QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup

Sacha Servan-Schreiber

Joint work with

Geoffroy Couteau, Lalita Devadas, Srinivas Devadas, and Alexander Koch

Overview

• Background on oblivious transfer

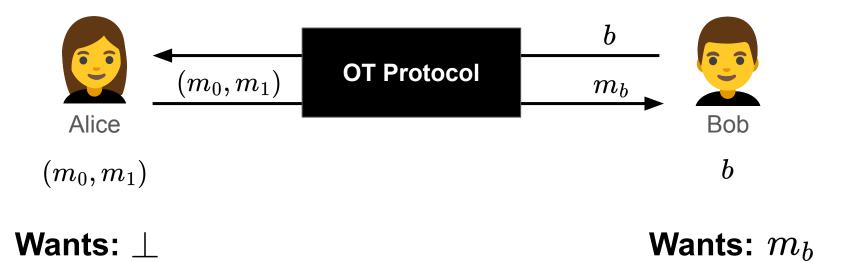
- Background on oblivious transfer
- Background on OT extension

- Background on oblivious transfer
- Background on OT extension
- QuietOT framework

- Background on oblivious transfer
- Background on OT extension
- QuietOT framework
- Evaluation

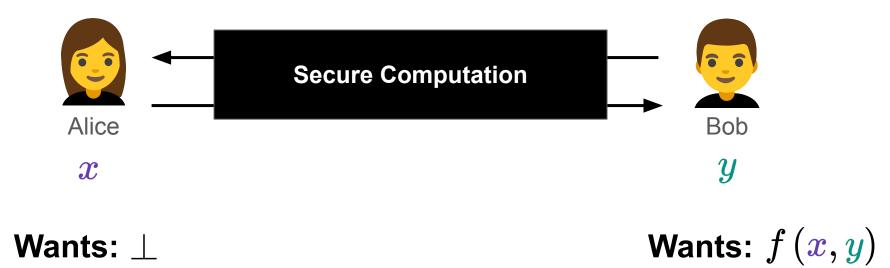
Alice

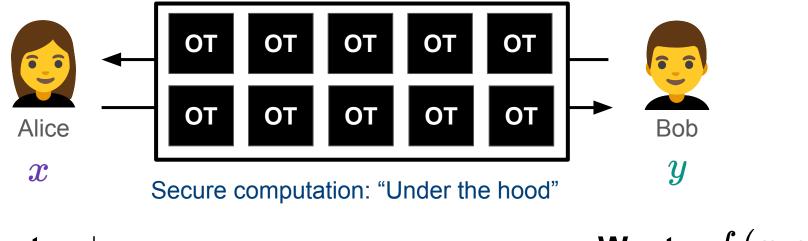
Alice


 (m_0,m_1)

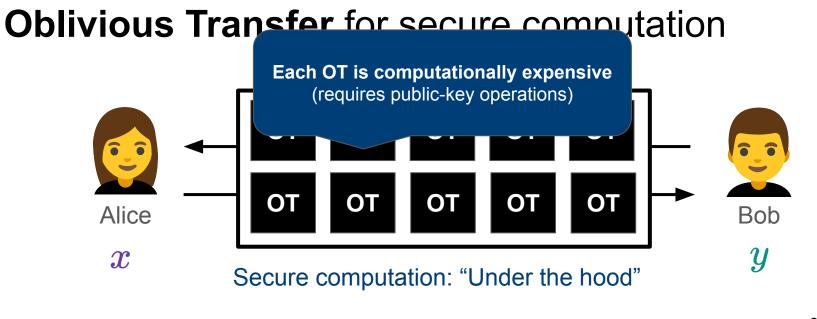
Wants: \bot

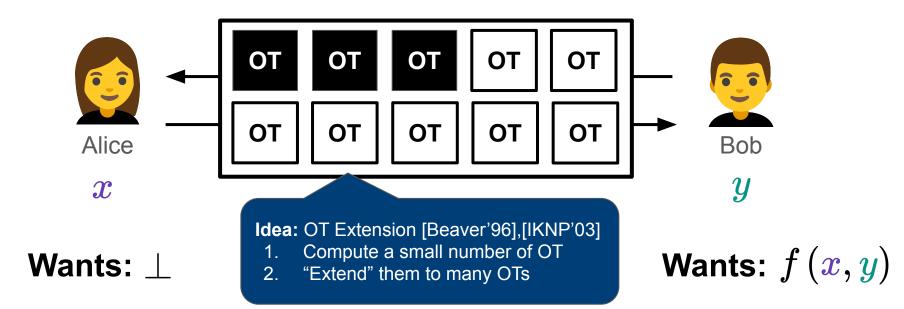
Wants: m_b

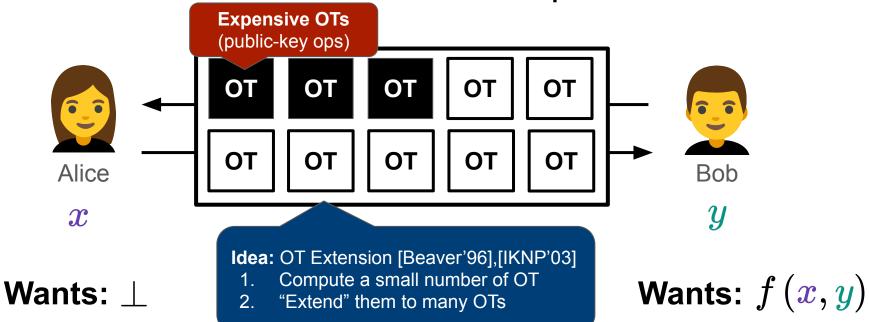


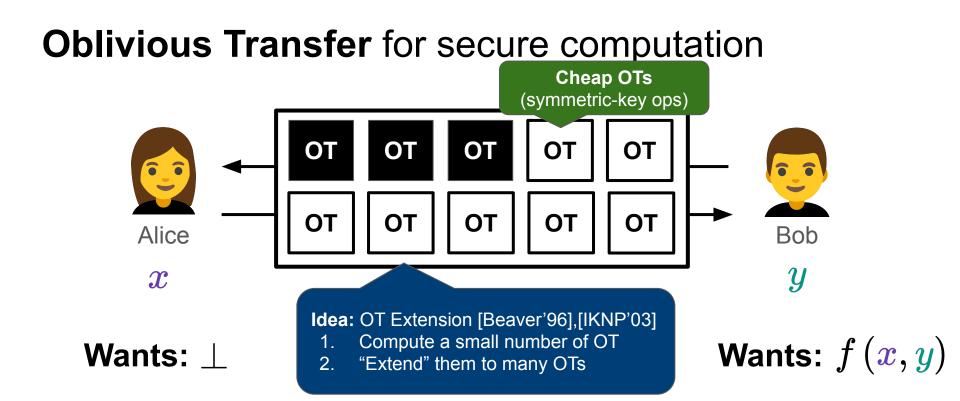


Alice



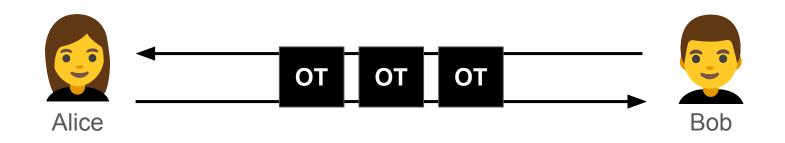


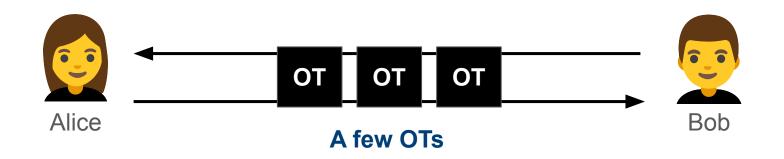

Wants: f(x, y)

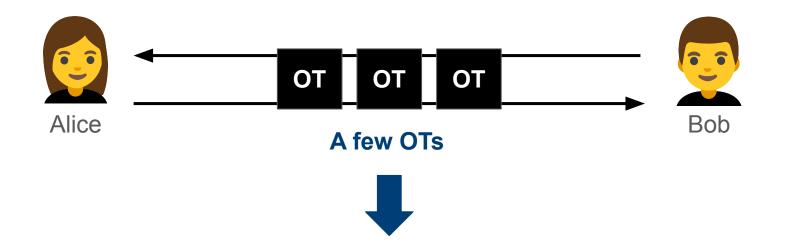


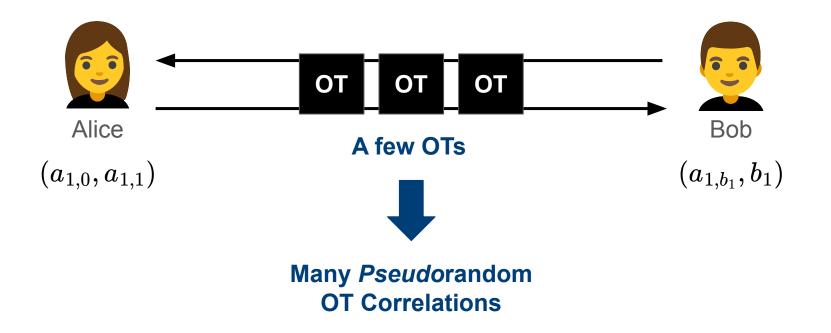
Wants: \perp

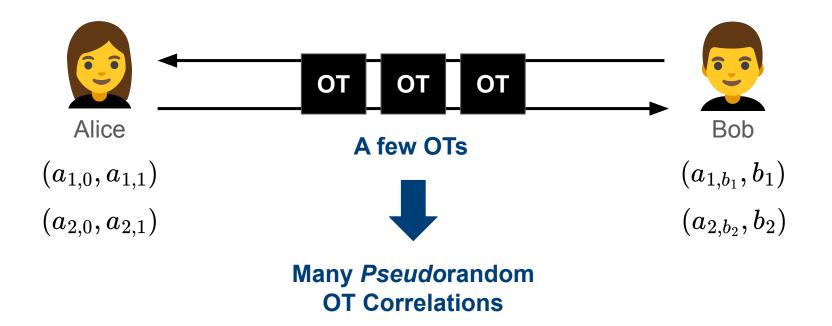
Wants: f(x, y)

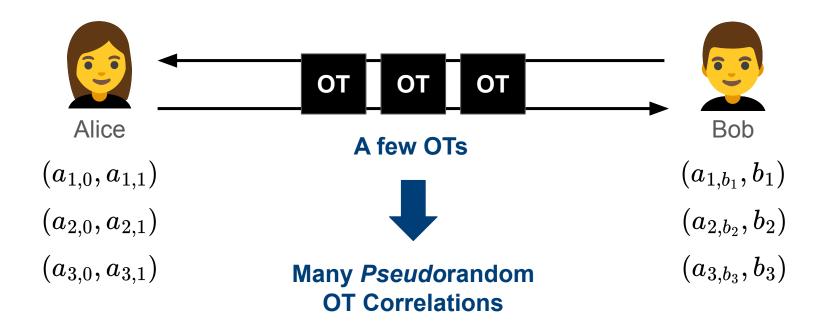


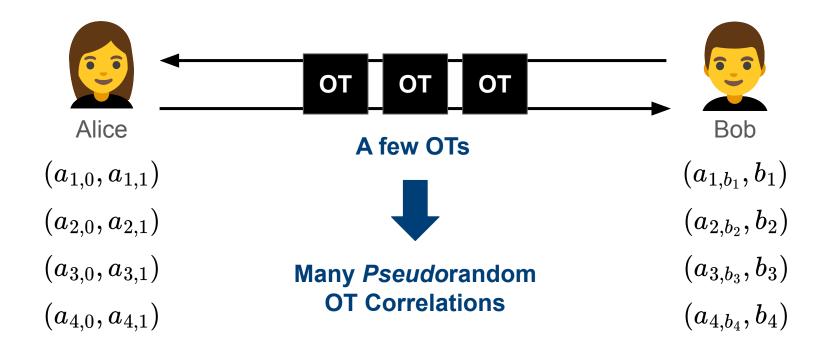


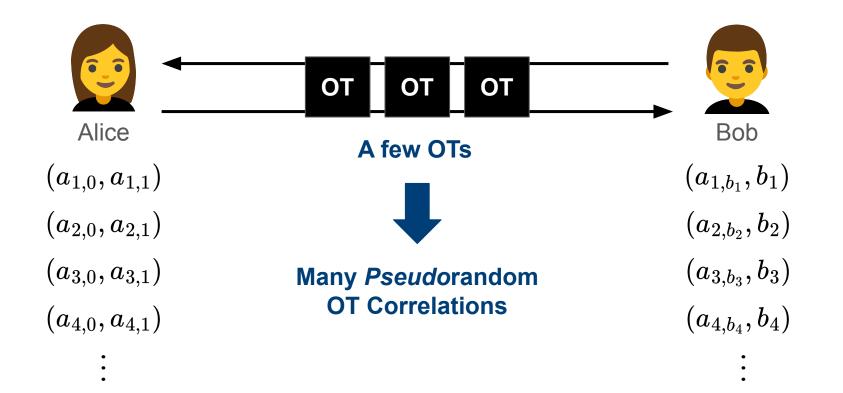


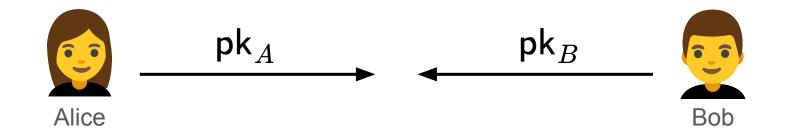

Alice

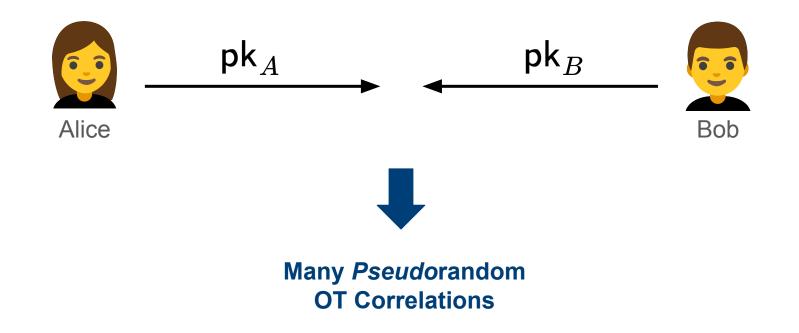


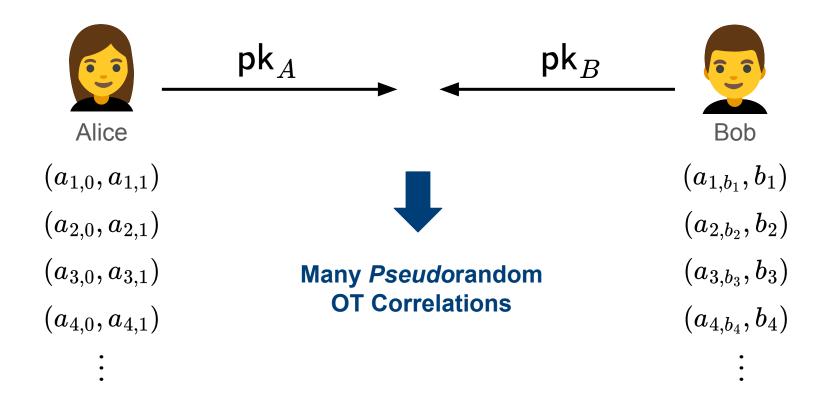


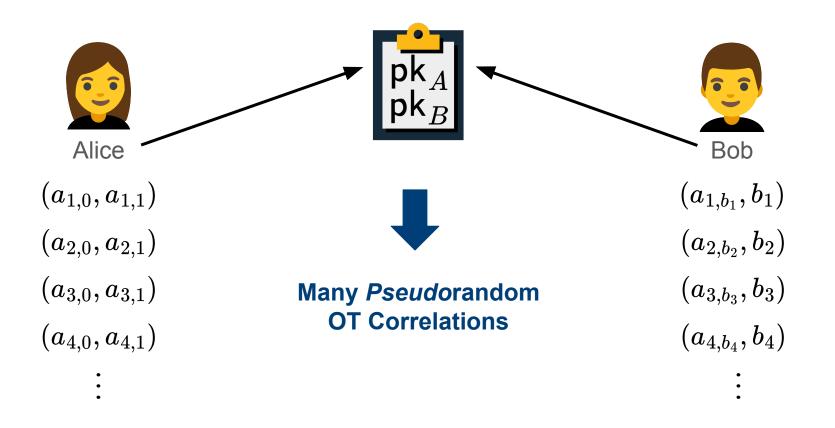


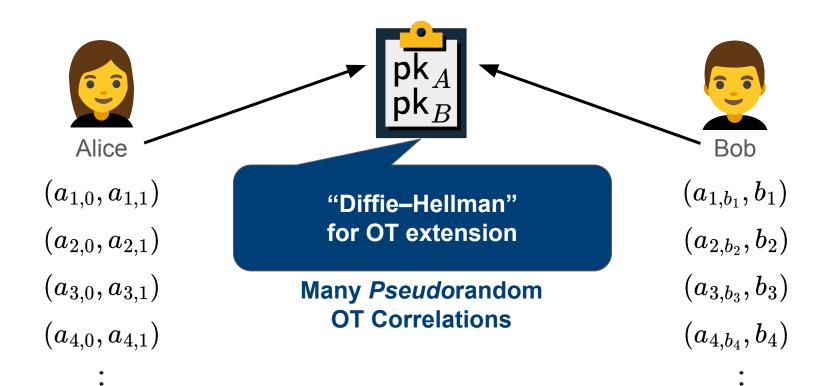


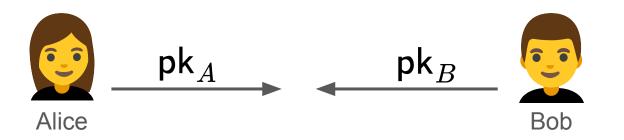


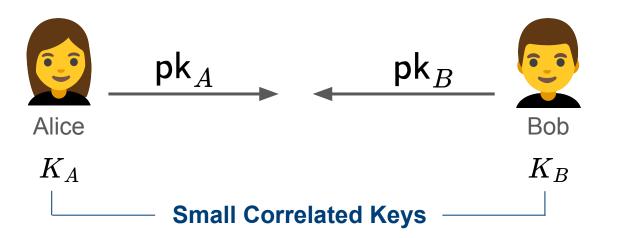




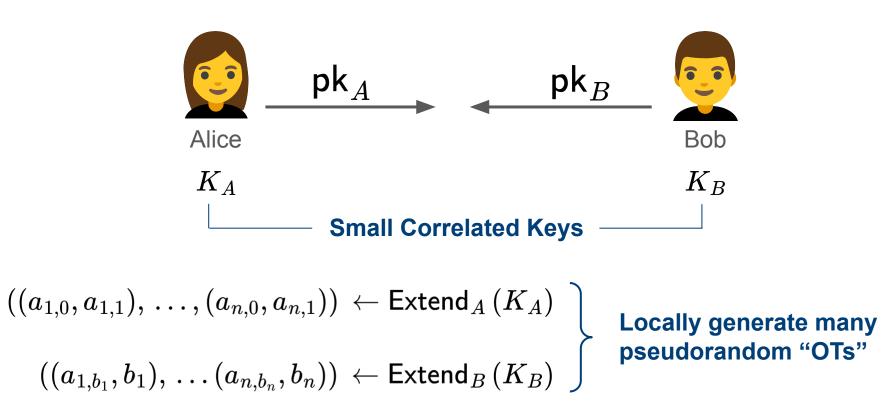




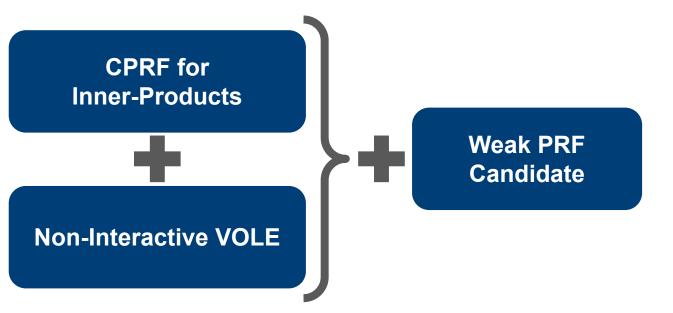


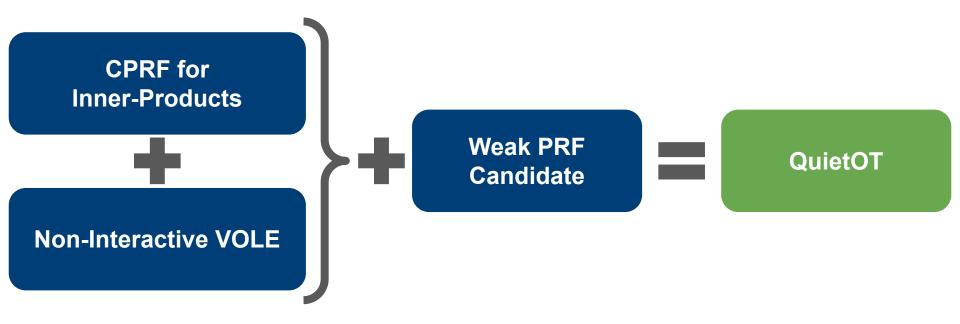


QuietOT Framework

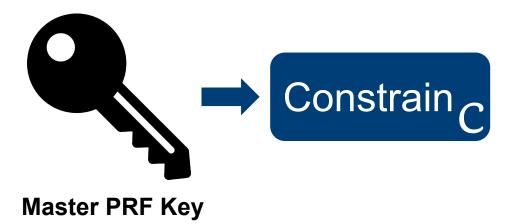

QuietOT: Communication model and syntax

QuietOT: Communication model and syntax

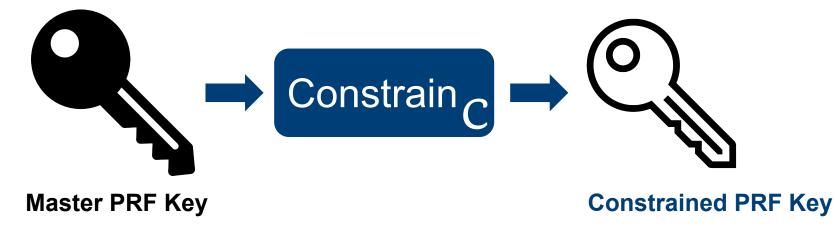


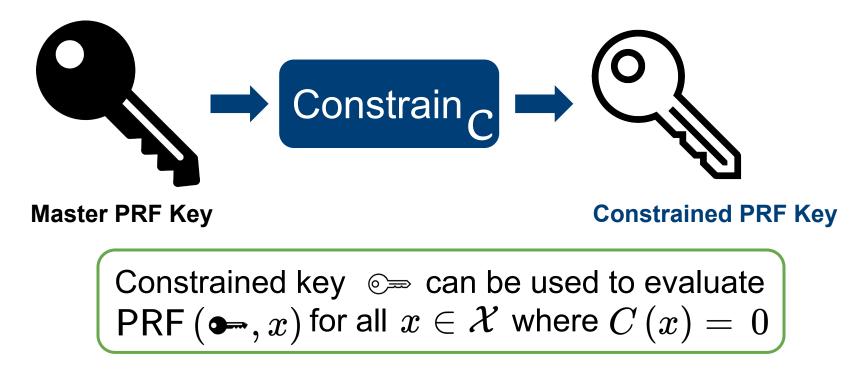

QuietOT: Communication model and syntax

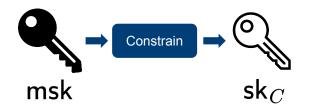
CPRF for Inner-Products

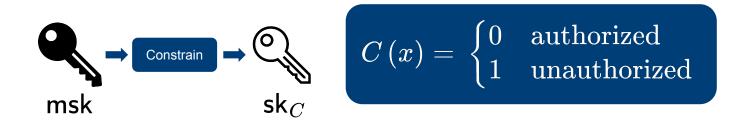


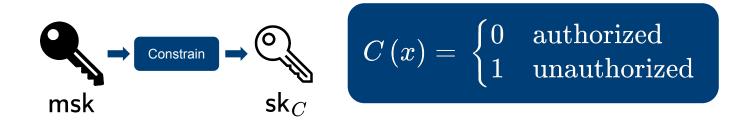
Constrained Pseudorandom Function (CPRF) [BW'13][KPTZ'13][BGI'14]


Constrained Pseudorandom Function (CPRF) [BW'13][KPTZ'13][BGI'14]

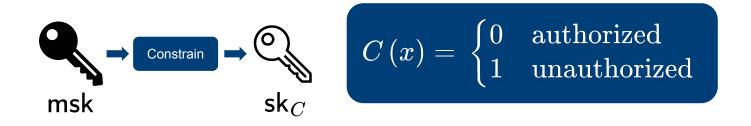

Constrained Pseudorandom Function (CPRF) [BW'13][KPTZ'13][BGI'14]

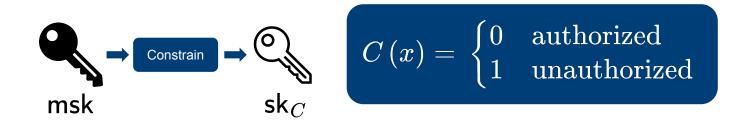



Constrained Pseudorandom Function (CPRF) [BW'13][KPTZ'13][BGI'14]



Constrained Pseudorandom Function (CPRF) [BW'13][KPTZ'13][BGI'14]





Correctness: If C(x) = 0 then PRF (msk, $x) = PRF(sk_C, x)$

Correctness: If C(x) = 0 then PRF (msk, $x) = PRF(sk_C, x)$

Pseudorandomness: If $C(x) \neq 0$ then PRF (msk, x) is pseudorandom given sk_C

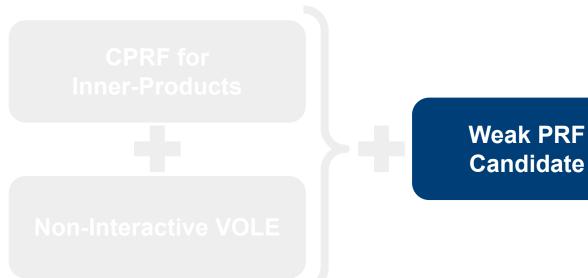
Correctness: If C(x) = 0 then PRF (msk, $x) = PRF(sk_C, x)$

Pseudorandomness: If $C(x) \neq 0$ then PRF (msk, x) is pseudorandom given sk_C

No Hiding: *C* is **not** hidden given sk_C

For efficiency: Use CPRF with inner-product predicate

For efficiency: Use CPRF with inner-product predicate


$$C\left(\mathbf{x}
ight)=\left\langle \mathbf{z},\mathbf{x}
ight
angle \,\in\,\mathcal{R}\, ext{ where }\mathbf{z},\mathbf{x}\,\in\mathcal{R}^{\ell}
ight
angle$$

For efficiency: Use CPRF with inner-product predicate

$$C\left(\mathbf{x}
ight)=\left\langle \mathbf{z},\mathbf{x}
ight
angle \,\in\,\mathcal{R}\, ext{ where }\mathbf{z},\mathbf{x}\,\in\mathcal{R}^{\ell}$$

We use the random-oracle based CPRF construction of [S'24]

BIPSW weak PRF candidate: ^[BIPSW'18]

BIPSW weak PRF candidate: ^[BIPSW'18]

$$f_{\mathbf{k}}\left(\mathbf{x}
ight)\,:=\,\left\lceil\langle\mathbf{k},\mathbf{x}
ight
angle\,\mathrm{mod}\,6\,
ight
floor_{2}$$

BIPSW weak PRF candidate: ^[BIPSW'18]

$$f_{\mathbf{k}}\left(\mathbf{x}
ight) := \lceil \langle \mathbf{k}, \mathbf{x}
angle \mod 6
ight
ceil_{2}$$

Just an inner product

BIPSW weak PRF candidate: ^[BIPSW'18]

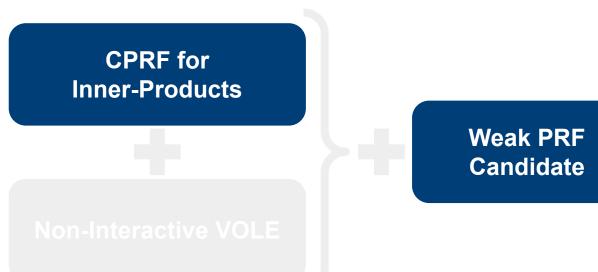
$$f_{\mathbf{k}}\left(\mathbf{x}
ight) := \left[\langle \mathbf{k}, \mathbf{x}
angle \mod 6
ight]_{2}$$

Cannot be evaluated as an inner product

BIPSW weak PRF candidate: ^[BIPSW'18]

$$f_{\mathbf{k}}\left(\mathbf{x}
ight)\,:=\,\lceil\langle\mathbf{k},\mathbf{x}
angle\,\,\mathrm{mod}\,\,6\,
floor_{2}$$

BIPSW weak PRF candidate: ^[BIPSW'18]


$$f_{\mathbf{k}}\left(\mathbf{x}
ight)\,:=\,\left\lceil\left\langle\mathbf{k},\mathbf{x}
ight
angle\,\mathrm{mod}\;6\,
ight
floor_{2}$$

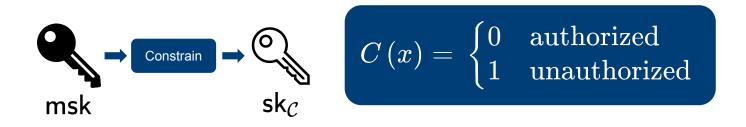
 $f_{\mathbf{k}}\left(\mathbf{x}
ight)\,=\,0\iff\left\langle\mathbf{k},\mathbf{x}
ight
angle\,\mathrm{mod}\,\,6\,\in\,\left\{0,1,2
ight\}$

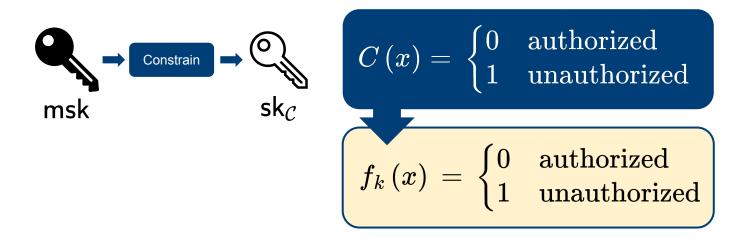
BIPSW weak PRF candidate: ^[BIPSW'18]

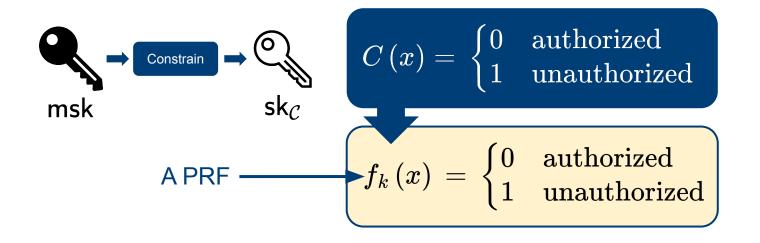
$$f_{\mathbf{k}}\left(\mathbf{x}
ight)\,:=\,\left\lceil\left\langle \mathbf{k},\mathbf{x}
ight
angle\,\mathrm{mod}\;6\,
ight
floor_{2}$$

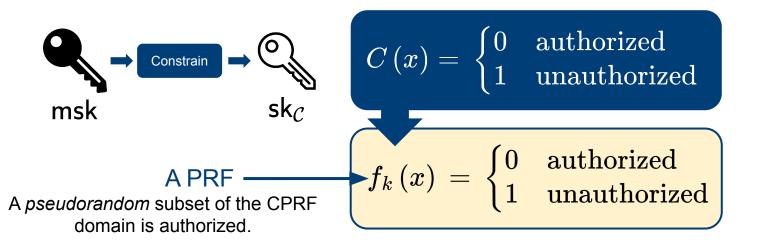
 $egin{aligned} &f_{\mathbf{k}}\left(\mathbf{x}
ight)\,=\,0 \iff \langle\mathbf{k},\mathbf{x}
angle egin{aligned} &\mathrm{mod}\ 6\ \in\ \{0,1,2\} \end{aligned} \ &f_{\mathbf{k}}\left(\mathbf{x}
ight)\,=\,1 \iff \langle\mathbf{k},\mathbf{x}
angle egin{aligned} &\mathrm{mod}\ 6\ \in\ \{3,4,5\} \end{aligned}$

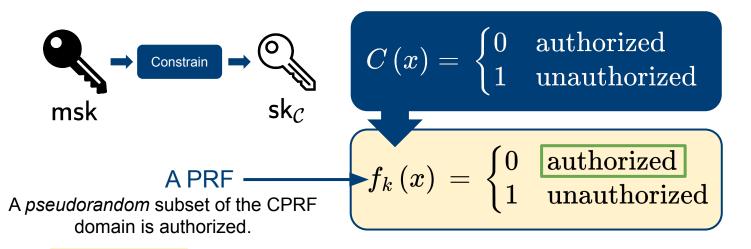
QuietOT

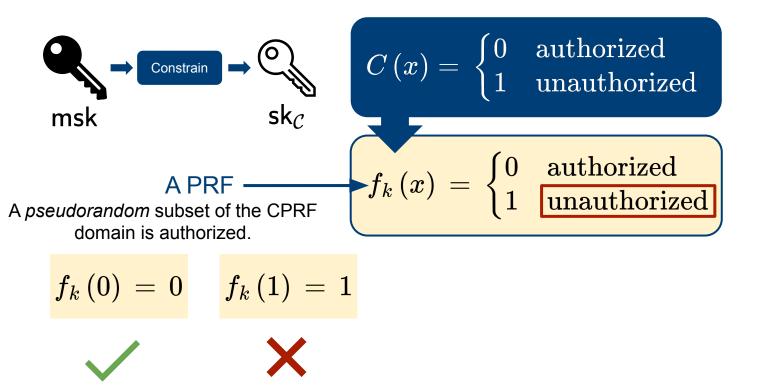


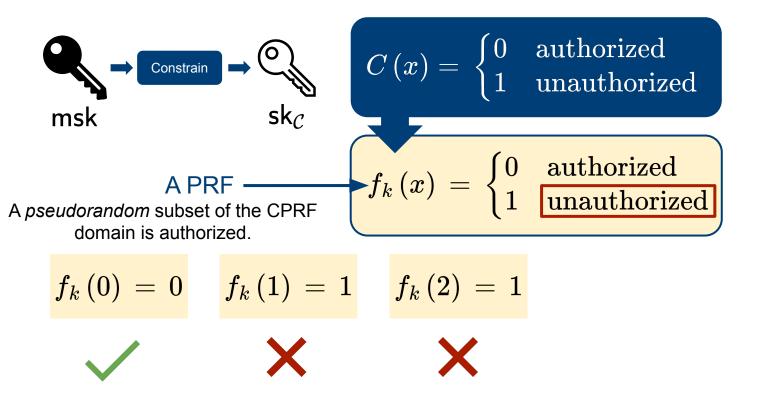

Putting things together

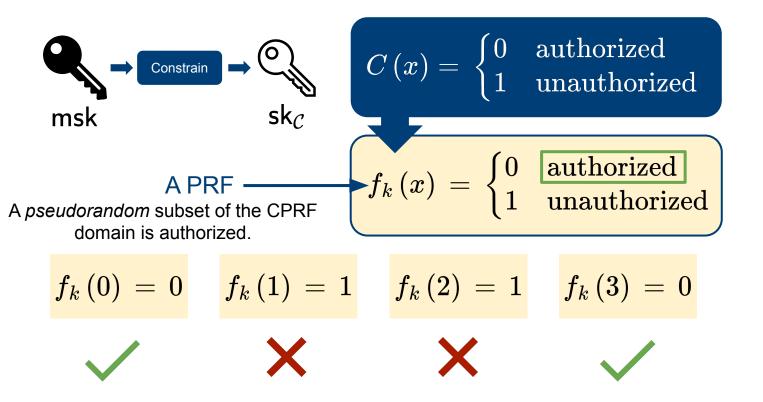

Idea: Use a PRF as the constraint predicate

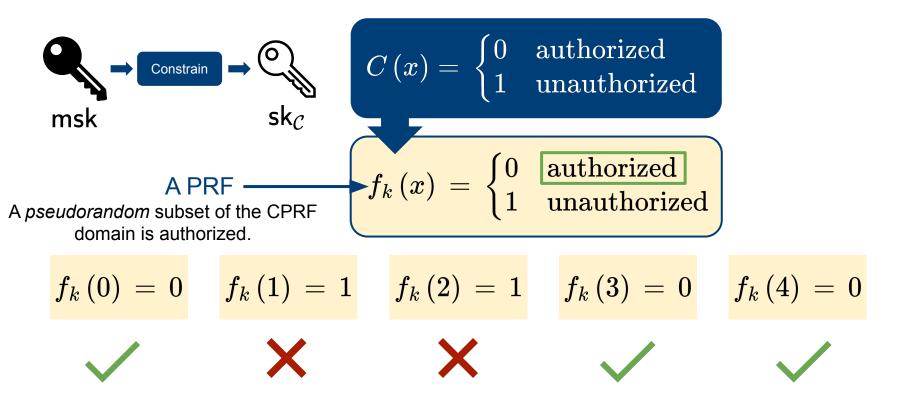

Inspired by previous constructions building OT extension, in particular [BCMPR'24]

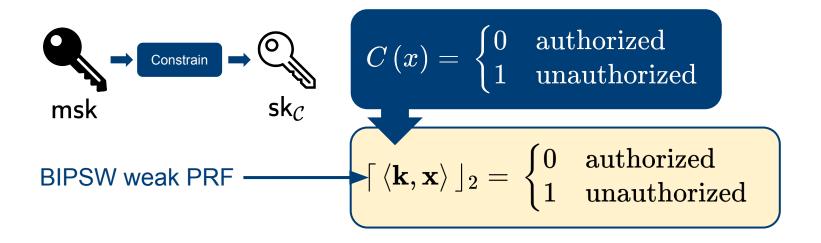

Idea: Use a PRF as the constraint predicate

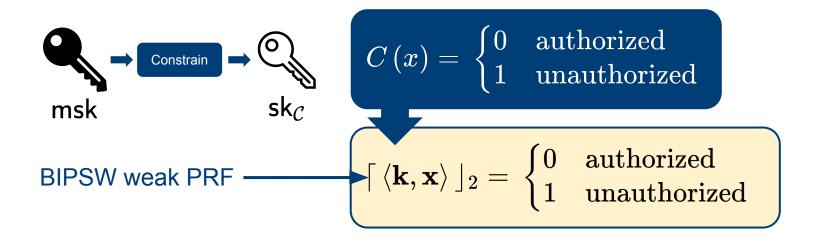




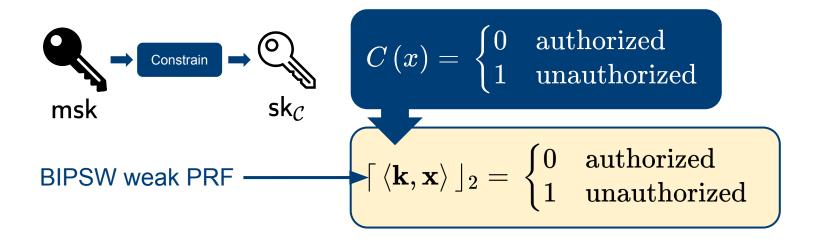



$$f_k\left(0
ight)\,=\,0$$





Idea: Use BIPSW weak PRF as the predicate



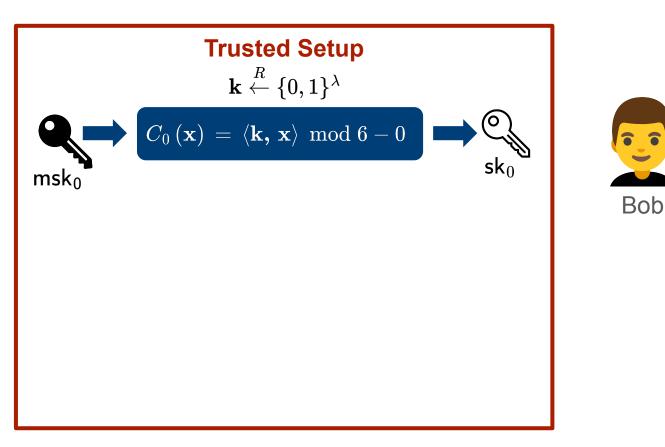
Idea: Use BIPSW weak PRF as the predicate

Problem: inner-product predicate isn't powerful enough

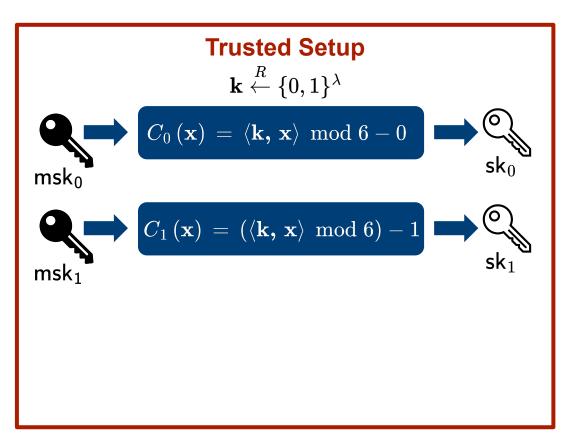
Idea: Use BIPSW weak PRF as the predicate

Solution: use many constrained PRFs!

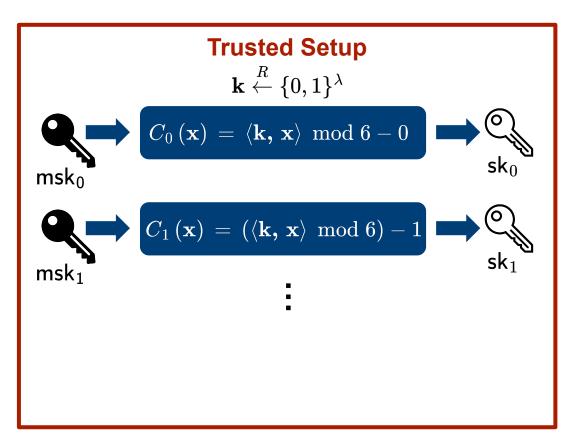
Alice


Alice

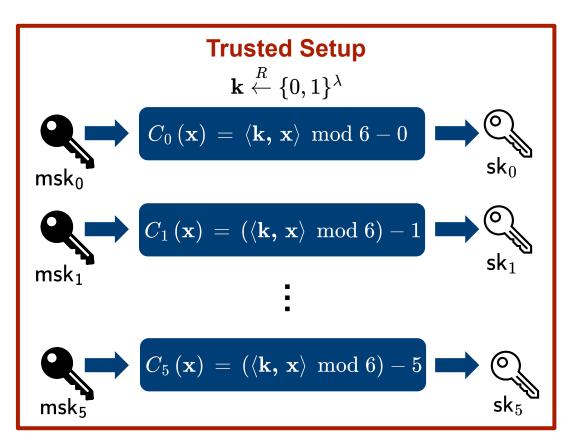
 $\begin{array}{c} \textbf{Trusted Setup} \\ \textbf{k} \stackrel{R}{\leftarrow} \{0,1\}^{\lambda} \end{array}$



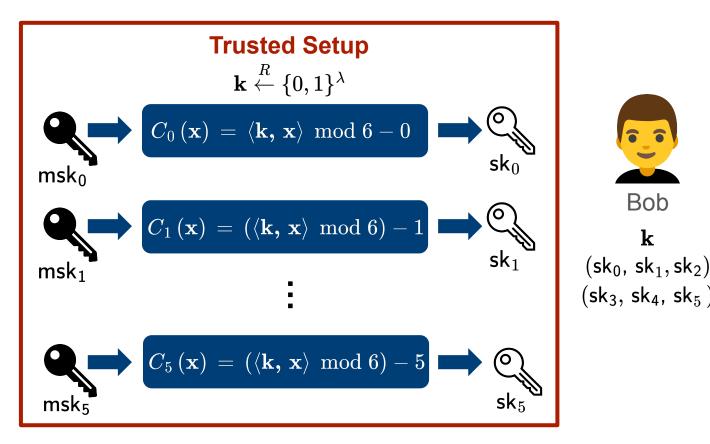
Alice

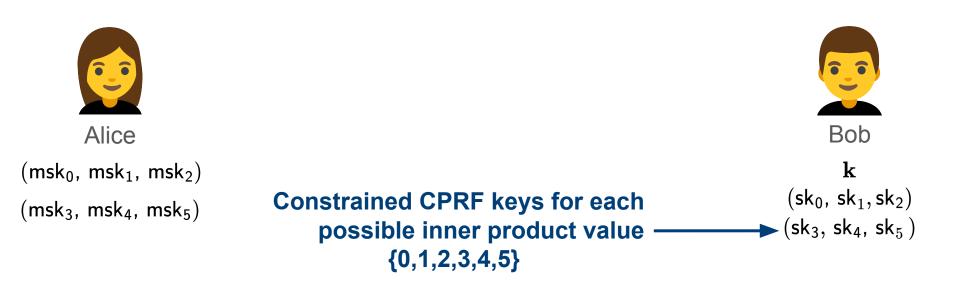

Alice

Bob


Alice

Bob


Alice


Bob

 \mathbf{k}

For a public, random input \mathbf{X} :

Alice

 $(\mathsf{msk}_0, \mathsf{msk}_1, \mathsf{msk}_2)$

 $(\mathsf{msk}_3, \, \mathsf{msk}_4, \, \mathsf{msk}_5)$

Bob k (sk₀, sk₁, sk₂) (sk₃, sk₄, sk₅)

For a public, random input \mathbf{X} :

Alice (msk_0 , msk_1 , msk_2) (msk_3 , msk_4 , msk_5)

 $egin{aligned} a_0 &:= \mathsf{PRF}\left(\mathsf{msk}_0,\,\mathbf{x}
ight)\ a_1 &:= \mathsf{PRF}\left(\mathsf{msk}_1,\,\mathbf{x}
ight)\ a_2 &:= \mathsf{PRF}\left(\mathsf{msk}_2,\,\mathbf{x}
ight)\ a_3 &:= \mathsf{PRF}\left(\mathsf{msk}_3,\,\mathbf{x}
ight)\ a_4 &:= \mathsf{PRF}\left(\mathsf{msk}_4,\,\mathbf{x}
ight)\ a_5 &:= \mathsf{PRF}\left(\mathsf{msk}_5,\,\mathbf{x}
ight) \end{aligned}$

Bob k (sk₀, sk₁, sk₂) (sk₃, sk₄, sk₅)

For a public, random input \mathbf{X} :

$$egin{aligned} a_0 &:= \mathsf{PRF}\left(\mathsf{msk}_0,\,\mathbf{x}
ight)\ a_1 &:= \mathsf{PRF}\left(\mathsf{msk}_1,\,\mathbf{x}
ight)\ a_2 &:= \mathsf{PRF}\left(\mathsf{msk}_2,\,\mathbf{x}
ight)\ a_3 &:= \mathsf{PRF}\left(\mathsf{msk}_3,\,\mathbf{x}
ight)\ a_4 &:= \mathsf{PRF}\left(\mathsf{msk}_4,\,\mathbf{x}
ight)\ a_5 &:= \mathsf{PRF}\left(\mathsf{msk}_5,\,\mathbf{x}
ight) \end{aligned}$$

$$\langle {f k}, {f x}
angle \mod 6 = 4$$

For a public, random input \mathbf{X} :

$$egin{aligned} a_0 &:= \mathsf{PRF}\left(\mathsf{msk}_0,\,\mathbf{x}
ight)\ a_1 &:= \mathsf{PRF}\left(\mathsf{msk}_1,\,\mathbf{x}
ight)\ a_2 &:= \mathsf{PRF}\left(\mathsf{msk}_2,\,\mathbf{x}
ight)\ a_3 &:= \mathsf{PRF}\left(\mathsf{msk}_3,\,\mathbf{x}
ight)\ a_4 &:= \mathsf{PRF}\left(\mathsf{msk}_4,\,\mathbf{x}
ight)\ a_5 &:= \mathsf{PRF}\left(\mathsf{msk}_5,\,\mathbf{x}
ight) \end{aligned}$$

$$\langle \mathbf{k}, \mathbf{x}
angle \mod 6 = 4$$
 $a_4 := \mathsf{PRF}(\mathsf{sk}_4, \mathbf{x})$ (s

For a public, random input \mathbf{X} :

$$a_0 := \mathsf{PRF}(\mathsf{msk}_0, \mathbf{x})$$

 $a_1 := \mathsf{PRF}(\mathsf{msk}_1, \mathbf{x})$
 $a_2 := \mathsf{PRF}(\mathsf{msk}_2, \mathbf{x})$
 $a_3 := \mathsf{PRF}(\mathsf{msk}_3, \mathbf{x})$
 $a_4 := \mathsf{PRF}(\mathsf{msk}_4, \mathbf{x})$
 $a_5 := \mathsf{PRF}(\mathsf{msk}_5, \mathbf{x})$

For a public, random input \mathbf{X} :

$$egin{aligned} a_0 &:= \mathsf{PRF}\left(\mathsf{msk}_0,\,\mathbf{x}
ight)\ a_1 &:= \mathsf{PRF}\left(\mathsf{msk}_1,\,\mathbf{x}
ight)\ a_2 &:= \mathsf{PRF}\left(\mathsf{msk}_2,\,\mathbf{x}
ight)\ a_3 &:= \mathsf{PRF}\left(\mathsf{msk}_3,\,\mathbf{x}
ight)\ a_4 &:= \mathsf{PRF}\left(\mathsf{msk}_4,\,\mathbf{x}
ight)\ a_5 &:= \mathsf{PRF}\left(\mathsf{msk}_5,\,\mathbf{x}
ight) \end{aligned}$$

$$egin{array}{l} \langle {f k}, {f x}
angle \ {
m mod} \ 6 \ = \ 1 \ a_1 := {\sf PRF} \left({\sf sk}_1, \ {f x}
ight) \ ({\sf sk}_1, \ {f x}) \end{array}$$

For a public, random input \mathbf{X} :

$$a_0 := \mathsf{PRF}(\mathsf{msk}_0, \mathbf{x})$$

 $a_1 := \mathsf{PRF}(\mathsf{msk}_1, \mathbf{x})$
 $a_2 := \mathsf{PRF}(\mathsf{msk}_2, \mathbf{x})$
 $a_3 := \mathsf{PRF}(\mathsf{msk}_3, \mathbf{x})$
 $a_4 := \mathsf{PRF}(\mathsf{msk}_4, \mathbf{x})$
 $a_5 := \mathsf{PRF}(\mathsf{msk}_5, \mathbf{x})$

$$egin{array}{l} \langle {f k}, {f x}
angle \ {
m mod} \ 6 \ = \ 1 \ a_1 := {\sf PRF} \left({\sf sk}_1, \ {f x}
ight) \ \end{array}$$
 (since the set of the set o

For a public, random input \mathbf{X} :

Alice (msk₀, msk₁, msk₂) (msk₃, msk₄, msk₅)

$$egin{aligned} a_0 &:= \mathsf{PRF}\left(\mathsf{msk}_0,\,\mathbf{x}
ight)\ a_1 &:= \mathsf{PRF}\left(\mathsf{msk}_1,\,\mathbf{x}
ight)\ a_2 &:= \mathsf{PRF}\left(\mathsf{msk}_2,\,\mathbf{x}
ight)\ a_3 &:= \mathsf{PRF}\left(\mathsf{msk}_3,\,\mathbf{x}
ight)\ a_4 &:= \mathsf{PRF}\left(\mathsf{msk}_4,\,\mathbf{x}
ight)\ a_5 &:= \mathsf{PRF}\left(\mathsf{msk}_5,\,\mathbf{x}
ight) \end{aligned}$$

$$egin{array}{l} \langle {f k}, {f x}
angle \ {
m mod} \ 6 \ = \ 2 \ a_2 := {\sf PRF} \left({\sf sk}_2, \, {f x}
ight) \ \end{array}$$

For a public, random input \mathbf{X} :

$$a_0 := \mathsf{PRF}(\mathsf{msk}_0, \mathbf{x})$$

 $a_1 := \mathsf{PRF}(\mathsf{msk}_1, \mathbf{x})$
 $a_2 := \mathsf{PRF}(\mathsf{msk}_2, \mathbf{x})$
 $a_3 := \mathsf{PRF}(\mathsf{msk}_3, \mathbf{x})$
 $a_4 := \mathsf{PRF}(\mathsf{msk}_4, \mathbf{x})$
 $a_5 := \mathsf{PRF}(\mathsf{msk}_5, \mathbf{x})$

$$egin{array}{l} \langle {f k}, {f x}
angle \ {
m mod} \ 6 \ = \ 2 \ a_2 := {\sf PRF}\left({\sf sk}_2, \, {f x}
ight) \end{array}$$

Random-bit OT

Random-bit OT

Theorem [Beaver'96]: If there exists a *random-bit* OT protocol with R rounds, then there exists a *chosen-bit* OT protocol with R rounds.

Getting random-bit OT

In random-bit OT, Bob does not get to set the "choice bit" b

Alice

 $(m_0,\,m_1)$

Getting random-bit OT

In random-bit OT, Bob does not get to set the "choice bit" *b*

Getting random-bit OT

In random-bit OT, Bob does not get to set the "choice bit" *b*

Alice

 (m_0, m_1)

 $egin{aligned} (a_0,a_1,a_2)\ (a_3,a_4,a_5) \end{aligned}$

$$(c, a_c)$$

Getting random-bit OT

In random-bit OT, Bob does not get to set the "choice bit" *b*

Alice

 (m_0, m_1)

 $egin{aligned} (a_0,a_1,a_2)\ (a_3,a_4,a_5) \end{aligned}$

$$(c,\,a_c) \ m_b\,:=\,(m_b\oplus\,a_c)\,\oplus\,a_c$$

Getting random-bit OT

In random-bit OT, Bob does not get to set the "choice bit" b

Alice

 (m_0, m_1)

$$(a_0\oplus m_0,a_1\oplus m_0,a_2\oplus m_0)\ (a_3\oplus m_1,a_4\oplus m_1,a_5\oplus m_1)$$

$$(2, a_2) \ oldsymbol{m}_0 := (oldsymbol{m}_0 \oplus a_2) \oplus a_2$$

Getting random-bit OT

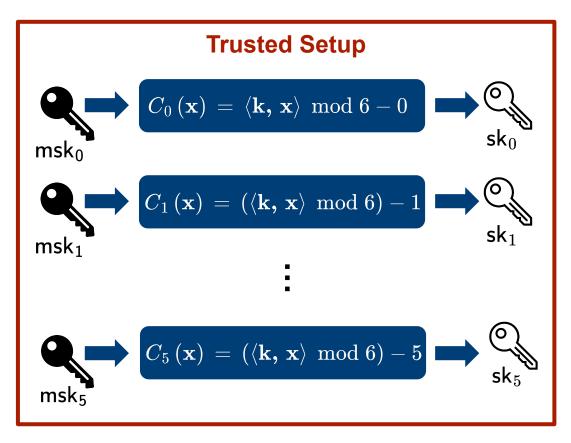
.

In random-bit OT, Bob does not get to set the "choice bit" *b*

Alice

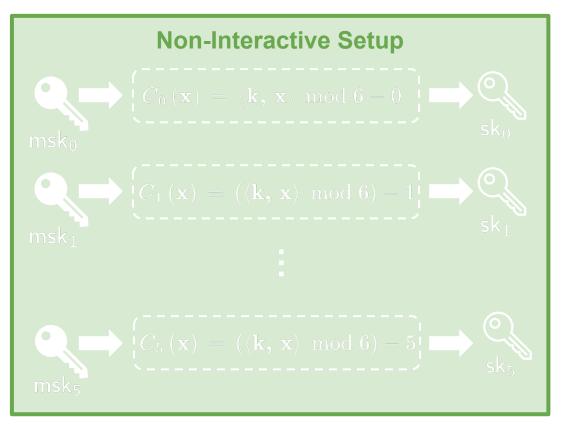
 (m_0, m_1)

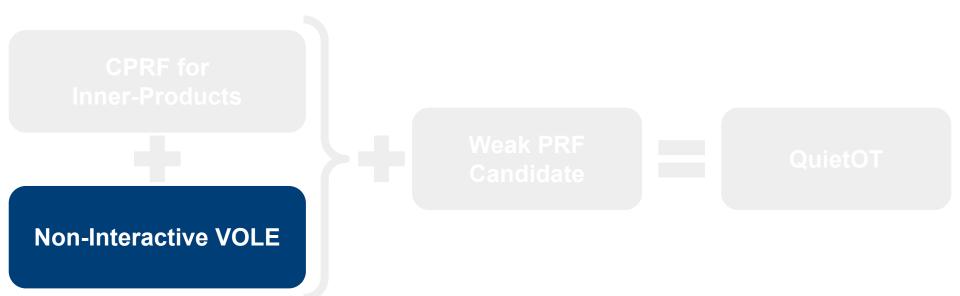
$$(a_0\oplus m_0,a_1\oplus m_0,a_2\oplus m_0) \ (a_3\oplus m_1,a_4\oplus m_1,a_5\oplus m_1)$$



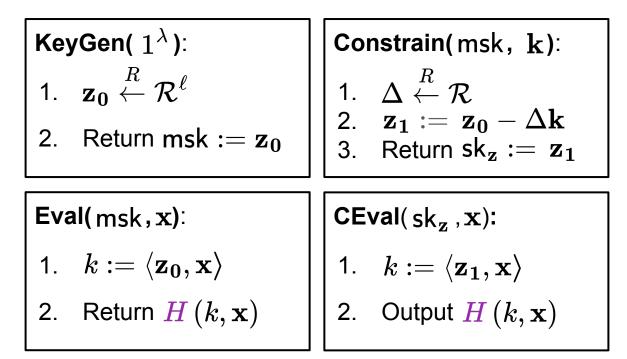
$$(3, a_3)$$
 $m_1:=(m_1\oplus a_3)\oplus a_3$

Public-key Setup


Alice (msk₀, msk₁, msk₂) (msk₃, msk₄, msk₅)



Alice (msk_0, msk_1, msk_2) (msk_3, msk_4, msk_5)



Constrained PRF for Inner-Product Predicates [S'24]

Constrained PRF for Inner-Product Predicates [S'24]

Constrained PRF for Inner-Product Predicates [S'24]

Let $H : \mathcal{R} \times \mathcal{R}^{\ell} \to \mathcal{Y}$ be a random oracle (RO).

Alice

KeyGen(1^{λ}):Constrain(msk, k):1. $\mathbf{z_0} \stackrel{R}{\leftarrow} \mathcal{R}^{\ell}$ 1. $\Delta \stackrel{R}{\leftarrow} \mathcal{R}$ 2. Return msk := $\mathbf{z_0}$ 3. Return sk_z := $\mathbf{z_1}$

 $\mathbf{k}\,\in\mathcal{R}^\ell$

Constrained PRF for Inner-Product Predicates [S'24]

Let $H : \mathcal{R} \times \mathcal{R}^{\ell} \to \mathcal{Y}$ be a random oracle (RO).

Alice

KeyGen(1^{λ}): 1. $\mathbf{z_0} \stackrel{R}{\leftarrow} \mathcal{R}^{\ell}$

2. Return msk :=
$$\mathbf{z}_0$$

Constrain(msk, k):
1.
$$\Delta \stackrel{R}{\leftarrow} \mathcal{R}$$

2. $\mathbf{z_1} := \mathbf{z_0} - \Delta \mathbf{k}$
3. Return $\mathbf{sk_z} := \mathbf{z_1}$

 $\mathbf{k} \in \mathcal{R}^{\ell}$

 $\Delta \stackrel{R}{\leftarrow} \mathcal{R}$

Non-Interactive VOLE

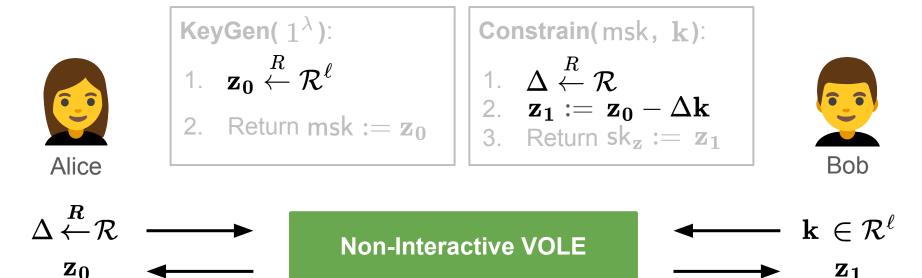
Constrained PRF for Inner-Product Predicates [S'24]

Let $H : \mathcal{R} \times \mathcal{R}^{\ell} \to \mathcal{Y}$ be a random oracle (RO).

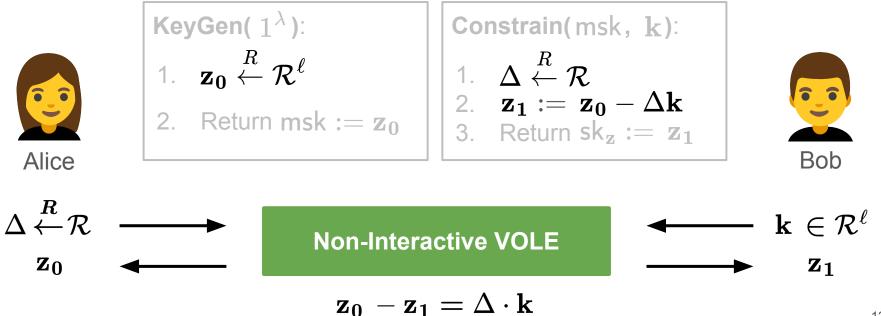
Alice

 $\Lambda \stackrel{R}{\leftarrow} \mathcal{R}$

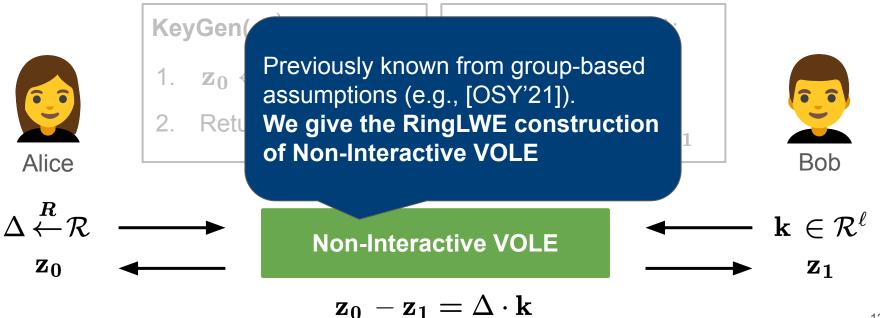
KeyGen(1^{λ}): Constrain(msk k) 1. $\mathbf{z_0} \stackrel{R}{\leftarrow} \mathcal{R}^{\ell}$ 2. Return msk := \mathbf{z}_0


1.
$$\Delta \stackrel{R}{\leftarrow} \mathcal{R}$$

2. $\mathbf{z_1} := \mathbf{z_0} - \Delta \mathbf{k}$
3. Return $\mathbf{sk_z} := \mathbf{z_1}$


 $\mathbf{k} \in \mathcal{R}^{\ell}$

Non-Interactive VOLE


Constrained PRF for Inner-Product Predicates [S'24]

Constrained PRF for Inner-Product Predicates [S'24]

Constrained PRF for Inner-Product Predicates [S'24]

Implementation and Evaluation

Implementation and Evaluation

Artifact Badges: Available, Functional, and Reproduced.

https://github.com/sachaservan/QuietOT

Protocol OT/s Bits/OT

Protocol	OT/s	Bits/OT
SoftSpokenOT	44,443,000	32

Protocol	OT/s	Bits/OT
SoftSpokenOT	44,443,000	32
SoftSpokenOT	76,000	8

Protocol	OT/s	Bits/OT
SoftSpokenOT	44,443,000	32
SoftSpokenOT	76,000	8
RRT	6,856,000	3

Protocol	OT/s	Bits/OT
SoftSpokenOT	44,443,000	32
SoftSpokenOT	76,000	8
RRT	6,856,000	3
\mathbb{F}_4 OLEAGE	25,000,000	3

Protocol	OT/s	Bits/OT	Sender PK Size	Receiver PK Size	
SoftSpokenOT	44,443,000	32			
SoftSpokenOT	76,000	8	No Public Key Setup		
RRT	6,856,000	3			
\mathbb{F}_4 OLEAGE	25,000,000	3			

Protocol	OT/s	Bits/OT	Sender PK Size	Receiver PK Size
SoftSpokenOT	44,443,000	32	No Public Key Setup	
SoftSpokenOT	76,000	8		
RRT	6,856,000	3		
\mathbb{F}_4 OLEAGE	25,000,000	3		
OSY	1	3	50 KB	1 KB

Protocol	OT/s	Bits/OT	Sender PK Size	Receiver PK Size	
SoftSpokenOT	44,443,000	32			
SoftSpokenOT	76,000	8	No Public Key Setup		
RRT	6,856,000	3			
\mathbb{F}_4 OLEAGE	25,000,000	3			

OSY	1	3	50 KB	1 KB
BCMPR	12,000	3	63 KB	72 KB

Protocol	OT/s	Bits/OT	Sender PK Size	Receiver PK Size
SoftSpokenOT	44,443,000	32	No Public Key Setup	
SoftSpokenOT	76,000	8		
RRT	6,856,000	3		
\mathbb{F}_4 OLEAGE	25,000,000	3		

OSY	1	3	50 KB	1 KB
BCMPR	12,000	3	63 KB	72 KB
QuietOT	561,000	7	5.4 MB	84 KB

Protocol	OT/s	Bits/OT	Sender PK Size	Receiver PK Size	
SoftSpokenOT	44,443,000	32			
SoftSpokenOT	76,000	8	No Public Key Setup		
RRT	6,856,000	3			
\mathbb{F}_4 OLEAGE	25,000,000	3			

OSY	1	3	50 KB	1 KB
BCMPR	12,000	3	63 KB	72 KB
QuietOT	561,000	7	5.4 MB	84 KB
QuietOT (AVX3)	1,265,000	7	5.4 MB	84 KB

Protocol	OT/s	Bits/OT	Sender PK Size	Receiver PK Size
SoftSpokenOT	44,443,000	32	No Public Key Setup	
SoftSpokenOT	76,000	8		
RRT	6,856,000	3		
\mathbb{F}_4 OLEAGE	25,000,000	3		
OSY	1	3	For context, average website is 2MB in size	
031	Ι	3		
BCMPR	12,000	3		
QuietOT	561,000	7	5.4 MB	84 KB
QuietOT (AVX3)	1,265,000	7	5.4 MB	84 KB

• Another construction using a different weak PRF candidate

- Another construction using a different weak PRF candidate
- A "nearly-black-box" two-round OT extension in the ROM

- Another construction using a different weak PRF candidate
- A "nearly-black-box" two-round OT extension in the ROM
- A RingLWE-based Non-Interactive VOLE protocol

- Another construction using a different weak PRF candidate
- A "nearly-black-box" two-round OT extension in the ROM
- A RingLWE-based Non-Interactive VOLE protocol
- Pre-computability and other nice features

- Another construction using a different weak PRF candidate
- A "nearly-black-box" two-round OT extension in the ROM
- A RingLWE-based Non-Interactive VOLE protocol
- Pre-computability and other nice features

Open questions:

- Another construction using a different weak PRF candidate
- A "nearly-black-box" two-round OT extension in the ROM
- A RingLWE-based Non-Interactive VOLE protocol
- Pre-computability and other nice features

Open questions:

• Malicious security?

- Another construction using a different weak PRF candidate
- A "nearly-black-box" two-round OT extension in the ROM
- A RingLWE-based Non-Interactive VOLE protocol
- Pre-computability and other nice features

Open questions:

- Malicious security?
- Can we reach 50,000,000 OT/s with a public key setup?

Thank you!

Email: <u>3s@mit.edu</u> ePrint: ia.cr/<u>2024/1079</u>

QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup

Geoffroy Couteau^{1,2}, Lalita Devadas³, Srinivas Devadas³, Alexander Koch^{1,2}, and Sacha Servan-Schreiber³

 1 CNRS 2 IRIF, Université Paris Cité

References

[Beaver'95]: D. Beaver. "Precomputing oblivious transfer." CRYPTO 1995.

[IKNP'03]: Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. "Extending Oblivious Transfers Efficiently." CRYPTO 2003.

[BW'13]: D. Boneh and B. Waters. "Constrained Pseudorandom Functions and Their Applications." ASIACRYPT 2013.

[BGI'14]: E. Boyle, S. Goldwasser, and I. Ivan. "Functional Signatures and Pseudorandom Functions." PKC 2014.

[KPTZ'13]: A. Kiayias, S. Papadopoulos, N. Triandopoulos, and T. Zacharias. "Delegatable Pseudorandom Functions and Applications." CCS 2013.

[BIPSW'18]: D. Boneh, Y. Ishai, A. Passelègue, A. Sahai, and D. J. Wu. "Exploring Crypto Dark Matter: New Simple PRF Candidates and Their Applications." TCC 2018.

[OSY'21]: C. Orlandi, P. Scholl, and S. Yakoubov. "The Rise of Paillier: Homomorphic Secret Sharing and Public-Key Silent OT." EUROCRYPT 2021.

[Roy'22]: L. Roy. "SoftSpokenOT: Quieter OT Extension from Small-Field Silent VOLE in the Minicrypt Model." CRYPTO 2022.

[RRT'23]: S. Raghuraman, P. Rindal, and T. Tanguy. "Expand-Convolute Codes for Pseudorandom Correlation Generators from LPN." CRYPTO 2023.

[BCMPR'24]: D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. "Fast Public-Key Silent OT and More from Constrained Naor-Reingold." EUROCRYPT 2024.

[S'24]: S. Servan-Schreiber. "Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions." ASIACRYPT 2024.