Simultaneous-Message and Succinct Secure Computation

Eurocrypt 2025

Elette Boyle

Abhishek Jain

Sacha Servan-Schreiber

Akshayaram Srinivasan

Eurocrypt 2025

Elette Boyle

Abhishek Jain

Sacha Servan-Schreiber

Akshayaram Srinivasan

Secure Computation

Secure Computation

Secure Computation

Impossible for arbitrary functions Two-round lower-bound for two party computation [HLP'11]

13

15

Attack: Alice learns more than just f(x, y)

 $z_A \leftarrow \mathsf{Decode}_A(x,\mathsf{pe}_B)$

 $z_B \leftarrow \mathsf{Decode}_B(y,\mathsf{pe}_A)$

 $z_A \leftarrow \mathsf{Decode}_A(x,\mathsf{pe}_B)$

 $z_B \leftarrow \mathsf{Decode}_B(y,\mathsf{pe}_A)$

 $z_A \leftarrow \mathsf{Decode}_A(x,\mathsf{pe}_B)$

 $z_B \leftarrow \mathsf{Decode}_B(y,\mathsf{pe}_A)$

Spooky Encryption^[DHRW'16] From LWE or iO

Spooky Encryption^[DHRW'16] From LWE or iO

Multi-Key Homomorphic Secret Sharing^[CDHJSS'16] From DCR

Can we go further?

Can we get a "fully succinct" protocol? $|\mathsf{pe}_{\sigma}| \leq \; (|X|^{\epsilon} + |f(X,y)|^{\epsilon}) \; ext{ for all } \sigma \in \{A,B\}$

Can we get a "fully succinct" protocol?

$|\mathsf{pe}_{\sigma}| \leq (|X|^{\epsilon} + |f(X,y)|^{\epsilon}) ext{ for all } \sigma \in \{A,B\}$

 $(\mathsf{pe}_A, \mathsf{st}_A) \leftarrow \mathsf{Encode}_A(f, X)$

 $(\mathsf{pe}_B, \mathsf{st}_B) \leftarrow \mathsf{Encode}_B(f, y)$

	Assumptions	Input Succinct	Function Succinct	Comments
Succinct HSS ^[ARS'24]	LWE / DCR	1	1	Vector OLE Functions

	Assumptions	Input Succinct	Function Succinct	Comments
Succinct HSS ^[ARS'24]	LWE / DCR	1	1	Vector OLE Functions
SMS (this work)	LWE	1	1	All functions

	Assumptions	Input Succinct	Function Succinct	Comments
Succinct HSS ^[ARS'24]	LWE / DCR	1	1	Vector OLE Functions
SMS (this work)	LWE	1	1	All functions
SMS (this work)	iO + SSB Hash	1	1	Batch functions
	Assumptions	Input Succinct	Function Succinct	Comments
----------------------------------	---------------	-------------------	----------------------	-------------------------
Succinct HSS ^[ARS'24]	LWE / DCR	1	1	Vector OLE Functions
SMS (this work)	LWE	1	1	All functions
SMS (this work)	iO + SSB Hash	1	1	Batch functions
Concurrent work [AMR'25]	LWE	1	1	Near-optimal parameters

Applications of SMS

First construction supporting all functions

First construction supporting all functions

Correlation-Intractable Hash Functions

Generic compiler from LWE

First construction supporting all functions

Correlation-Intractable Hash Functions

Generic compiler from LWE

Succinct Secure Computation with Long Outputs

SMS

Alternative iO-based construction of Hubacek–Wichs [HW'15]

First construction supporting all functions

Correlation-Intractable Hash Functions

Generic compiler from LWE

Succinct Secure Computation with Long Outputs

SMS

Alternative iO-based construction of Hubacek–Wichs [HW'15] Rate-1 FHE

Generic compiler from any FHE scheme

SMS Construction

Ingredient I: FHE from LWE with "nice" decryption FHE.KeyGen (1^{λ}) : sk $\stackrel{R}{\leftarrow} (\mathbb{Z}_q^{n-1}, 1)$ FHE.Encrypt (sk, x) : $\left(-a, \langle a, sk \rangle + \frac{q}{p}x + noise\right)$

 $\mathsf{FHE}.\mathsf{Decrypt}\,(\mathsf{sk},\,\mathsf{ct}):\,\lceil\langle\mathsf{ct},\mathsf{sk}\rangle\rfloor_p$

$$\langle \mathsf{ct},\mathsf{sk}
angle \,=\, rac{q}{p}x + \mathsf{noise}$$

Ingredient I: FHE from LWE with "nice" decryption FHE.KeyGen (1^{λ}) : sk $\stackrel{R}{\leftarrow} (\mathbb{Z}_q^{n-1}, 1)$ FHE.Encrypt (sk, x) : $\left(-a, \langle a, sk \rangle + \frac{q}{p}x + noise\right)$

 $\mathsf{FHE}.\mathsf{Decrypt}\,(\mathsf{sk},\,\mathsf{ct}):\,\lceil\langle\mathsf{ct},\mathsf{sk}\rangle\rfloor_p$

$$\langle \mathsf{ct},\mathsf{sk}
angle \,=\, rac{q}{p}x + \mathsf{noise}$$

"Near linear decryption"

Ingredient II: GVW Evaluation Algorithms

Building blocks from [GVW'15]:

- EvalPK (crs, C) $\rightarrow \mathbf{A}_{C}$. Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_{q}^{\beta}$ Output: a public matrix $\mathbf{A}_{C} \in \mathbb{Z}_{q}^{n \times k}$
- EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \rightarrow \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where: $\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_C = \mathbf{s}^\top \left(\mathbf{A}_C + \left\langle C(\hat{a}), \hat{\mathbf{b}} \right\rangle \cdot \mathbf{G} \right) + \text{noise}$

SMS Construction Getting input succinctness

 $\mathsf{Hash}\left(oldsymbol{X}
ight)
ightarrow \mathsf{pe}_{A}$ XAlice

$$\mathsf{Hash}(X) \to \mathsf{pe}_A$$
$$X \bigoplus_{\mathsf{Alice}} \xrightarrow{\mathsf{pe}_A}$$

$$\begin{array}{c} \mathsf{Ct}_y := \mathsf{Encrypt}\,(\P, \, y) \\ \mathsf{Hash}\,(X) \to \mathsf{Pe}_A & \mathsf{ct} \, := \mathsf{Encrypt}\,(\P, \P) \end{array} \right\} \mathsf{Pe}_B \\ X \bigoplus_{\mathsf{Alice}} \xrightarrow{\mathsf{Pe}_A} & \underbrace{\mathsf{pe}_A} \\ & \underbrace{\mathsf{Pe}_A} & \underbrace{\mathsf{Pe}_B} \\ & \underbrace{\mathsf{Pe$$

$$\begin{array}{c} \operatorname{\mathsf{Hash}}(X) \to \operatorname{\mathsf{pe}}_A & \operatorname{\mathsf{ct}} := \operatorname{\mathsf{Encrypt}}(\P, y) \\ \operatorname{\mathsf{ct}} := \operatorname{\mathsf{Encrypt}}(\P, \P) \end{array} \right\} \operatorname{\mathsf{pe}}_B \\ X \bigoplus_{\mathsf{Alice}} \xrightarrow{\operatorname{\mathsf{pe}}_A} \xrightarrow{\operatorname{\mathsf{pe}}_B} \underbrace{\bigoplus_{\mathsf{Bob}} y}_{\mathsf{Bob}} y \\ \end{array}$$

$$\begin{array}{ll} \operatorname{\mathsf{Hash}}(X) \to \operatorname{\mathsf{pe}}_A & \operatorname{\mathsf{ct}}_y \coloneqq \operatorname{\mathsf{Encrypt}}(\P, y) \\ X \bigoplus_{\mathsf{Alice}} \xrightarrow{\operatorname{\mathsf{pe}}_A} & \operatorname{\mathsf{ct}} \coloneqq \operatorname{\mathsf{Encrypt}}(\P, \P) \end{array} \right\} \operatorname{\mathsf{pe}}_B \\ \widehat{\operatorname{\mathsf{ct}}} & \longleftarrow \operatorname{\mathsf{ct}} \xrightarrow{\operatorname{\mathsf{pe}}_B} & \underbrace{\operatorname{\mathsf{pe}}_B}_{\mathsf{Bob}} y \\ \widehat{\operatorname{\mathsf{ct}}} & \leftarrow \operatorname{\mathsf{Eval}}(f, X, \operatorname{\mathsf{ct}}_y) \end{array}$$

$$\begin{array}{c} \mathsf{ct}_y := \mathsf{Encrypt}\left(\P, y\right) \\ \mathsf{Hash}\left(X\right) \to \mathsf{pe}_A & \mathsf{ct} := \mathsf{Encrypt}\left(\P, \P\right) \end{array} \right\} \mathsf{pe}_B \\ \overbrace{\mathsf{Alice}} & \underbrace{\mathsf{pe}_A} & \underbrace{\mathsf{pe}_B} & \underbrace{\mathsf{ge}_B} & \underbrace{\mathsf{ge}_B} & y \\ \hat{\mathsf{ct}} & \leftarrow \mathsf{Eval}\left(f, X, \mathsf{ct}_y\right) \\ z_A & \leftarrow \mathsf{Magic}\left(\mathsf{ct}_\P, \hat{\mathsf{ct}}\right) \end{array}$$

55

$\mathsf{EvalPK}(X) \to {}^{\mathsf{pe}_A}$

$\hat{\mathsf{ct}} \leftarrow \mathsf{EvalCT}\left(f, X, \mathsf{ct}_y\right)$

 $z_A \leftarrow \text{Near linear decryption}$

 $f: \{0,1\}^{\mathsf{BIG}} imes \{0,1\}^{\mathsf{small}} o \{0,1\}$

 $f: \{0,1\}^{\mathsf{BIG}} \times \{0,1\}^{\mathsf{small}} \to \{0,1\}$ Building SMS with Input Succinctness

 $f: \{0,1\}^{\mathsf{BIG}} \, \times \{0,1\}^{\mathsf{small}} \, \rightarrow \{0,1\}$

Building SMS with Input Succinctness

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

X

 $f: \{0,1\}^{\mathsf{BIG}} \, \times \{0,1\}^{\mathsf{small}} \, \rightarrow \{0,1\}$

Building SMS with Input Succinctness

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

X

Alice

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,, C\right)$

 $f: \{0,1\}^{\mathsf{BIG}} \times \{0,1\}^{\mathsf{small}} \to \{0,1\}$ Building SMS with Input Succinctness $|\mathbf{A}_{C}| = \mathsf{poly}\left(\mathsf{depth}\left(C
ight), \lambda
ight)$ "It's very small" \mathbf{A}_{C} XAlice

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

Bob

 $\mathsf{sk} \leftarrow \mathsf{FHE}.\,\mathsf{KeyGen}\,(1^\lambda)$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,\operatorname{ct})$

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathbf{sk} \leftarrow \mathsf{FHE}. \operatorname{KeyGen} (1^{\lambda})$ $\mathsf{ct} \leftarrow \mathsf{FHE}. \mathsf{Enc} (\mathsf{sk}, y)$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,\operatorname{ct})$

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathbf{sk} \leftarrow \mathsf{FHE}. \operatorname{KeyGen} (1^{\lambda})$ $\mathsf{ct} \leftarrow \mathsf{FHE}. \mathsf{Enc} (\mathsf{sk}, y)$ $\mathbf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_q^n$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 \mathbf{y} $\mathsf{sk} \leftarrow \mathsf{FHE}. \, \mathsf{KeyGen} \, (1^{\lambda})$ $\mathsf{ct} \leftarrow \mathsf{FHE}. \mathsf{Enc} \, (\mathsf{sk}, y)$ $\mathsf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_q^n$ $\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \mathsf{ct} \, [i] \cdot \mathbf{G} + \mathsf{noise}, \, \, \mathrm{for} \, \mathrm{all} \, i \in [\alpha]$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

Bob $\mathsf{sk} \leftarrow \mathsf{FHE}. \mathsf{KeyGen} (1^{\lambda})$ $\mathsf{ct} \leftarrow \mathsf{FHE}.\mathsf{Enc}(\mathsf{sk}, y)$ $\mathbf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_a^n$ $\mathbf{u}_i = \mathbf{s}^{\top} \mathbf{A}_i + \mathsf{ct} [i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^{\top} \mathbf{B}_i + \mathsf{sk} [i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\beta]$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $X \quad A_{C} \qquad A_{C} \qquad Bob$ $A_{C} \leftarrow EvalPK (crs, C) \qquad sk \leftarrow FHE. KeyGen (1^{\lambda}) \\ ct \leftarrow FHE.Enc (sk, y) \\ s \leftarrow (1, random) \in \mathbb{Z}_{q}^{n}$ $\mathbf{u}_{i} = \mathbf{s}^{\top} \mathbf{A}_{i} + ct [i] \cdot \mathbf{G} + noise, \text{ for all } i \in [\alpha]$

 $\mathbf{v}_i = \mathbf{s}^{\top} \mathbf{B}_i + \mathsf{sk}[i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\beta]$

C takes as input an FHE ciphertext ct and computes FHE. Eval (f, X, ct)

Encryption of sk

 $\mathbf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_a^n$ $\mathbf{u}_i = \mathbf{s}^{\top} \mathbf{A}_i + \mathsf{ct} [i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^{\top} \mathbf{B}_i + \mathsf{sk} [i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\beta]$

Bob

(ct, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}$)

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

$$\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise}$ // because $\mathbf{s}[1] = 1$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise}$ // because $\mathbf{s}[1] = 1$

 $\mathbf{s}^{ op} \mathbf{A}_{C}[1] + \langle \mathsf{FHE}. \operatorname{Eval}(f, (X, \operatorname{ct})), \operatorname{sk}
angle + \operatorname{noise}(f, (X, \operatorname{ct})), \operatorname{sk}
angle$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $= \mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise} \qquad \text{// because } \mathbf{s}[1] = 1$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle \mathsf{FHE}. \mathsf{Encrypt}(\mathsf{sk}, f(X, y)), \mathsf{sk} \rangle + \mathsf{noise}$ // correctness

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}\left[1\right] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G}\right) \left[1\right] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise}$ // because $\mathbf{s}[1] = 1$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle \mathsf{FHE}. \mathsf{Encrypt}(\mathsf{sk}, f(X, y)), \mathsf{sk} \rangle + \mathsf{noise}$ // correctness

 $= \mathbf{s}^{ op} \mathbf{A}_{C}\left[1
ight] + rac{q}{p} f\left(X,y
ight) +$ noise $\,$ // near-linear decryption of FHE

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

$$z_A := \mathbf{s}^ op \mathbf{A}_C \left[1
ight] + rac{q}{p} f \left(X, y
ight) + ext{noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

$$z_A := \mathbf{s}^{ op} \mathbf{A}_C \left[1
ight] + rac{q}{p} f \left(X, y
ight) + \, \mathsf{noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

 $z_A := \mathbf{s}^{ op} \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + ext{noise}$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

$$z_A := \mathbf{s}^{\top} \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + ext{noise} \qquad z_B := -\left(\mathbf{s}^{\top} \mathbf{A}_C
ight) \left[1
ight]$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

$$z_A := \mathbf{s}^{\top} \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + ext{noise} \qquad z_B := -\left(\mathbf{s}^{\top} \mathbf{A}_C
ight) \left[1
ight]$$

$$z_A + z_B = rac{q}{p} f(X,y) + ext{noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

$$z_A := \lceil \mathbf{s}^{ op} \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + \mathsf{noise}
floor_p \qquad z_B := - \lceil \left(\mathbf{s}^{ op} \mathbf{A}_C
ight) \left[1
ight]
floor_p$$

Alice

Lemma (Rounding of Noisy Shares): Assuming LWE with *superpolynomial modulus-to-noise ratio*, rounding of two noisy shares results in additive shares.

$$egin{aligned} & z_A := \lceil \mathbf{s}^ op \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + \mathsf{noise}
ight]_p & z_B := - \lceil \left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight]
ight]_p \ & = \mathbf{s}^ op \mathbf{A}_C \left[1
ight] + f\left(X, y
ight) \pmod{p} & = - \left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight] \pmod{p} \end{aligned}$$

$$egin{aligned} & z_A := \lceil \mathbf{s}^ op \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + \mathsf{noise}
ight]_p & z_B := - \left[\left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight]
ight]_p \ & = \mathbf{s}^ op \mathbf{A}_C \left[1
ight] + f\left(X, y
ight) \pmod{p} & = - \left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight] \pmod{p} \end{aligned}$$

$$z_A \,+\, z_B \,= f\left(X,y
ight)$$

Long outputs?

Long outputs?

Too long to explain; Idea: "Bootstrap" from SMS for vector OLE [ARS'24]

Questions?

Email: 3s@mit.edu ePrint: <u>ia.cr/2025/096</u>

Simultaneous-Message and Succinct Secure Computation

Elette Boyle^{1,2}, Abhishek Jain^{1,3}, Sacha Servan-Schreiber^{4 \star}, and Akshayaram Srinivasan⁵

¹ NTT Research
 ² Reichman University
 ³ JHU
 ⁴ MIT
 ⁵ University of Toronto

References

[HLP'11]: S. Halevi, Y. Lindell, and B. Pinkas. "Secure Computation on the Web: Computing without Simultaneous Interaction."

[BGG+'14]: D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and D. Vinayagamurthy. "Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE, and Compact Garbled Circuits."

[GVW'15]: S. Gorbunov, V. Vaikuntanathan, and H. Wee. "Predicate Encryption for Circuits from LWE."

[HW'15]: P. Hubacek and D. Wichs. "On the Communication Complexity of Secure Function Evaluation with Long Output."

[DHRW'16]: D. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. "Spooky Encryption and Its Applications."

[QWW'18]: W. Quach, H. Wee, and D. Wichs. "Laconic Function Evaluation and Applications."

[ARS'24]: D. Abram, L. Roy, and P. Scholl. "Succinct Homomorphic Secret Sharing."

[AMR'25]: D. Abram, G. Malavolta, L. Roy. "Succinct Oblivious Tensor Evaluation and Applications: Adaptively-Secure Laconic Function Evaluation and Trapdoor Hashing for All Circuits."

[BJSSS'25]: E. Boyle, A. Jain, S. Servan-Schreiber, and A. Srinivasan. "Simultaneous-Message and Succinct Secure Computation."