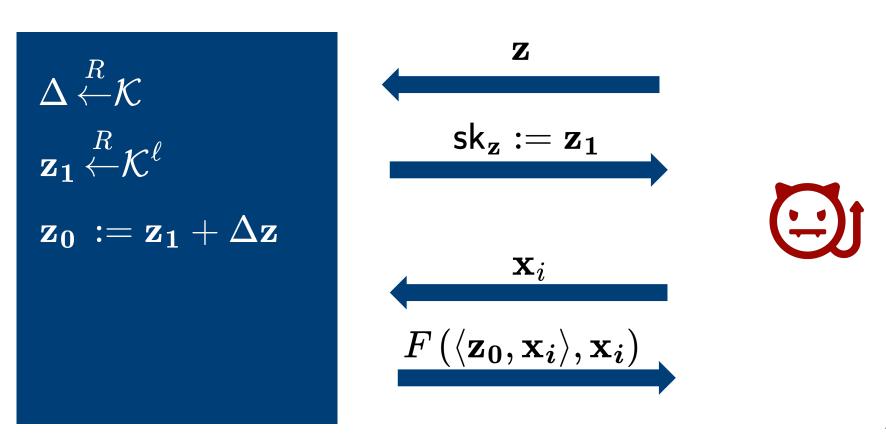
Need F to be RKA-secure for affine functions

Reduction to RKA security

Step 1: The (1 key, selective) CPRF security game

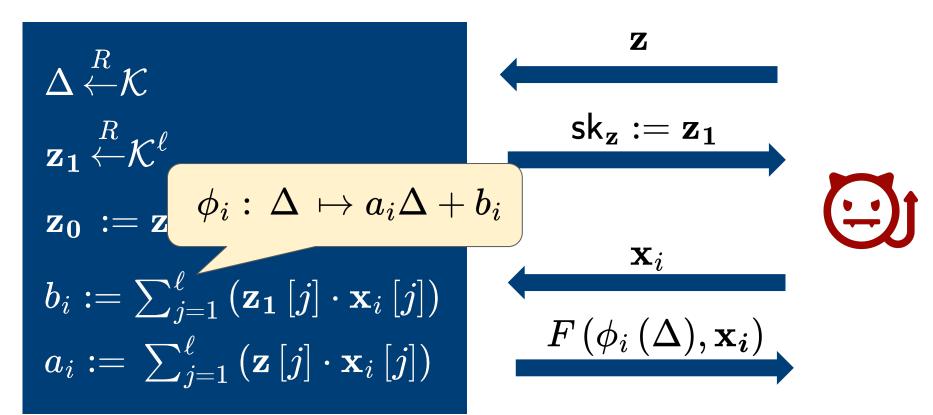


Step 2: Change definition of z_0 to be in terms of z_1



Step 3: Define the inner-product as an affine function

Step 3: Define the inner-product as an affine function



Step 4: Reduce to RKA security

The key Δ is not sampled anymore...

$$\mathbf{z_1} \overset{R}{\leftarrow} \mathcal{K}^{\ell}$$

$$b_i := \sum_{j=1}^{\ell} \left(\mathbf{z_1}\left[j
ight] \cdot \mathbf{x}_i\left[j
ight]
ight)$$

$$a_i := \sum_{j=1}^{\ell} \left(\mathbf{z}\left[j
ight] \cdot \mathbf{x}_i\left[j
ight]
ight)$$

Query RKA PRF challenger on input:

$$(\phi_i := (a_i,b_i),\, \mathbf{x}_\mathrm{i})$$

And get back: $F\left(\phi_{i}\left(\Delta\right),\mathbf{x}_{i}\right)$

$$\mathsf{sk}_{\mathbf{z}} := \mathbf{z}_{\mathbf{1}}$$

$$F\left(\phi_{i}\left(\Delta\right),\mathbf{x}_{m{i}}
ight)$$

Constructions from RKA-secure PRFs

From **DDH** via variant of the Naor-Reingold PRF [ABP+14]

Directly follows from the construction of [ABP+14] affine-function RKA security

From **DDH** via variant of the Naor-Reingold PRF [ABP+14]

Directly follows from the construction of [ABP+14] affine-function RKA security

From Variable Density LPN via [BCG+20]

Only works for random inputs since the VDLPN candidate is a weak PRF

From **DDH** via variant of the Naor-Reingold PRF [ABP+14]

Directly follows from the construction of [ABP+14] affine-function RKA security

From Variable Density LPN via [BCG+20]

Only works for random inputs since the VDLPN candidate is a weak PRF

From **OWF** via t-wise independent hashing [AW14]

Needs some additional technical work over the construction of [AW14]

RKA-secure **bounded**-PRF construction of [AW14]

Problem 1: Only provides RKA security for additive key derivation functions.

Problem 2: Requires the adversary to use most $T = T(\lambda) \in \operatorname{poly}(\lambda)$ unique RKA functions.

"T-good" hash function:

"Acts like a random oracle for up to T unique inputs"

$$\{h\left(\phi_{1}\left(\Delta\right)
ight),\,\ldots,\,h\left(\phi_{T}\left(\Delta
ight)
ight)\}pprox_{s}\{r_{1},\,\ldots,\,r_{T}\}$$

Implied by a $\Omega\left(\lambda T^2\right)$ -wise independent hash function [AW14]

"T-good" hash function:

$$egin{aligned} \left\{ h\left(\langle \mathbf{z}, \mathbf{x_1}
angle \Delta + \langle \mathbf{z_0}, \mathbf{x_1}
angle
ight), \ldots, h\left(\langle \mathbf{z}, \mathbf{x_T}
angle \Delta + \langle \mathbf{z_0}, \mathbf{x_T}
angle
ight)
ight\} \ pprox_s \left\{ r_1, \ldots, r_T
ight\} \end{aligned}$$

"T-good" hash function:

$$egin{aligned} \{h\left(a_1\Delta+b_1
ight),\,\ldots,\,h\left(a_T\Delta+b_T
ight)\}\ pprox_s\,\{r_1,\,\ldots,\,r_T\} \end{aligned}$$

"T-good" hash function:

$$\left\{ h\left(\phi_{1}\left(\Delta\right)
ight),\,\ldots,\,h\left(\phi_{T}\left(\Delta
ight)
ight)
ight\} \ pprox_{s}\left\{ r_{1},\,\ldots,\,r_{T}
ight\}$$

RKA-secure bounded PRF construction of [AW14]

Problem 1: Only provides RKA security for additive key derivation functions.

RKA-secure bounded PRF construction of [AW14]

Problem 1: Only provides RKA security for additive key derivation functions.

We upgrade the "T-good" hash function of [AW14] to the affine case

RKA-secure bounded PRF construction of [AW14]

Problem 1: Only provides RKA security for additive key derivation functions.

We upgrade the "T-good" hash function of [AW14] to the affine case

Problem 2: Requires the adversary to use most $T=T(\lambda)\in\operatorname{poly}(\lambda)$ unique RKA functions.

RKA-secure bounded PRF construction of [AW14]

Problem 1: Only provides RKA security for additive key derivation functions.

We upgrade the "T-good" hash function of [AW14] to the affine case

Problem 2: Requires the adversary to use most $T=T(\lambda)\in\operatorname{poly}(\lambda)$ unique RKA functions.

We make the input domain polynomial in the security parameter



"T-good" hash function:

"T-good" hash function:

Define the set
$$S \,=\, \Big\{ \langle \mathbf{a}, \mathbf{x}
angle \,\mid \mathbf{x} \,\in \{\,0, \ldots, B\}^{\ell} \,\Big\}$$

"T-good" hash function:

"Acts like a random oracle for up to T unique inputs"

Define the set
$$S = \left\{ \langle \mathbf{a}, \mathbf{x}
angle \mid \mathbf{x} \in \set{0, \dots, B}^\ell
ight\}$$

Note that: $|S| \leq B^\ell$ so we need to set parameters such that $B^\ell \leq T$

"T-good" hash function:

"Acts like a random oracle for up to T unique inputs"

Define the set
$$S = \left\{ \langle \mathbf{a}, \mathbf{x}
angle \mid \mathbf{x} \in \set{0, \dots, B}^\ell
ight\}$$

Note that: $|S| \leq B^\ell$ so we need to set parameters such that $B^\ell \leq T$ $B = O(1) \land \ell = \ell(\lambda) \in \mathsf{poly}(\lambda)$

$$B \,=\, O\left(1
ight) \,\wedge\, \ell \,=\, \ell\left(\lambda
ight) \,\in\, \mathsf{poly}\left(\lambda
ight)$$



"T-good" hash function:

"Acts like a random oracle for up to T unique inputs"

Define the set
$$S = \left\{ \langle \mathbf{a}, \mathbf{x}
angle \mid \mathbf{x} \in \set{0, \dots, B}^\ell
ight\}$$

Note that: $|S| \leq B^\ell$ so we need to set parameters such that $B^\ell \leq T$

Polynomially-bounded input domain

Implementation and Evaluation

Artifact Badges: Available, Functional, and Reproduced.

https://github.com/sachaservan/cprf

Evaluation of the random oracle based CPRF

ℓ (length of vector)	Evaluation time
10	2 µs
50	10 <i>μ</i> s
100	19 <i>μ</i> s
500	98 μs
1000	200 μs

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: inner-product computation in the finite field

Evaluation of the **DDH-based** CPRF

ℓ (length of vector)	Evaluation time
10	8 ms
50	11 ms
100	16 ms
500	46 ms
1000	85 ms

Implemented in Go (v1.20) without any significant optimizations

Bottleneck: exponentiations in the group

Open Questions

Open Questions

Extending constructions to NC¹ constraints?

Open Questions

Extending constructions to NC¹ constraints?

Open Questions

Instantiating the framework under more assumptions?

Extending constructions to NC¹ constraints?

Open Questions

Instantiating the framework under more assumptions?

OWF construction with superpolynomial domain?

Thank you!

Email: 3s@mit.edu

ePrint: ia.cr/2024/058

Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions

Sacha Servan-Schreiber*

References

[ABP+14]: Abdalla, Michel, Fabrice Benhamouda, Alain Passelègue, and Kenneth G. Paterson. "Related-key security for pseudorandom functions beyond the linear barrier." *CRYPTO 2014.*

[AW14]: Applebaum, Benny, and Eyal Widder. "Related-key secure pseudorandom functions: The case of additive attacks." ePrint Archive (2014).

[AMN+18]: Attrapadung, Nuttapong, Takahiro Matsuda, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Constrained PRFs for in traditional groups." CRYPTO 2018.

[BCG+20]: Boyle, Elette, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl. "Correlated pseudorandom functions from variable-density LPN." FOCS 2020.

[CMPR23]: Couteau, Geoffroy, Pierre Meyer, Alain Passelègue, and Mahshid Riahinia. "Constrained Pseudorandom Functions from Homomorphic Secret Sharing." EUROCRYPT 2023.

[DKN+20]: Davidson, Alex, Shuichi Katsumata, Ryo Nishimaki, Shota Yamada, and Takashi Yamakawa. "Adaptively secure constrained pseudorandom functions in the standard model." CRYPTO 2020.