Non-Interactive Distributed Point Functions

Sacha Servan-Schreiber

Joint work with
Elette Boyle and Lalita Devadas

$$P_{t}\left(x
ight)$$

$$P_{t}\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_{t}\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

 $P_5\left(0\right)$

$$P_{t}\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_5(0)$$
 $P_5(1)$

$$P_{t}\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_{t}\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

$$P_{t}\left(x
ight) \,=\, egin{cases} 1 & x=t \ 0 & x
eq t \end{cases}$$

Alice

 K_A

Bob

 K_B

Private Information Retrieval and Search [Gl'14, BGl'15, DPKY'20]

Private Information Retrieval and Search [Gl'14, BGl'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Private Information Retrieval and Search [Gl'14, BGl'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Preprocessing multi-party computation [BCGI'18 + follow-up work]

Private Information Retrieval and Search [Gl'14, BGl'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Preprocessing multi-party computation [BCGI'18 + follow-up work]

More efficient secure computation [BGIK'21 + follow-up work]

Private Information Retrieval and Search [Gl'14, BGl'15, DPKY'20]

Distributed Oblivious RAM [Ds'17 + follow-up work]

Preprocessing multi-party computation [BCGI'18 + follow-up work]

More efficient secure computation [BGIK'21 + follow-up work]

Preprocessing in MPC

Preprocessing in MPC

Preprocessing in MPC

Removing the Trusted Setup

Removing the Trusted Setup

The Doerner-shelat Protocol

The Doerner-shelat Protocol

Can we remove interaction?

Inspiration

Diffie-Hellman Key Exchange

$$z_A + z_B = f(x, y)$$

"Diffie-Hellman" for DPF keys?

Distributed Point Functions

Distributed Point Functions

Distributed Point Functions

No Trusted Setup

No Trusted Setup*

No Trusted Setup

Goal

Get DPF keys for a point function with secret index $t = t_A + t_B$.

Building NIDPFs

Secret-Key Homomorphic Secret Sharing

Secret-Key Homomorphic Secret Sharing

Some Tricks

Secret-Key Homomorphic Secret Sharing

Some Tricks

NIDPF

Secret-Key Homomorphic Secret Sharing

Some Tricks

NIDPF

Adapted from protocols described in [ARS'24, BCMPR'24]

Informal Theorem (Implicit in [ARS'24])

There exists a two-party **succinct**, **non-interactive matrix multiplication protocol*** under any of the following assumptions: DDH, DCR, QR, or LWE.

^{*}For suitable matrix dimensions and suitable finite fields.

Using succinct matrix multiplication to realize a NIDPF

$$t_A \longrightarrow t_A = i_A \cdot \ell + j_A$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + j_B$

 t_B

$$t_A$$
 Alice

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + j_B$

$$t_A$$
 Alice

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + 0$

$$t_A$$
 Alice

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + 0$

$$\mathbf{AB} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$t_A$$
 Alice

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + 1$

$$\mathbf{AB} = \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \end{bmatrix}$$

$$t_A$$
 Alice

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + 2$

$$\mathbf{AB} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$t_A$$
 Alice

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + 3$

$$\mathbf{AB} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

 j_A

Bob

Cyclic Shift Matrix

Matrix

$$t_A \longrightarrow t_A = 3 \cdot \ell + 4$$
 $t_B \longrightarrow t_B = i_B \cdot \ell + 3$

Want: $t = (i_A + i_B) \cdot \ell + j_A + j_B$
 $AB = \begin{bmatrix} i_A + i_B \end{bmatrix} \cdot \ell + j_A + j_B$

Problem: Matrix multiplication just shifts the columns

Stepping Back

$$t_A \in \{0,1,2,3,4,5,6,7,8\}$$
 t_A Alice

$$t_B \in \{0,1,2\}$$
 t_B

Bob

$$t_A \longrightarrow t_A = 3 \cdot \ell + 5$$
 $t_B \longrightarrow t_B = 0 \cdot \ell + 3$

$$t_A \longrightarrow t_A = \mathbf{3} \cdot \ell + \mathbf{5}$$
 $t_B \longrightarrow t_B = \mathbf{1} \cdot \ell + \mathbf{3}$

$$t_A \longrightarrow t_A = 3 \cdot \ell + 5$$
 $t_B \longrightarrow t_B = 2 \cdot \ell + 3$

$$t_A \longrightarrow t_A = 3 \cdot \ell + 5$$
 $t_B \longrightarrow t_B = 3 \cdot \ell + 3$

$$t_A \longrightarrow t_A = 3 \cdot \ell + 5$$
 $t_B \longrightarrow t_B = 4 \cdot \ell + 3$

$$t_A \longrightarrow t_A = \mathbf{3} \cdot \ell + \mathbf{5}$$
 $t_B \longrightarrow t_B = \mathbf{5} \cdot \ell + \mathbf{3}$

$$t_A \longrightarrow t_A = \mathbf{3} \cdot \ell + \mathbf{5}$$
 $t_B \longrightarrow t_B = \mathbf{5} \cdot \ell + \mathbf{3}$

$$t_A \longrightarrow t_A = \mathbf{3} \cdot \ell + \mathbf{5}$$
 $t_B \longrightarrow t_B = \mathbf{5} \cdot \ell + \mathbf{3}$

$$t_A \longrightarrow t_A = \mathbf{3} \cdot \ell + \mathbf{5}$$
 $t_B \longrightarrow t_B = \mathbf{5} \cdot \ell + \mathbf{3}$

Col Shift Matrix

$$t_A \longrightarrow t_A = \mathbf{3} \cdot \ell + \mathbf{5}$$
 $t_B \longrightarrow t_B = \mathbf{5} \cdot \ell + \mathbf{3}$

Col Shift Matrix

Succinct Non-Interactive Matrix Multiplication

Secret-Key Homomorphic Secret Sharing

Some Tricks

NIDPF

Succinct Non-Interactive Matrix Multiplication

Secret-Key Homomorphic Secret Sharing

Some Tricks

NIDPF

 $\mathsf{ct} \leftarrow \mathsf{Encrypt}\left(\mathsf{sk}, x\right)$

Tool: Homomorphic Secret Sharing [BGI'16]

Informal Theorem ([BGI'16 + follow-up work])

There exists a two-party, degree-2 **homomorphic secret sharing scheme** under any of the following assumptions: DDH, DCR, QR, or LWE.

Compute using HSS

Secret-key Homomorphic Secret Sharing

Some Tricks

NIDPF

Secret-key Homomorphic Secret Sharing

Some Tricks

NIDPF

Trick 1: Bob runs the setup!

 $\mathsf{ct} \leftarrow \mathsf{Encrypt}\left(\mathsf{sk}, \mathbf{B_{row}}
ight) \ (\mathsf{sk}_A, \, \mathsf{ct}) \ (\mathsf{sk}_B, \, \mathsf{ct})$

Bob

 $(\mathsf{sk}_A,\,\mathsf{ct})$

Col Shift Matrix

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

Input shares are additively-homomorphic ciphertexts encrypted with key sk

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

- Input shares are additively-homomorphic ciphertexts encrypted with key sk
- Memory shares of x are additive secret shares of the tuple $(x, sk \cdot x)$

Existing homomorphic secret sharing schemes under DDH, DCR, QR, and LWE have input shares and memory shares where:

- Input shares are additively-homomorphic ciphertexts encrypted with key sk
- Memory shares of x are additive secret shares of the tuple $(x, sk \cdot x)$

There exists a Mult algorithm that computes additive shares of the product between an input share and a memory share.

1 Input and memory shares: ct \leftarrow Encrypt (sk, x) $\vec{y}_A + \vec{y}_B = (y, \text{sk} \cdot y)$

1 Input and memory shares: $\mathsf{ct} \leftarrow \mathsf{Encrypt}\left(\mathsf{sk},x\right) \quad \vec{y}_A + \vec{y}_B = (y,\,\mathsf{sk}\cdot y)$

 $oldsymbol{2}$ Local evaluation: $z_A:= \mathsf{Mult}\left(\mathsf{ct},ec{y}_A
ight)$ $z_B:= \mathsf{Mult}\left(\mathsf{ct},ec{y}_B
ight)$

- 1 Input and memory shares: $\mathsf{ct} \leftarrow \mathsf{Encrypt}\left(\mathsf{sk}, x\right) \quad \vec{y}_A + \vec{y}_B = (y, \, \mathsf{sk} \cdot y)$
- $oldsymbol{2}$ Local evaluation: $z_A:=\mathsf{Mult}\left(\mathsf{ct},ec{y}_A
 ight)$ $z_B:=\mathsf{Mult}\left(\mathsf{ct},ec{y}_B
 ight)$

 $3 \quad z_A + z_B = xy$

Row Shift Matrix

Col Shift Matrix

$$t_A$$
 Alice

$$t_A
ightharpoonup t_A = \emph{i}_A \cdot \ell + \emph{j}_A$$
 $t_B
ightharpoonup t_B = \emph{i}_B \cdot \ell + \emph{j}_B$

$$\mathsf{pk}_A := \mathsf{pk}_A^\mathsf{matmul}$$

$$\mathsf{pk}_A := \mathsf{pk}_A^\mathsf{matmul}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathsf{pk}_A := \mathsf{pk}_A^\mathsf{matmul}$$

$$\mathbf{B_{col}} = \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\$$

$$\mathsf{pk}_A := \mathsf{pk}_A^\mathsf{matmul}$$

$$\mathbf{A} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\mathbf{B}_{\mathrm{row}} = egin{bmatrix} 1 & 1 & 1 & 1 \\ \hline 1 & 1 & 1 & 1 \\$$

$$\mathbf{B_{col}} = \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ s_k & & & & & \\ s_k & & & & & \\ & & & & & \\ & & & & & \\ \end{bmatrix}$$

Alice

$$\mathsf{pk}_A := \mathsf{pk}_A^\mathsf{matmul}$$

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathsf{pk}_B := \left(\mathsf{pk}_B^\mathsf{matmul}\,,\,\mathsf{sk}_A,\,\mathsf{ct}\right)$$

$$\mathbf{B_{row}} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix}$$

$$\mathbf{B_{col}} = \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$\mathsf{pk}_A := \mathsf{pk}_A^\mathsf{matmul}$$

$$\mathbf{A} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

 pk_B

$$\mathsf{pk}_B := \left(\mathsf{pk}_B^\mathsf{matmul}\,,\,\mathsf{sk}_A,\,\mathsf{ct}
ight)$$

$$\mathbf{B_{row}} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{B_{col}} = \begin{bmatrix} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

3

 t_{I}

Bob

Sparse and compressible

3

Multiply using Non-Interactive Matrix Multiplication

3

Multiply using Homomorphic Secret Sharing

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	
This work	LWE	N ^{2/3}	LWE but "without FHE"

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	
This work	LWE	N ^{2/3}	LWE but "without FHE"
This work	SXDH	N ^{2/3}	Random payload DPF

NIDPF with domain size N

	Assumptions	Communication	Comments
Spooky [DHRW'16]	LWE OR iO+DDH	log(N)	Requires multi-key FHE
This work	DCR	N ^{2/3}	
This work	QR	N ^{2/3}	
This work	LWE	N ^{2/3}	LWE but "without FHE"
This work	SXDH	N ^{2/3}	Random payload DPF

Still only modestly sublinear. Open problem: \sqrt{N} or better

Generalization to succinct "multi-key" homomorphic secret sharing

Generalization to succinct "multi-key" homomorphic secret sharing

Additional tricks to construct NIDPFs from the SXDH assumption

Generalization to succinct "multi-key" homomorphic secret sharing

Additional tricks to construct NIDPFs from the SXDH assumption

Open questions:

- Asymptotically optimal key sizes?
- Concretely efficient construction?

Thank you!

Email: 3s@mit.edu

ePrint: ia.cr/2024/1079

Non-Interactive Distributed Point Functions

Elette Boyle¹, Lalita Devadas², and Sacha Servan-Schreiber²*

NTT Research and Reichman University
MIT

References

[GI'14]: N. Gilboa and Y. Ishai. "Distributed point functions and their applications."

[BGI'15]: E. Boyle, N. Gilboa, and Y. Ishai. "Function secret sharing."

[BGI'16]: E. Boyle, N. Gilboa, and Y. Ishai. "Breaking the Circuit Size Barrier for Secure Computation Under DDH."

[DHRW'16]: D. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. "Spooky Encryption and Its Applications."

[Ds'17]: J. Doerner and A. Shelat. "Scaling ORAM for secure computation."

[BCGI'18]: E. Boyle, et al. "Compressing vector OLE."

[DPKY'20]: E. Dauterman, et al. "DORY: An encrypted search system with distributed trust."

References

[BGIK'21]: E. Boyle, et al. "Function secret sharing for mixed-mode and fixed-point secure computation."

[ARS'24]: D. Abram, L. Roy, and P. Scholl. "Succinct Homomorphic Secret Sharing."

[BCMPR'24]: D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. "Fast Public-Key Silent OT and More from Constrained Naor-Reingold."

[CDHJS'24]: G. Couteau, L. Devadas, A. Hegde, A. Jain, and S. Servan-Schreiber. "Multi-key Homomorphic Secret Sharing."