
Private Approximate Nearest Neighbor Search
with Sublinear Communication

Sacha Servan-Schreiber
with Simon Langowski and Srini Devadas

1

Nearest Neighbor (NN) search

Query

2

Nearest Neighbor (NN) search

Query

3

Nearest Neighbor

Approximate Nearest Neighbor (ANN) search

Query

Nearest Neighbor

(standard relaxation used in practice)

4

Approximate Nearest Neighbor

Example: music recommendations [1]

5

 Spotify

[1]: https://github.com/spotify/annoy

Example: music recommendations [1]

6

 Spotify

[1]: https://github.com/spotify/annoy

I like: (rock, hip-hop, classical)

Example: music recommendations [1]

7

 Spotify

[1]: https://github.com/spotify/annoy

I like: (rock, hip-hop, classical)

High dimensional
feature vector

1. Run ANN search
2. Return recommendation(s)

Example: music recommendations [1]

 Spotify

8
[1]: https://github.com/spotify/annoy

I like: (rock, hip-hop, classical)

Example: music recommendations [1]

9

1. Run ANN search
2. Return recommendation(s)

I like: (rock, hip-hop, classical)

 Spotify

[1]: https://github.com/spotify/annoy

You might also like…

Example: music recommendations [1]

10

Private Information

Private Information

You might also like…

I like: (rock, hip-hop, classical)

1. Run ANN search
2. Return recommendation(s)

 Spotify

[1]: https://github.com/spotify/annoy

Example: music recommendations [1]

11

1. Run ANN search
2. Return recommendation(s)

 Spotify

Proprietary information

I like: (rock, hip-hop, classical)

You might also like…

[1]: https://github.com/spotify/annoy

Prior work on private ANN search

12
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

13
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation Fully-homomorphic Encryption

14
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with

databases of 1,000,000 items [1].

Fully-homomorphic Encryption

15
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with

databases of 1,000,000 items [1].

● No malicious security:
○ A malicious database can deviate from

protocol and learn the query.

○ A malicious client can deviate from

protocol and recover the database.

Fully-homomorphic Encryption

16
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with

databases of 1,000,000 items [1].

● No malicious security:
○ A malicious database can deviate from

protocol and learn the query.

○ A malicious client can deviate from

protocol and recover the database.

Fully-homomorphic Encryption

● Is lightweight for the client.

17
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with

databases of 1,000,000 items [1].

● No malicious security:
○ A malicious database can deviate from

protocol and learn the query.

○ A malicious client can deviate from

protocol and recover the database.

Fully-homomorphic Encryption

● Is lightweight for the client.

● Is trivially maliciously-secure.

18
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with

databases of 1,000,000 items [1].

● No malicious security:
○ A malicious database can deviate from

protocol and learn the query.

○ A malicious client can deviate from

protocol and recover the database.

Fully-homomorphic Encryption

● Is lightweight for the client.

● Is trivially maliciously-secure.

● Not lightweight for the database.
○ Takes hours with small databases of

e.g., 500 to 2,000 items [2].

19
[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

[1]: Chen, Hao, et al. "SANNS: Scaling Up Secure Approximate k-Nearest Neighbors Search." 29th USENIX Security Symposium (USENIX Security 20). 2020.
[2]: Shaul, Hayim, Dan Feldman, and Daniela Rus. "Secure-ish Nearest Neighbors Classifier." Proceedings on Privacy Enhancing Technologies 2020.3 (2020): 42-61.

Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with

databases of 1,000,000 items [1].

● No malicious security:
○ A malicious database can deviate from

protocol and learn the query.

○ A malicious client can deviate from

protocol and recover the database.

Fully-homomorphic Encryption

● Is lightweight for the client.

● Is trivially malicious-secure.

● Not lightweight for the server.
○ Takes hours with small databases of

e.g., 500 to 2000 items [2].

Our goals:
(1) low communication for the client,
(2) concrete efficiency for the database,
(3) privacy for the client and the database,
(4) and malicious security.

20

The setting: two non-colluding database servers.

Q: Why do we need non-colluding servers?

A: For efficient, symmetric-key cryptography only.1

1 See Appendix E of the full version of our paper [1] for a single-server protocol
that is less concretely efficient but doesn’t require any trust assumptions.

Our work

21Client

Server B
Server A

[1]: Full version of our paper: https://eprint.iacr.org/2021/1157.pdf.

Our work

22

Server A Server B

Client

Our work

23

private query priv
ate

 query

Server A Server B

Client

Our work

24

private response priv
ate

 re
sp

onse

Server A Server B

Client

Our work

25

Server A Server B

Client

ANN is ID5694

Our work

26

Server A Server B

Client

Threat model

27

Server A Server B

Client

Servers

● Hold replicas of the database.

● Do not collude with clients or one another.

Threat model

28

Server A Server B

Client

Clients

● Will try to learn as much as possible about the database.

● May collude with other malicious clients.

Servers

● Hold replicas of the database.

● Do not collude with clients or one another.

Threat model

29Client

Guarantees

Server B
Server A

Threat model

30Client

Guarantees

● Accuracy if both servers follow the protocol. Server B
Server A

Threat model

31Client

Guarantees

● Accuracy if both servers follow the protocol.

● User privacy even if a server is malicious.

Server B
Server A

Threat model

32Client

Guarantees

● Accuracy if both servers follow the protocol.

● User privacy even if a server is malicious.

● Database privacy even if a subset of clients are malicious.

Server B
Server A

Finding Nearest Neighbors
(non-privately, using Locality-Sensitive Hashing)

34

Finding the ANN using LSH (non-privately)

35

Finding the ANN using LSH (non-privately)

Query

36

Finding the ANN using LSH (non-privately)

Near neighbors

Query

37

Near neighbors

Non-neighbors

Query

Finding the ANN using LSH (non-privately)

38

Finding the ANN using LSH (non-privately)

Near neighbors

Nearest neighbor

Query

Non-neighbors

39

If h is an LSH function:

Finding the ANN using LSH (non-privately)

Near neighbors

Non-neighbors

Nearest neighbor

Query

40

If h is an LSH function:

Finding the ANN using LSH (non-privately)

Near neighbors

Non-neighbors

Nearest neighbor

Query

Pr[h() = h()] is high

41

Pr[h() = h()] is high

Pr[h() = h()] is low

If h is an LSH function:

Finding the ANN using LSH (non-privately)

Near neighbors

Non-neighbors

Nearest neighbor

Query

42

Pr[h() = h()] is high

Pr[h() = h()] is low

If h is an LSH function:

Finding the ANN using LSH (non-privately)

Near neighbors

Non-neighbors

Nearest neighbor

Query

Distance from query

C
o

lli
si

o
n

 p
ro

b
ab

ili
ty

Data

Step 1: Build an LSH hash table using h.

Hashkey Value(s)

Data

Step 1: Build an LSH hash table using h.

h()

Hashkey Value(s)

09ac34fd ID3: (6,7)

Data

Step 1: Build an LSH hash table using h.

(6,7)

Hashkey Value(s)

09ac34fd ID3: (6,7)

91ab3cd ID11: (1,10)

h()

Data

Step 1: Build an LSH hash table using h.

(1,10)

Hashkey Value(s)

a3da901f ID2: (1, 4)

09ac34fd ID3: (6,7)

91ab3cd ID11: (1,10)

h()

Data

Step 1: Build an LSH hash table using h.

(1, 4)

Hashkey Value(s)

a3da901f ID2: (2, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

91ab3cd ID11: (1,10)

Step 1: Build an LSH hash table using h.

h()

Data

(0, 1)

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Step 1: Build an LSH hash table using h.

Data

Step 2: Query the hash table.

Data

Step 1: Build an LSH hash table using h.

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Query (2, 5)

h()

Data

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Query (2, 5)

h()

Data

Candidate set: ID2: (1,4)

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Query (2, 5)

Data

Step 3: Repeat with many different hash tables.

h1()

Hashkey Value(s)

beda11fe ID1000000

f12fbe10 ID101, ID949

ac33445a ID5694

⋮ ⋮

91ab3cd ID11, ID9191

Hashkey Value(s)

aa423ef ID900

10acdff ID10

ff1e3432 ID514

⋮ ⋮

f2f2e12 ID141

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Candidate set: ID2: (1,4)

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Query (2, 5)

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Hashkey Value(s)

beda11fe ID10: (9,10)

f12fbe10 ID101: (5,0)

ac33445a ID5694: (2,4)

⋮ ⋮

91ab3cd ID11: (4,8)

Hashkey Value(s)

aa423ef ID900

10acdff ID10

ff1e3432 ID514

⋮ ⋮

f2f2e12 ID141

Candidate set: ID2: (1,4), ID5694: (2,4)

Step 3: Repeat with many different hash tables.

Data

h2()

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Query (2, 5)

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Hashkey Value(s)

beda11fe ID10: (9,10)

f12fbe10 ID101: (5,0)

ac33445a ID5694: (2,4)

⋮ ⋮

91ab3cd ID11: (4,8)

Hashkey Value(s)

aa423ef ID900: (3,4)

10acdff ID10: (9,10)

ff1e3432 ID514: (8,8)

⋮ ⋮

f2f2e12 ID141: (10, 8)

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4)

Step 3: Repeat with many different hash tables.

Data

h3()

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Query (2, 5)

Query (2, 5)

Step 4: Find closest neighbor in the candidate set.

Data

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Step 3: Repeat with many different hash tables.

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Hashkey Value(s)

beda11fe ID10: (9,10)

f12fbe10 ID101: (5,0)

ac33445a ID5694: (2,4)

⋮ ⋮

91ab3cd ID11: (4,8)

Hashkey Value(s)

aa423ef ID900: (3,4)

10acdff ID10: (9,10)

ff1e3432 ID514: (8,8)

⋮ ⋮

f2f2e12 ID141: (10, 8)

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4)

A strawman protocol

One-time setup: Construct LSH tables

58

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

 ANN hash tables

B

A

h
1

h
2

h
3

A strawman protocol

Step 1: Client uses LSH functions to find the hashkey

59

LSH functions

h
1
 h

2
 h

3

B

A

A strawman protocol

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

60B

A

h
1
(query) = a3da901f

h
2
(query) = 14ec34f2

h
3
(query) = 8fe2ca23

LSH functions

h
1
 h

2
 h

3

Step 1: Client uses LSH functions to find the hashkey

A strawman protocol

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

61B

A

Private Information

h
1
(query) = a3da901f

h
2
(query) = 14ec34f2

h
3
(query) = 8fe2ca23

LSH functions

h
1
 h

2
 h

3

Step 1: Client uses LSH functions to find the hashkey

A strawman protocol

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Q: How can the client retrieve the candidate from each table privately?

A: Using private information retrieval (PIR) [1].

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting.

Challenge: querying the hash table privately

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, Berlin, Heidelberg, 2014.

Challenge: querying the hash table privately

Q: How can the client retrieve the candidate from each table privately?

A: Using private information retrieval (PIR) [1].

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting.

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, Berlin, Heidelberg, 2014.

Challenge: querying the hash table privately

PIR
A

PIR
B

Q: How can the client retrieve the candidate from each table privately?

A: Using private information retrieval (PIR) [1].

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting.

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, Berlin, Heidelberg, 2014.

Challenge: querying the hash table privately

PIR
A

PIR
B

[V]
A

[V]
B

Q: How can the client retrieve the candidate from each table privately?

A: Using private information retrieval (PIR) [1].

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting.

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, Berlin, Heidelberg, 2014.

Q: How can the client retrieve the candidate from each table privately?

A: Using private information retrieval (PIR) [1].

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting.

Challenge: querying the hash table privately

+ =

PIR
A

PIR
B

[V]
A

[V]
B

[V]
A

[V]
B

V (additive secret shares)

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques.
Springer, Berlin, Heidelberg, 2014.

PIR
A

67
PIR

B
B

A

Step 1: Client uses LSH functions to find the hashkey

A strawman protocol

Step 2: Privately query hash tables using PIR

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

h
1
(query) = a3da901f

h
2
(query) = 14ec34f2

h
3
(query) = 8fe2ca23

68B

A

PIR
A

PIR
B

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

h
1
(query) = a3da901f

h
2
(query) = 14ec34f2

h
3
(query) = 8fe2ca23

[ID2: (1,4)]
A

69[ID2: (1,4)]
B

PIR query answer
(secret shares)

B

A

PIR
A

PIR
B

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8)

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

h
1
(query) = a3da901f

h
2
(query) = 14ec34f2

h
3
(query) = 8fe2ca23

Step 3: Client recovers the result

70

(union over all tables)

Query: (2,5)

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

71

False positives

Step 3: Client recovers the result

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

(union over all tables)

Query: (2,5)

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

72

Near Neighbors

Step 3: Client recovers the result

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

(union over all tables)

Query: (2,5)

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

73

Nearest Neighbor

Step 3: Client recovers the result

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

(union over all tables)

Query: (2,5)

Challenge: Database privacy

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

Challenge: Database privacy

 The candidate set leaks a lot about the database to the client!⚠

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

Challenge: Database privacy

 The candidate set leaks a lot about the database to the client!

The client learns:

● All near neighbors and their feature vectors.

⚠

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

Challenge: Database privacy

 The candidate set leaks a lot about the database to the client!

The client learns:

● All near neighbors and their feature vectors.

● Other feature vectors in the database (false positives).

⚠

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

Challenge: Database privacy

 The candidate set leaks a lot about the database to the client!

The client learns:

● All near neighbors and their feature vectors.

● Other feature vectors in the database (false positives).

⚠

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

ID5694

Query

Baseline leakage

Challenge: Database privacy

 The candidate set leaks a lot about the database to the client!

The client learns:

● All near neighbors and their feature vectors.

● Other feature vectors in the database (false positives).

⚠

Candidate set: ID2: (1,4), ID5694: (2,4), ID900: (3,4), ID101: (6,5)

ID5694: (2,4)

Query
ID101: (6,5)

ID2: (1,4)

ID5694

Query

Baseline leakage Candidate set leakage ID900: (3,4)

Database Privacy with
Radix sorting

(hide all feature vectors by pruning without comparisons)

Main idea: use radix sorting for comparison-free sorting

Pruning without comparisons

81

Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Pruning without comparisons

82

Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Pruning without comparisons

83

Query

Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Table 2: radius = 0.2

Pruning without comparisons

84

Query

Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Table 2: radius = 0.2

Table 3: radius = 0.3

Pruning without comparisons

85

Query

Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Table 2: radius = 0.2

Table 3: radius = 0.3

 …

Table 20: radius = 2.0

Pruning without comparisons

86

Query

Pruning without comparisons

Candidates are now sorted by distance from the query!

87

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set =

Pruning without comparisons

Candidates are now sorted by distance from the query!

88

Nearest Neighbor

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set =

Pruning without comparisons

Candidates are now sorted by distance from the query!

89

Nearest Neighbor

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set =

We no longer need to include the feature vectors (only the IDs)!

Pruning without comparisons

Candidates are now sorted by distance from the query!

90

Nearest Neighbor

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set =

We no longer need to include the feature vectors (only the IDs)!

Still leaks many IDs from the database to the client. ⚠

More database privacy with
Oblivious masking

(hide all candidates except for the nearest neighbor)

Oblivious masking

After processing the PIR queries, each server has a share of the candidate set:

92

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

ID5694

Query
ID101

ID2

ID5694

Query

Baseline leakage Candidate set leakage ID900

Oblivious masking

After processing the PIR queries, each server has a share of the candidate set:

93

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

ID5694

Query

ID5694

Query

Baseline leakage Candidate set leakage

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

Observation: the nearest neighbor is always preceded by shares of 0s…

Oblivious masking

94

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

Observation: the nearest neighbor is always preceded by shares of 0s…

Oblivious masking

95

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Oblivious masking

96

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

Oblivious masking

97

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

Oblivious masking

98

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

Oblivious masking

99

[Candidate Set] = [0]

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

Oblivious masking

100

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0] + [0]r
2

Oblivious masking

101

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0] + [0+0]r
3

Oblivious masking

102

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694] + [0+0+0]r
4

Oblivious masking

103

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [ID2] + [0+0+0+ID5694]r
5

Oblivious masking

104

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [ID2] + [(0+0+0+ID5694)r
5
]

Oblivious masking

105

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*]

Oblivious masking

106

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add

[SUM]·r
i
 to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from [Candidate Set] to [Candidate Set].

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

All elements after the first non-zero element are random!

Oblivious masking

107

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

All elements after the first non-zero element are random!

Result: The client learns nothing beyond the first non-zero element (i.e., the ANN)!

Oblivious masking

108

no leakage

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

All elements after the first non-zero element are random!

Result: The client learns nothing beyond the first non-zero element (i.e., the ANN)!

Oblivious masking

109

almost

[Candidate Set] =

[Candidate Set] = [0], [0], [0], [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

small leakage no leakage

Oblivious masking

110

The radix bucket of the ANN leaks the approximate distance from the query.

[Candidate Set] = [0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

small leakage no leakage

Oblivious masking

111

The radix bucket of the ANN leaks the approximate distance from the query.

● Asymptotically optimal leakage!

[Candidate Set] = [0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

small leakage no leakage

Oblivious masking

112

The radix bucket of the ANN leaks the approximate distance from the query.

● Asymptotically optimal leakage!
● In practice: 2 to 15x more than baseline leakage.

small leakage no leakage

[Candidate Set] = [0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …

Evaluation

We evaluate on four real world datasets

● Deep1B (10 million items, 96 dimensions).

● SIFT (1 million items, 128 dimensions).

● GIST (1 million items, 916 dimensions).

● MNIST (60,000 items, 784 dimensions).

114

Efficiency on small datasets (MNIST; 60,000 items)

115

Server computation for > 95% accuracy (32 core servers):

● 300 milliseconds per query.

Communication: 800 KB between client and both servers.

Efficiency on small datasets (MNIST; 60,000 items)

116

Server computation for > 95% accuracy (32 core servers):

● 300 milliseconds per query.

Communication: 800 KB between client and both servers.

How many buckets are
“probed” in each hash table.

Efficiency on small datasets (MNIST; 60,000 items)

117

Server computation for > 95% accuracy (32 core servers):

● 300 milliseconds per query.

Communication: 800 KB between client and both servers.

Efficiency on large datasets (1M to 10M items)

118

Server computation for > 95% accuracy (32 core servers):

● 1.2 seconds per query on 1M item datasets.

● 8 seconds per query on 10M item datasets.

Communication: 1-2MB between client and both servers.

Efficiency on large datasets (1M to 10M items)

119

Server computation for > 95% accuracy (32 core servers):

● 1.2 seconds per query on 1M item datasets.

● 8 seconds per query on 10M item datasets.

Communication: 1-2MB between client and both servers.

Five orders of magnitude less computation compared to FHE-based approaches.

Efficiency on large datasets (1M to 10M items)

120

Server computation (32 core servers):

● 1.2 seconds per query on 1M item datasets (GIST and SIFT).

● 8 seconds per query on 10M item datasets (Deep1B)

Communication: 1-2MB between client and both servers.

10 tables @ 100 probes results in > 95% accuracy.

1,000 to 3,000X less communication compared to two-party computation!

121

Thank you!

Full paper: ia.cr/2021/1157
Code: github.com/sachaservan/private-ann
Contact: 3s@mit.edu, slangows@mit.edu

Sacha Servan-Schreiber
with Simon Langowski and Srini Devadas

https://eprint.iacr.org/2021/1157
http://github.com/sachaservan/private-ann
mailto:3s@mit.edu
mailto:slangows@mit.edu

