Spectrum
High-Bandwidth Anonymous Broadcast

Zachary Newman (zjn@mit.edu) & Sacha Servan-Schreiber (3s@mit.edu)

Joint work with Srini Devadas (MIT)

mailto:zjn@mit.edu
mailto:3s@mit.edu

Elevator Pitch

Previous systems: anonymous Twitter.

Us: anonymous Twitch.

Highlights:

e 3-140x faster; overhead ~200 bytes compared to non-private broadcast

e Security against active attacks
e Share full-length documentary in 1.5 hours (w/ 10K users)

histleblowers exp

Y
)
DEEP THROAT”

Despite three decades of intense speculation, the identity of “Deep Throat”—
the source who leaked key details of Nixon's Watergate cover-up to Washington Post
reporters Bob Woodward and Carl Bemstein—has never been revealed.

Now, at age 91, W. Mark Felt, number two at the FB.L in the early 70, is finally
admitting to that historic, anonymous role. In an exclusive,
JOHN D. 0'CONNOR puts a name and face to one of American democracy’s heroes,
leaming about the struggle between honor and duty that nearly led Felt
to take his secret to the grave

|
THEY CALLI

August 1999, Joan Fel, & busy col-

Nicon, o the scandal known
a5 Wategate, and hounded from office in 1974, The journalies had all

" GAsPER TRINGALE v 2008

ose corruption

= (B3 Premium

Search

Putin's palace. History of world's largest bribe
114,927,398 views + Jan 19, 2021

g 45M &1 218K) SHARE = SAVE

l Anexkceit HasanbHblit @

™ 6.52M subscribers SUBSCRIBE

TexcT paccnefjoBaH1s CO BCeMU AOKYMeHTaMu 3aeck https:/palace.navalny.com/

370 BMAEO HaBanbHblil 3an1can 4o CBOETO BO3BPALLEHNS B POCCHIO, HO Mbl Cpasy
SHOW MORE

But often at great cost

Putin critic Navalny jailed in Russia
despite protests

©2 February

Whistleblowing—Is It Really Worth the Consequences?

by Kayla L. Delk, JD, BSN, RN

This article explores general principles of state whistleblower laws and alerts
nurses to considerations when deciding whether to report an employer
violation. Reporting an employer violation can be difficult for any employee
but especially for nurses because nurses are torn between their desire and
duty to advocate for clients’ safety and their desire to maintain employment.
The author suggests questions to consider when deciding to “blow the whistle”
and alerts nurses to statutes of limitations that may affect when nurses must
report violations. The article also illuminates policy and procedural issues for
various states that affect how and to whom nurses report violations to protect
themselves under whistleblower protection laws. Finally, this article explores
personal and professional consequences that nurses should consider before
reporting violations.

This article explores when and
how to “blow the whistle” and alerts
nurses to the consequences of blow-
ing the whistle. However, this is
merely a general overview of state
whistleblower laws; nurses who in-
tend to blow the whistle should seek
legal advice from an attorney knowl-
edgeable about each state’s specific
statutes regarding whistleblowing.

BEFORE BLOWING THE
WHISTLE

Because whistleblowing can
have deleterious effects on nurses’
professional and personal lives. they

A
Moécksa CU30-1 Cnelhue

= 00GOO .

Panama Papers journalist killed
by car bomb

By Yaron Steinbuch October 16, 2017 | 3:24pm | Up

Can they publish anonymously?

. . B

Broadcast

Can they publish anonymously?

- E

Broadcast

Can they publish anonymously?

requires trust!

- E

Broadcast

Can they publish anonymously?

/u/u\

Q split the trust

l%\ H / Broadcast

Can they publish anonymously?

e
g

Can they publish anonymously?

=l

/

(B

network
metadata

5

PowerPost

The Cybersecurity 202: Leak charges against Treasury
official show encrypted apps only as secure as you make
them

+ [E
Broadcast

Can they publish anonymously?

Anonymity Loves Company:
Usability and the Network Effect

Roger Dingledine and Nick Mathewson

The Free Haven Project
{arma,nickn}0freehaven.net

Dining Cryptographer Nets
(DC-nets)

Simple XOR-based scheme (DC-net)

m; = m Broadcaster

Simple XOR-based scheme (DC-net)

m; = m Broadcaster

m; =0 Other clients

Simple XOR-based scheme (DC-net)

m; = m Broadcaster ri®m; to ServerA

m; =0 Other clients Iy to Server B

Simple XOR-based scheme (DC-net)

m; = m Broadcaster ri®m; to ServerA
m; =0 Other clients Fi to Server B
ServerA ServerB (commutativity of xor)

N

~ ~F w N
m=Drem)e@ri = PrrorePm,
i i i i

=00...0m...00.

origin of m is hidden

Simple XOR-based scheme (DC-net)

m; = m Broadcaster ri®m; to ServerA
m; =0 Other clients Fi to Server B
ServerA ServerB (commutativity of xor)

N

~ ~F w N
m=Drem)e@ri = PrrorePm,
i i i i

=00...0m...00.

origin of m is hidden

A toy protocol

=

S A

erver erver

B+&=E >
el ol

Broadcaster

-

A toy protocol

=

S A

erver

5 u/

bl el el

Broadcaster

-

A toy protocol

=

=

Server A Server B

| _
aeneo b8
bl el el

Broadcaster

A toy protocol

A toy protocol

A toy protocol

A toy protocol

LT LT
\\/ \//

& &

Server B

Broadcast

Broadcast origin hidden

DC-Nets

Pros

e Fast: server XORs requests
e Metadata private: fully hides broadcast source
e High bandwidth: throughput matches client upload bandwidth

Cons

e Not-scalable: only one broadcaster (unless repeated = extra bandwidth)
e Insecure: client can undetectably disrupt the broadcast

Broadcast Disruption

=

Server A

o

ot o= IEEEEE \/a
Iy Ty Iy g

Broadcaster

Broadcast Disruption

B ol

Y/
r

=

Server A

Broadcast Disruption

8% o %5 of%
\\// N /

Broadcast Disruption

8% o %5 of%
Y/ N/

15\ /E
B .. &

Malicious users can corrupt broadcasts = jRe«elge]1gllo)

Definition: A Broadcast Channel

A channel is an allocated slot to which a message is written

- Multiple simultaneous broadcasts can be supported with multiple channels
A user can write to a channel without clobbering another message on another slot

- Servers can't tell which user is writing to which channel
m ¢
B ——

.
Channels

Broadcasters Subscribers

Existing Approaches for Preventing Disruption

Riposte [CGBM15]

e Allocate Q(# users) channel slots

e Clients pick one random channel to write to
o Prevents collision with malicious writes w.h.p.

e Additional non-colluding “audit” server required to prevent malicious clients
Blinder [APY20]

e Allocate Q(# users) channel slots
e Clients pick one random channel to write to (like Riposte)
e Honest-majority MPC instead of audit server to prevent malicious clients

Existing Approaches for Preventing Disruption

Common Theme: # channels > # users

sts our Riposte
160-byte rows

= more server work than DC-net

and up to 1 million clients. Second, we show that Blinder scales to
large messages of up to 10 kilobytes (required by some applications

= only efficient with small messages

Can we do better?

Existing Approaches for Preventing Disruption

Common Theme: # channels > # users

sts our Riposte
160-byte rows

= more server work than DC-net

and up to 1 million clients. Second, we show that Blinder scales to
large messages of up to 10 kilobytes (required by some applications

= only efficient with small messages

Can we do better?

1. One channel per broadcaster?

Existing Approaches for Preventing Disruption

Common Theme: # channels > # users

sts our Riposte
160-byte rows

= more server work than DC-net

and up to 1 million clients. Second, we show that Blinder scales to
large messages of up to 10 kilobytes (required by some applications

= only efficient with small messages

Can we do better?

1. One channel per broadcaster?
2. Optimize for few broadcasters, many users?

Our approach

e One channel per broadcaster = need authorized writes
o Otherwise, malicious clients can disrupt the broadcast

Our approach

e One channel per broadcaster = need authorized writes
o Otherwise, malicious clients can disrupt the broadcast

e Solution: Blind message authentication for access control
o To write to a channel, must know its secret key

Our approach

e One channel per broadcaster = need authorized writes
o Otherwise, malicious clients can disrupt the broadcast
e Solution: Blind message authentication for access control

o To write to a channel, must know its secret key
o Servers do not know which client is the broadcaster

Our approach

e One channel per broadcaster = need authorized writes
o Otherwise, malicious clients can disrupt the broadcast

e Solution: Blind message authentication for access control
o To write to a channel, must know its secret key
o Servers do not know which client is the broadcaster
o Server work: O(# channels), instead of Q(# users)

Our approach

e One channel per broadcaster = need authorized writes

o Otherwise, malicious clients can disrupt the broadcast

e Solution: Blind message authentication for access control

o To write to a channel, must know its secret key
o Servers do not know which client is the broadcaster
o Server work: O(# channels), instead of Q(# users)

Key Channel
qa, =
: .

Our approach

e One channel per broadcaster = need authorized writes

o Otherwise, malicious clients can disrupt the broadcast

e Solution: Blind message authentication for access control

o To write to a channel, must know its secret key
o Servers do not know which client is the broadcaster
o Server work: O(# channels), instead of Q(# users)

Denied!

Key Channel
qa, =
: .

Our approach

e One channel per broadcaster = need authorized writes
o Otherwise, malicious clients can disrupt the broadcast

e Solution: Blind message authentication for access control
o To write to a channel, must know its secret key
o Servers do not know which client is the broadcaster
o Server work: O(# channels), instead of Q(# users)

no auth for “dummy” requests
Key Channel

I

Our approach

e One channel per broadcaster = need authorized writes
o Otherwise, malicious clients can disrupt the broadcast
e Solution: Blind message authentication for access control

o To write to a channel, must know its secret key
o Servers do not know which client is the broadcaster
o Server work: O(# channels), instead of Q(# users)

servers can't tell what key

was used (if any) Key Channel

° .
[

Protocol

Outline

1. Supporting multiple channels
2. Blind message authentication
3. Preventing de-anonymization attacks

Multiple channels (almost) for free

e Example scenario:
o 5 broadcasters, each wants to share a 1MB message
o If repeated in parallel then every user must upload 5 MB
o Quickly saturates upload bandwidth

Multiple channels (almost) for free

e Example scenario:

o 5 broadcasters, each wants to share a 1MB message
o If repeated in parallel then every user must upload 5 MB
o Quickly saturates upload bandwidth

e Want: each user only uploads ~1MB!

o Servers must still extract 5 “real” messages
o From many random-looking messages

Multiple channels (almost) for free

e Example scenario:
o 5 broadcasters, each wants to share a 1MB message
o If repeated in parallel then every user must upload 5 MB
o Quickly saturates upload bandwidth

e Want: each user only uploads ~1MB!
o Servers must still extract 5 “real” messages
o From many random-looking messages

e Must write to every channel for every message
o Otherwise the servers learn who is broadcasting

Multiple channels (almost) for free

e Valid writes
o Point functions

E Broadcast

Multiple channels (almost) for free

e Valid writes
o Point functions
o Or all-0 messages

E Broadcast

Multiple channels (almost) for free

e Valid writes
o Point functions
o Or all-0 messages

e \Want to send short secret-shares of our write

0

0

E

0

E Broadcast

Distributed point function (DPF) [Gl14]

e \Want: short representation
e \Want: secret shares

Broadcast Cover

Distributed point function (DPF) [Gl14]

indistinguishable

/\

Broadcast Cover

Distributed point function (DPF) [Gl14]

Compress and secret-share a point function

Channel
Slots

0

0

E

0

gl
) ./

Server A Server B

Distributed point function (DPF) [Gl14]

Compress and secret-share a point function commutativel

Channel
Slots

0

0

E

0

gl
) ./

o

Server A Server B

Distributed point function (DPF) [Gl14]

Compress and secret-share a point function commutativel

Channel
Slots

E
E
E
E
E
E

o

Server A Server B

Blind message authentication

e For DPF, want to check (each channel): “is 0 OR authorized”
o must perform check on secret shares
o minimize interaction
o must allow 0 messages, but they should look the same
o malicious server shouldn’t be able to impersonate malicious client

Blind message authentication

e For DPF, want to check (each channel): “is 0 OR authorized”
e MAC the message [CW79,WC81]

o can check over secret shares
o verify that tagger knows a secret
o anybody can tag empty messages

Blind message authentication

e For DPF, want to check: “every channel is 0 OR client knows the secret”
e MAC the message [CW79,WC81]

Blind message authentication

e For DPF, want to check: “every channel is 0 OR client knows the secret”
e MAC the message [CW79,WC81]

Blind message authentication

e For DPF, want to check: “every channel is 0 OR client knows the secret”
e MAC the message [CW79,WC81]
e Can compute locally on additive secret-shares

/0-[[m]]1 /

known to servers + = t =a-m

(for now) \

a - [(m1],

Blind message authentication

e For DPF, want to check: “every channel is 0 OR client knows the secret”
e MAC the message [CW79,WC81]
e Can compute locally on additive secret-shares

secret shares of MAC tag
a- [[m]]1 - [[t]]1

known to servers + = O

(for now)
N [m1l, - [tl,

Blind message authentication

For DPF, want to check: “every channel is 0 OR client knows the secret”
MAC the message [CW79,WC81]

Can compute locally on additive secret-shares

Multiple channels: inner product

<(01, .o a), (Im T, [Iml_]]>) - [ItI,
+ = 0
< (a,, ..., a), (M1, ..., [[mL]]> - [It,

Blind message authentication

DPE Channel DPE Channel
Keys Keys
g, a, m-a,
a, a, Result of Inner
Product
03 03
04 e Recover;
a5 a, Tag subtraction check value
% - -

Problem: Client-server collusion

Blind message authentication

For DPF, want to check: “every channel is 0 OR client knows the secret”
MAC the message [CW79,WC81]

Can compute locally on additive secret-shares

Multiple channels: inner product

<(01, .o a), (Im T, [Iml_]]>) - [ItI,
+ = 0
< (a,, ..., a), (M1, ..., [[mL]]> - [It,

Blind message authentication

For DPF, want to check: “every channel is 0 OR client knows the secret”
MAC the message [CW79,WC81]

Can compute locally on additive secret-shares

Multiple channels: inner product

In the exponent: hide keys from servers!

5 a), (Mm. 1, ..., [ImL]]>) - [It1,
° =go
< (a,, ..., a), (M1, ..., [[mL]]> - [It,
J

g<(01,..

Client-server collusion
(g, ..., g™

C

'eanonymization Attack

Avallability vs. Privacy

e In anonymous broadcast Availability = Privacy
o Denying a client removes them from the anonymity set
e Prior work: disruptive clients ignored

o Can't have availability and privacy at the same time!
o Makes Riposte / Spectrum susceptible to an “audit attack”
o A malicious server can artificially shrink the anonymity set

Recap: Request Audit

Recap: Request Audit

=

Request A

Server A

bl e e Ll

Audit Attack

Request A Request B
» | Message | ¢

Auth

Server A Server B

bl e e Ll

Audit Attack

Request A* Request B
» | Message | ¢

Auth

Server A Server B

bl e e Ll

Audit Attack

C

Server A

Request A*

Bad Request!

Message
Auth

Request B

<

bl e e Ll

=

Server B

Audit Attack

C

Server A

Request A*

Bad Request!

Message
Auth

Request B

<

J Y5 Y|

=

Server B

Audit Attack

Audit Attack

Audit Attack
K= broadcaste
|r

Why this is challenging

Can'’t trust any client
e client could be attempting disruption
Can't trust any server

e “other” server could have caused the failure

BlameGame: Stopping the Audit Attack

Who's cheating? Is it the client? Is it the server?

Want: abort Spectrum if a server is malicious.

BlameGame: Stopping the Audit Attack

Key idea: “commit” each server to its (private) audit input

BlameGame: Stopping the Audit Attack

Key idea: “commit” each server to its (private) audit input

In a nutshell:

1. Clients send “backup” requests encrypted under other server’s public key
2. If audit fails: swap backups, decrypt, and try again

3. If backup fails: servers prove compliance

4. Blames malicious server or client

Step 1: Do regular request audit

=

Server A

T =

Request A Request B

b ol bl el

Step 1: Do regular request audit

=

Server A Server B

Request A Request B /

Backup B Backup A
encr ted encrypted

Step 1: Do regular request audit
Backup B Backup A
E Request A* Request B E
> Audit -

Server A Server B

b ol bl el

Step 1: Do regular request audit

Backup B
encrypted

Backup A
encrypted

Bad Request!

E Request A* Request B E
> Audit -

Server A Server B

b ol bl el

Step 2: Do backup audit

b ol bl el

Step 2: Do backup audit

=

Backup A Backup B
encrypted encrypted

Server A

b ol bl el

Step 2: Do backup audit

b ol bl el

Step 2: Do backup audit

Backup A

=

Server A

Backup A*

Bad Request!

Message
Auth

Backup B

Backup B

<

b ol bl el

=

Server B

Step 3: Prove innocence

Backup A

Backup B

=

Server A

Prove you're not lying

b ol bl el

Step 3: Prove innocence

=

Server A

Here you go

Backup A ‘

b ol bl el

Backup B

=

Server B

Step 4: Assign blame

|
Backup A

Backup B T

=

Server A Server B

1. Check Proof ®
2. Simulate Audit
3. Blame: Client or Server

b ol bl el

Step 4: Assign blame

Backup A

Backup B T

Server A Server B

1. Check Proof ®
2. Simulate Audit
3. Blame: Client or Server

Malicious Client
Backup A

Backup B T

Backup A

Server A

1. Check Proof ®
2. Simulate Audit
3. Blame: Client or Server

Malicious Server

Backup A

Backup A

@ Bad server! Abort.

Server A Server B

Backup B T
Oc

1. Check Proof ®
2. Simulate Audit
3. Blame: Client or Server

b ol bl el

BlameGame in practice

Now only one shot at de-anonymization before Spectrum is aborted
Only invoked following a failed audit of a request (few in practice)
Backup request size independent of message length

Also applies to other anonymous broadcast protocols

BlameGame in practice

Now only one shot at de-anonymization before Spectrum is aborted
Only invoked following a failed audit of a request (few in practice)
Backup request size independent of message length

Also applies to other anonymous broadcast protocols

BlameGame Backup Request Audit Decryption

(per failed audit) per client per client once per client

140 bytes 200 bytes 10 ps

Spectrum

Putting it all together

E Broadcast
E(ljover Request

Putting it all together

Generate Audit

il

B

Generate Audit

Putting it all together

=

Check Audit

=

Putting it all together

=z

Blame Game?

=

Putting it all together

Accumulate

il

B

Accumulate

Putting it all together

=

Broadcast

=

Evaluation

Implementation

e GitHub: znewman01/spectrum-impl (written in Rust)
o Compare with prior work: Riposte, Express, Blinder

e Terraform templates and scripts for reproducing experiments
o Including prior work

$ python -m experiments spectrum experiments.json
README.md « [infrastructure] Environment(instance_type='c5.4xlarge', client_machines=1, worker_machines=2)
i [infrastructure] no changes to apply
v [infrastructure] connected (SSH)
v [infrastructure] etcd healthy

L]
Spect ru m -I m pl « Experiment(clients=50, channels=3, message size=10240, instance_ type='c5.4xlarge', clients_per_machi

ne=50, workers_per_machine=1, worker_machines_per_group=1, protocol=Symmetric(security=16))
[experiment] 5375 queries in 1232ms => 4362 gps

<

f . ¢ [infrastructure] Environment(instance_type='c5.4xlarge', client_machines=2, worker_machines=2)
build 'passing .
[infrastructure] found changes to apply:

* aws_instance.client[1] will be created
[infrastructure] created
[infrastructure] connected (SSH)
[infrastructure] etcd healthy

N

N

Implementation and experiments for the Spectrum paper.

Y

Disc|aimer: research COde not for prOdUCtion use * Experiment(clients=100, channels=3, message size=10240, instance_type='c5.4xlarge', clients_per_mach
2 = ine=50, workers_per_machine=1, worker_machines_per_group=1, protocol=Symmetric(security=16))
[experiment] running

https://github.com/znewman01/spectrum-impl

Spectrum: really fast with one channel & BIG messages

— Spectrum
A 1044 —=~- Express

Throughput
(clients per sec)
=
<

102.

—— . —_— —
s
——
T — o — — B
— —— —
— ——
Y ———
e ——

(higher is better)

Message Size (MB)

Spectrum: still fast with many channels (10K users)

1 KB messages

o
= O]
3 5000 = Spectrum --+- Blinder (CPU)
<0 ;
=== EXpress -=+=+ Blinder (GPU)
S 22500+ i
A oo Riposte
£5
I—T—) 01 o e T L P S ﬂ;':_':_::_':.-'_"..-:.."_:-_"_.-Li:_!u:u:u:u:uuuuuﬁuu:uuu LLLLL
= 0 6000 8000 10000
—~~ —
5 57
2 3 v 20001
[4D) L o
P! D Q
3 » 1000+
R EE | s o —————————————
[‘_6 0_ *-—-——--4'{ —————) ‘-——uuu-ﬁuuuuu?uuuuuuuuuu*uuu;;uuuuuu
_GC) = 0 2000 4000 6000 8000 10000
'_? - 10 KB messages
2 1000+
<0
o Qo
39 5001
EE |
6 0_ r-ﬂﬂﬂ-_--?-_-ﬂﬁ"lﬂ‘IHHHHHVHHHHHI‘H————T——--— ———————— qlp —————————— -y
=~ 0 2000 4000 6000 8000 10000

Cost to upload a full-length documentary

Cost for uploading 500 MB with 10,000 users

BN Spectrum
¥ Express
NXX Riposte

$1.93

$125.0K

$121.9K

$1.0M

Il Blinder (CPU)
A Blinder (GPU)

10° 101 102 103 104 105

106

107

Can parallelize each server

2500

2000+

Throughput
(clients per sec)
'_I
(0]
o
o

=
o
o
o

500+

— Spectrum
---- Linear scaling

2 4 6 8
Virtual Machines per Logical Server

10

To share (anonymity set 10K)

Document Size (MB) Time Cost ($ USD)
PDF (e.g., ePrint for Spectrum) 1 10 s $0.01
Podcast (1 hr.) 50 8m 30s $0.19

Documentary (2 hr. @ 720p) 500 1h 24m $1.93

Thank You

NSDI'22 (to appear)
ePrint: 1a.cr/2021/325

Zack Newman: zin@mit.edu
Sacha Servan-Schreiber: 3s@mit.edu

https://eprint.iacr.org/2021/325
mailto:zjn@mit.edu
mailto:3s@mit.edu

