
Private Approximate Nearest Neighbor Search 
with Sublinear Communication

Sacha Servan-Schreiber 
with Simon Langowski and Srini Devadas

1



Nearest Neighbor (NN) search

Query

2



Nearest Neighbor (NN) search

Query

3

Nearest Neighbor



Approximate Nearest Neighbor (ANN) search

Query

Nearest Neighbor

(standard relaxation used in practice)

4

Approximate Nearest Neighbor



Example: music recommendations [1] 

5

       Spotify

[1]: https://github.com/spotify/annoy



Example: music recommendations [1] 

6

       Spotify

[1]: https://github.com/spotify/annoy

I like: (rock, hip-hop, classical) 



Example: music recommendations [1] 

7

       Spotify

[1]: https://github.com/spotify/annoy

I like: (rock, hip-hop, classical) 

High dimensional 
feature vector



1. Run ANN search
2. Return recommendation(s) 

Example: music recommendations [1] 

       Spotify

8
[1]: https://github.com/spotify/annoy

I like: (rock, hip-hop, classical) 



Example: music recommendations [1] 

9

1. Run ANN search
2. Return recommendation(s) 

I like: (rock, hip-hop, classical) 

       Spotify

[1]: https://github.com/spotify/annoy

You might also like…



Example: music recommendations [1] 

10

Private Information

Private Information

You might also like…

I like: (rock, hip-hop, classical) 

1. Run ANN search
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1. Run ANN search
2. Return recommendation(s) 

       Spotify

Proprietary information

I like: (rock, hip-hop, classical) 

You might also like…

[1]: https://github.com/spotify/annoy
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Prior work on private ANN search

Two-party Computation

● Not lightweight:
○ 1 to 5 GB of communication with 

databases of 1,000,000 items [1].

● No malicious security:
○ A malicious database can deviate from 

protocol and learn the query.

○ A malicious client can deviate from 

protocol and recover the database. 

Fully-homomorphic Encryption

● Is lightweight for the client. 

● Is trivially malicious-secure. 

● Not lightweight for the server.
○ Takes hours with small databases of 

e.g., 500 to 2000 items [2]. 

Our goals: 
(1) low communication for the client,
(2) concrete efficiency for the database,
(3) privacy for the client and the database,
(4) and malicious security.
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The setting: two non-colluding database servers.

Q: Why do we need non-colluding servers? 

A: For efficient, symmetric-key cryptography only.1

1 See Appendix E of the full version of our paper [1] for a single-server protocol 
that is less concretely efficient but doesn’t require any trust assumptions. 

Our work
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[1]: Full version of our paper: https://eprint.iacr.org/2021/1157.pdf.
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Servers 
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Server A Server B

Client

Clients

● Will try to learn as much as possible about the database. 

● May collude with other malicious clients.  

Servers 

● Hold replicas of the database.

● Do not collude with clients or one another. 
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Guarantees

● Accuracy if both servers follow the protocol.

● User privacy even if a server is malicious.

● Database privacy even if a subset of clients are malicious.

Server B
Server A



Finding Nearest Neighbors 
(non-privately, using Locality-Sensitive Hashing)
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Near neighbors

Non-neighbors

Query

Finding the ANN using LSH (non-privately)
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Finding the ANN using LSH (non-privately)
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Non-neighbors
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If h is an LSH function: 
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If h is an LSH function: 
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Pr[ h(  ) = h(   ) ]  is high
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If h is an LSH function: 
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Pr[ h(  ) = h(   ) ]  is high

Pr[ h(  ) = h(   ) ]  is low

If h is an LSH function: 

Finding the ANN using LSH (non-privately)

Near neighbors

Non-neighbors

Nearest neighbor

Query

Distance from query
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Step 1: Build an LSH hash table using h.
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Step 1: Build an LSH hash table using h.
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Data

Step 1: Build an LSH hash table using h.
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Data

Step 1: Build an LSH hash table using h.

(1, 4) 
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Step 1: Build an LSH hash table using h.

h(  )
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(0, 1) 
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Step 1: Build an LSH hash table using h.
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Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)
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Step 3: Repeat with many different hash tables.

h1(  )

Hashkey Value(s)

beda11fe ID1000000

f12fbe10 ID101, ID949

ac33445a ID5694

⋮ ⋮

91ab3cd ID11, ID9191

Hashkey Value(s)

aa423ef ID900

10acdff ID10

ff1e3432 ID514

⋮ ⋮

f2f2e12 ID141

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

 
Candidate set:     ID2: (1,4)

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)
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91ab3cd ID11: (1,10)
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Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Hashkey Value(s)

beda11fe ID10: (9,10)

f12fbe10 ID101: (5,0)

ac33445a ID5694: (2,4)

⋮ ⋮

91ab3cd ID11: (4,8)

Hashkey Value(s)

aa423ef ID900

10acdff ID10

ff1e3432 ID514

⋮ ⋮

f2f2e12 ID141

 
Candidate set:     ID2: (1,4),  ID5694: (2,4) 

Step 3: Repeat with many different hash tables.
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Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Query (2, 5)



Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Hashkey Value(s)

beda11fe ID10: (9,10)

f12fbe10 ID101: (5,0)

ac33445a ID5694: (2,4)

⋮ ⋮

91ab3cd ID11: (4,8)

Hashkey Value(s)

aa423ef ID900: (3,4)

10acdff ID10: (9,10)

ff1e3432 ID514: (8,8)

⋮ ⋮

f2f2e12 ID141: (10, 8)

 
Candidate set:     ID2: (1,4),  ID5694: (2,4), ID900: (3,4) 

Step 3: Repeat with many different hash tables.

Data

h3(  )

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Query (2, 5)



Query (2, 5)

Step 4: Find closest neighbor in the candidate set.

Data

Step 2: Query the hash table.
Step 1: Build an LSH hash table using h.

Step 3: Repeat with many different hash tables.

Hashkey Value(s)

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

Hashkey Value(s)

beda11fe ID10: (9,10)

f12fbe10 ID101: (5,0)

ac33445a ID5694: (2,4)

⋮ ⋮

91ab3cd ID11: (4,8)

Hashkey Value(s)

aa423ef ID900: (3,4)

10acdff ID10: (9,10)

ff1e3432 ID514: (8,8)

⋮ ⋮

f2f2e12 ID141: (10, 8)

 
Candidate set:     ID2: (1,4),  ID5694: (2,4), ID900: (3,4) 
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One-time setup: Construct LSH tables
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Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)

     ANN hash tables
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Step 1: Client uses LSH functions to find the hashkey
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LSH functions
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Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)
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Step 1: Client uses LSH functions to find the hashkey

A strawman protocol

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)
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Step 1: Client uses LSH functions to find the hashkey
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Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)



Q: How can the client retrieve the candidate from each table privately? 

A: Using private information retrieval (PIR) [1]. 

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting. 

Challenge: querying the hash table privately

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques. 
Springer, Berlin, Heidelberg, 2014.
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Q: How can the client retrieve the candidate from each table privately? 

A: Using private information retrieval (PIR) [1]. 
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Q: How can the client retrieve the candidate from each table privately? 

A: Using private information retrieval (PIR) [1]. 

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting. 
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Q: How can the client retrieve the candidate from each table privately? 

A: Using private information retrieval (PIR) [1]. 

● We use Distributed Point Functions [2] (DPFs) for efficiently querying hash tables in a two-server setting. 

Challenge: querying the hash table privately

+ =

PIR
A

PIR
B

[V]
A

[V]
B

[V]
A

[V]
B

V (additive secret shares)

[1]: Gertner, Yael, et al. "Protecting data privacy in private information retrieval schemes." Journal of Computer and System Sciences 60.3 (2000): 592-629.
[2]: Gilboa, Niv, and Yuval Ishai. "Distributed point functions and their applications." Annual International Conference on the Theory and Applications of Cryptographic Techniques. 
Springer, Berlin, Heidelberg, 2014.
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Step 1: Client uses LSH functions to find the hashkey
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Step 2: Privately query hash tables using PIR

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)

c26fab1d ID100: (0,1)

09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)
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A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values
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⋮ ⋮
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⋮ ⋮
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(secret shares)
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B

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

Hashkey Values

a3da901f ID1: (0, 4)

c26fab1d ID65: (1, 5)

09ac34fd ID5: (1, 10)

⋮ ⋮

712df5c5 ID13: (10, 8 )

Hashkey Values

a3da901f ID1: (3, 5)

c26fab1d ID65: (1, 3)

09ac34fd ID5: (1, 9)

⋮ ⋮

712df5c5 ID13: (1, 10)

Hashkey Values

a3da901f ID2: (1, 4)
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09ac34fd ID3: (6,7)

⋮ ⋮

91ab3cd ID11: (1,10)
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2
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3
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Step 3: Client recovers the result
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(union over all tables)

Query: (2,5)

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

 
Candidate set:    ID2: (1,4), ID5694: (2,4),  ID900: (3,4),  ID101: (6,5)



 
Candidate set:    ID2: (1,4), ID5694: (2,4),  ID900: (3,4),  ID101: (6,5)
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False positives

Step 3: Client recovers the result

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

(union over all tables)

Query: (2,5)



 
Candidate set:    ID2: (1,4), ID5694: (2,4),  ID900: (3,4),  ID101: (6,5)
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Near Neighbors

Step 3: Client recovers the result

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

(union over all tables)

Query: (2,5)



 
Candidate set:    ID2: (1,4), ID5694: (2,4),  ID900: (3,4),  ID101: (6,5)
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Nearest Neighbor

Step 3: Client recovers the result

A strawman protocol
Step 1: Client uses LSH functions to find the hashkey
Step 2: Privately query hash tables using PIR

(union over all tables)

Query: (2,5)



Challenge: Database privacy
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Baseline leakage



Challenge: Database privacy

        The candidate set leaks a lot about the database to the client!

The client learns:

● All near neighbors and their feature vectors.

● Other feature vectors in the database (false positives).

⚠

 
Candidate set:    ID2: (1,4),  ID5694: (2,4),  ID900: (3,4),  ID101: (6,5)

ID5694: (2,4)

Query
ID101: (6,5)

ID2: (1,4)

ID5694

Query

Baseline leakage Candidate set leakage ID900: (3,4)



Database Privacy with 
Radix sorting

(hide all feature vectors by pruning without comparisons)



Main idea: use radix sorting for comparison-free sorting

Pruning without comparisons
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Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Pruning without comparisons
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Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Pruning without comparisons
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Query



Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Table 2: radius = 0.2

Pruning without comparisons
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Query



Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Table 2: radius = 0.2

Table 3: radius = 0.3

Pruning without comparisons

85

Query



Main idea: use radix sorting for comparison-free sorting

(i.e., let the hash function do the work of sorting by distance)

Table 1: radius = 0.1

Table 2: radius = 0.2

Table 3: radius = 0.3

       …

Table 20: radius = 2.0

Pruning without comparisons
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Query



Pruning without comparisons

Candidates are now sorted by distance from the query!
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0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set    = 



Pruning without comparisons

Candidates are now sorted by distance from the query!
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Nearest Neighbor

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set    = 



Pruning without comparisons

Candidates are now sorted by distance from the query!
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Nearest Neighbor

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set    = 

We no longer need to include the feature vectors (only the IDs)!



Pruning without comparisons

Candidates are now sorted by distance from the query!
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Nearest Neighbor

0, 0, 0, ID5694, ID2, ID900, 0, ID101Candidate Set    = 

We no longer need to include the feature vectors (only the IDs)!

Still leaks many IDs from the database to the client. ⚠



More database privacy with
Oblivious masking

(hide all candidates except for the nearest neighbor)



Oblivious masking

After processing the PIR queries, each server has a share of the candidate set:   
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[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

ID5694

Query
ID101

ID2

ID5694

Query

Baseline leakage Candidate set leakage ID900



Oblivious masking

After processing the PIR queries, each server has a share of the candidate set:   
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[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

ID5694

Query

ID5694

Query

Baseline leakage Candidate set leakage



[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

Observation: the nearest neighbor is always preceded by shares of 0s…

Oblivious masking
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[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

Observation: the nearest neighbor is always preceded by shares of 0s…

Oblivious masking
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Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Oblivious masking
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[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]



Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

Oblivious masking
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[Candidate Set] =   

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]



Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

[Candidate Set] =   

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]



Oblivious masking
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[Candidate Set] = [0]

Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0] + [0]r
2
 



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0] + [0+0]r
3
 



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694] + [0+0+0]r
4
  



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [ID2] + [0+0+0+ID5694]r
5
   



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [ID2] + [(0+0+0+ID5694)r
5
]   



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*]  



Oblivious masking
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Rule: For each copied share, sum all preceding elements in [Candidate Set] and add  

[SUM]·r
i
  to the new element in [Candidate Set].

Step 1: Servers agree on common randomness (r
1
, r

2
, …, r

n
) e.g., with a short PRG seed.

Step 2: Servers copy (and randomize) shares from  [Candidate Set] to [Candidate Set]. 

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  



All elements after the first non-zero element are random!

Oblivious masking
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[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  



All elements after the first non-zero element are random!

Result: The client learns nothing beyond the first non-zero element (i.e., the ANN)!

Oblivious masking
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no leakage

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  



All elements after the first non-zero element are random!

Result: The client learns       nothing beyond the first non-zero element (i.e., the ANN)!

Oblivious masking
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almost

[Candidate Set] = 

[Candidate Set] =   [0], [0], [0],  [ID5694], [ID2], [0], [ID900], [ID101]

[0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  

small leakage no leakage



Oblivious masking
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The radix bucket of the ANN leaks the approximate distance from the query.
 

[Candidate Set] = [0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  

small leakage no leakage



Oblivious masking
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The radix bucket of the ANN leaks the approximate distance from the query.
 
● Asymptotically optimal leakage!              

[Candidate Set] = [0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  

small leakage no leakage



Oblivious masking
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The radix bucket of the ANN leaks the approximate distance from the query.
 
● Asymptotically optimal leakage!              
● In practice: 2 to 15x more than baseline leakage. 

small leakage no leakage

[Candidate Set] = [0], [0], [0], [ID5694], [#$@!#*], [$%@!&], …  



Evaluation



We evaluate on four real world datasets

● Deep1B (10 million items, 96 dimensions).  

● SIFT (1 million items, 128 dimensions).  

● GIST (1 million items, 916 dimensions).  

● MNIST (60,000 items, 784 dimensions).  
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Efficiency on small datasets (MNIST; 60,000 items)
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Server computation for > 95% accuracy (32 core servers): 

● 300 milliseconds per query. 

Communication: 800 KB between client and both servers.
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Server computation for > 95% accuracy (32 core servers): 

● 300 milliseconds per query. 

Communication: 800 KB between client and both servers.

How many buckets are 
“probed” in each hash table.
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Efficiency on large datasets (1M to 10M items)
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Server computation for > 95% accuracy (32 core servers): 

● 1.2 seconds per query on 1M item datasets.

● 8 seconds per query on 10M item datasets.

Communication: 1-2MB between client and both servers.



Efficiency on large datasets (1M to 10M items)
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Server computation for > 95% accuracy (32 core servers): 

● 1.2 seconds per query on 1M item datasets.

● 8 seconds per query on 10M item datasets.

Communication: 1-2MB between client and both servers.

Five orders of magnitude less computation compared to FHE-based approaches.



Efficiency on large datasets (1M to 10M items)
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Server computation (32 core servers): 

● 1.2 seconds per query on 1M item datasets (GIST and SIFT).

● 8 seconds per query on 10M item datasets (Deep1B)

Communication: 1-2MB between client and both servers.

10 tables @ 100 probes  results in > 95% accuracy.

1,000 to 3,000X less communication compared to two-party computation!
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Thank you!

Full paper:   ia.cr/2021/1157    
Code: github.com/sachaservan/private-ann
Contact:       3s@mit.edu, slangows@mit.edu 

Sacha Servan-Schreiber
with Simon Langowski and Srini Devadas

https://eprint.iacr.org/2021/1157
http://github.com/sachaservan/private-ann
mailto:3s@mit.edu
mailto:slangows@mit.edu

