
Trellis: Robust and Scalable Metadata 
Private Anonymous Broadcast

Simon Langowski, Sacha Servan-Schreiber, and Srini Devadas

1



Broadcast

Hello NDSS 
2023!

2



Broadcast

Hello NDSS 
2023!

3

Hello world!



Broadcast: A public bulletin board…

4



Broadcast: A public bulletin board…

5



Broadcast: …or an online forum

User297: I really like potatoes.

Iguana25: Carrots are better.

thellama: Why not both?

6



Anonymous broadcast

Anonymous broadcast is a building block in privacy-preserving systems

● Anonymous shuffling
● Anonymous communication
● Anonymous voting
● Privacy-preserving telemetry

7



Anonymity vs. metadata 

● Forum is hosted on a server
● Obvious from traffic metadata which message belongs to which user

Metadata leakage:
● Source IP indicates Alice
● Timing links Alice’s message

8



Metadata privacy

● Message contents can be protected by encryption and authentication 
(end-to-end encryption with TLS).

● But metadata is leaked to network observers:

● Time sent,
● Source IP,
● Message size,
● etc…

Types of Metadata

9



Trellis: An anonymous broadcast system

10

Trellis

Senders



Trellis: An anonymous broadcast system

11

Trellis

Senders



Trellis: An anonymous broadcast system

12

Bulletin Board

Trellis

Senders



Trellis: An anonymous broadcast system

13

Bulletin Board

Trellis

Senders



Trellis: An anonymous broadcast system

14

Unlinkable to Senders

Bulletin Board

Trellis

Senders



Trellis: An anonymous broadcast system

15

Unlinkable to Senders

Bulletin BoardSenders Trellis: 
“under the hood”



Adversary model

● The adversary controls a constant fraction f of the servers in Trellis
● The adversary can observe all network traffic
● Some number of colluding (sybil) users work with the adversary.

S1 S3

16

S2



Adversary model

● The adversary controls a constant fraction f of the servers in Trellis
● The adversary can observe all network traffic
● Some number of colluding (sybil) users work with the adversary.

S1 S3

17

S2

f=0.3



Constructing 
Trellis

18



Starting point: Mixnets [Chaum’81]

● N servers arranged in a chain, 
● Each server shuffles and forwards the M messages to the next server
● Doesn’t scale: each server has O(M) work and O(M) communication! 

S1 S2
M

...

19

...
S3

...



Desired Properties

● Robustness
○ All messages are posted even if servers are adversarial

● Scalability
○ Performance improves with more servers
○ Scale linearly with the number of messages

● Metadata-privacy
○ Anonymity even when the network is observed 

20



Desired Properties

● Robustness
○ All messages are posted even if servers are adversarial

● Scalability
○ Performance improves with more servers
○ Scale linearly with the number of messages

● Metadata-privacy
○ Anonymity even when the network is observed 

21

Often in conflict!



Scalable but not robust: Parallel Mixnets [GJ’04]

Scalability: Each server divides the envelopes among all the servers

22

S2

S3

S1

S2

S3

S1



Scalable but not robust: Parallel Mixnets [GJ’04]

Scalability: Each server divides the envelopes among all the servers

23

S1

S2

S3

S1

S2

S3



Scalable but not robust: Parallel Mixnets [GJ’04]

Scalability: Each server divides the envelopes among all the servers

24

S1

S2

S3

S1

S2

S3



Scalable but not robust: Parallel Mixnets [GJ’04]

25

Scalability: Each server divides the envelopes among all the servers

S1

S2

S3

S1

S2

S3

S1

S2

S3

Layer 0 Layer 1 Layer 2



Problem: Adversary controlled paths

Scalable but not robust: Parallel Mixnets

26

S1

S2

S3

S1

S2

S3

S1

S2

S3

Layer 0 Layer 1 Layer 2



Problem: Adversary controlled paths

(Covertly) Dropped Messages

27

S1

S2

S3

S1

S2

S3

S1

S2

S3

Layer 0 Layer 1 Layer 2

Drops an 
envelope



Problem: Adversary controlled paths

(Covertly) Dropped Messages

28

S1

S3

S1

S2

S3

S1

S2

S3

Layer 0 Layer 1 Layer 2

S2

Drops an 
envelope



New tool: Anonymous routing tokens (ART)

● Allows servers to know which envelopes to expect
● Servers anonymously check that an envelope was received from each 

assigned user

ART Tokens

Token ID Encryption key Verification key Forwarding server Received?

14 0x13a 0xfdf9130 3 Yes

55 0x41f 0x12ea0 1 Yes

39 0x556 0xbbc908 3 No

Tokens are random ⇒ unlinkable to user 29



Problem: Adversary controlled paths

(Covertly) Dropped Messages

30

S1

S3

S1

S2

S3

S1

S2

S3

Layer 0 Layer 1 Layer 2

S2

Drops an 
envelope

Someone 
dropped an 
envelope!



Robustness in Trellis using ARTs

● Deviations are always caught at the next honest server

31

S1 S2 S3

No envelope 
received for token 

0x556 :( 



Robustness in Trellis using ARTs

● Deviations are always caught at the next honest server
● Blame previous server for being malicious!

32

        dropped an 
envelope!

S1 S2 S3



Robustness in Trellis using ARTs

● Deviations are always caught at the next honest server

33

S1 S2 S3

No envelope 
received for token 

0x556 :( 



Robustness in Trellis using ARTs

● Deviations are always caught at the next honest server
● Honest server should have reported earlier

34

S2 S3

No envelope 
received for token 

0x041 :( 

S1



● Deviations are always caught at the next honest server.
● An honest server would have blamed if had not received the envelope
● Guarantee: One adversary server is removed for each server deviation

Drops envelope

35

S2S2

No envelope 
received for token 

0x556 :( 

Robustness in Trellis using ARTs

S1



● Deviations are always caught at the next honest server.
● An honest server would have blamed if had not received the envelope
● Guarantee: One adversary server is removed for each server deviation

Colluding! 
Did not report envelope missing 

in previous layer!

36

S2S2

Robustness in Trellis using ARTs

S1

Drops envelope

        dropped an 
envelope!



Publicly verifiable evidence

● Each server digitally signs the batch of envelopes it sends

37

S1 S2



Publicly verifiable blame

● Servers use signatures to provide proof of “input”
● Allows a server to prove that an envelope wasn’t sent

Missing or malformed envelope

38



Blame with evidence

39

● Adversary dropped message
● Next server reveals signature 

with envelope missing

No envelope 
received for 

token 0x556 :( 

S2



Blame with evidence

40

● Adversary dropped message
● Next server reveals signature 

with envelope missing

No envelope 
received for 

token 0x556 :( 

S2

● Malicious invocation
● Can’t show signed envelopes 

from honest server

No envelope 
received for 

token 0x556 :( 

S2



Blame with evidence

41

● Adversary dropped message
● Next server reveals signature 

with envelope missing

No envelope 
received for 

token 0x556 :( 

S2

● Malicious invocation
● Can’t show signed envelopes 

from honest server

No envelope 
received for 

token 0x556 :( 

S2

In both cases, the adversary already knows the revealed information! 



Blame with evidence

● Evidence allows users and servers to decide which are honest

Observation: Honest servers will always evaluate evidence correctly

● Honest servers refuse servers who evaluate differently
● Users route through honest servers in future
● Every deviation removes at least one malicious server

42

Disagree with blame Agree with blame 



Constructing Trellis: Boomerang encryption

How do servers know which users are assigned to them?

Deliver anonymous routing tokens via Boomerang 
encryption

43



● A message is recursively encrypted to each of the servers
● Each server removes one layer of encryption
● All layers of decryption must be removed to get the message

Onion envelopes

S1 S2

44



New tool: Boomerang encryption

Provide delivery receipts by onion encrypting along the path again 
but in reverse

Only if all servers along the path decrypt the envelope, can the 
correct receipt be returned

Receipt

Envelope

45

S2

S1

S3

S2



Trellis overview

● Incremental Path Establishment: 
○ Users use Boomerang Encryption to obtain receipts of correct 

Anonymous Routing Token delivery
○ Anonymous Routing Tokens guarantee delivery in later rounds

46



Trellis overview

● Incremental Path Establishment: 
● Broadcast rounds: 

○ Deliver messages along the established paths
○ See paper for full details

47



Trellis overview

● Incremental Path Establishment: 
● Broadcast rounds: 
● Blame protocols on demand:

○ Remove malicious parties with evidence
○ Discard malicious messages with evidence
○ Recover from deviations
○ See paper for full details

48



Evaluation

AWS machines

● Up to 256 m5.xlarge (4 core, 16GB) instances

Across four AWS regions

● Oregon, Virginia, Frankfurt, and Stockholm
● Roughly matches the Tor network geographic distribution

Simulate limited bandwidth and latency conditions

● Tail latency impacts time before we can send next layer!

49



Atom [KCGDF’17]

Main idea: Use “anytrust” groups for robustness

Servers check each other’s work:
● If the group is large enough, it contains at least one honest server with high probability

50

S2

S2

S3



Atom [KCGDF’17]

Main idea: Use “anytrust” groups for robustness 

Servers check each other’s work:
● If the group is large enough, it contains at least one honest server with high probability

Problem: large computational overheads

● Zero-knowledge proofs to verify server actions ⇒ High computational overheads
● Work increases with group size

51



Atom vs. Trellis

Atom [KCGDF’17]

● Uses zero knowledge proofs to show server correctness
● Every server action is checked by a group of servers with large network overhead
● Large proofs for large messages cause computational slow down

Trellis

● Servers only “check” signatures
● A deviation results in the malicious party being removed
● Protocols remain efficient even for large messages
● (Theoretically) supports dishonest majority (f > 0.5)

52



Atom vs. Trellis

● Orders of magnitude faster than Atom (f=0.2, 128 servers)
● Especially efficient with long messages (1MB here).

53



Trellis: Message Scaling

● Scales linearly with size of message
● Scales nearly-linearly with number of messages

54

Trellis: 128 servers, 200Mbps network



Trellis: Server scaling

● Network bound: tail latency is constant
● Network bound: At least one dummy envelope is required for every pair 

of servers

55Trellis: 200Mbps network, with 2 million, 1Kb messages



Overheads of metadata privacy

● Bandwidth: dummy envelopes are needed as cover traffic to and 
between servers.  

● Latency: servers must wait for all other servers to send envelopes to hide 
timing information. 

● Required for metadata private systems                                                                 
to hide metadata

56

S3 S4

Layer 0 Layer 1

S1 S2



Questions?

See paper for things not covered! 

For example: 

● Trust graphs for managing dishonest majority and unresponsive servers
● Number of layers required to achieve mixing
● Full details on all the blame protocols

Paper ePrint: https://eprint.iacr.org/2022/1548 

Code: https://github.com/SimonLangowski/trellis 

Contact: Simon (slangows@mit.edu)  | Sacha (3s@mit.edu)  

57

https://eprint.iacr.org/2022/1548
https://github.com/SimonLangowski/trellis
mailto:slangows@mit.edu
mailto:3s@mit.edu


References

[KCGDF’17]: Kwon, A., Corrigan-Gibbs, H., Devadas, S., & Ford, B. (2017, October). Atom: Horizontally 
scaling strong anonymity. In Proceedings of the 26th Symposium on Operating Systems Principles (pp. 
406-422).

[Chaum’81] Chaum, D. L. (1981). Untraceable electronic mail, return addresses, and digital 
pseudonyms. Communications of the ACM, 24(2), 84-90.

[GJ’04] Golle, P., & Juels, A. (2004, October). Parallel mixing. In Proceedings of the 11th ACM conference 
on Computer and communications security (pp. 220-226).

58


