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Elevator Pitch 

Previous systems: anonymous Twitter. 

Us: anonymous Twitch.

Highlights:  

● 3–140x faster; overhead ~200 bytes compared to non-private broadcast
● Security against active attacks
● Share full-length documentary in 1.5 hours (w/ 10K users)



Whistleblowers expose corruption



But often at great cost



Broadcast

Can they publish anonymously?

?



Broadcast

Can they publish anonymously?



Broadcast

requires trust! 

Can they publish anonymously?



+
Broadcast

split the trust

Can they publish anonymously?



Can they publish anonymously?

+
Broadcast



Can they publish anonymously?

+
Broadcast

network
metadata



Can they publish anonymously?

+
Broadcast



Dining Cryptographer Nets
(DC-nets)
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A toy protocol

Server A Server B
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Broadcast origin hidden 



Pros
● Fast: server XORs requests
● Metadata private: fully hides broadcast source
● High bandwidth: throughput matches client upload bandwidth 

Cons
● Not-scalable: only one broadcaster (unless repeated ⇒ extra bandwidth)
● Insecure: client can undetectably disrupt the broadcast

DC-Nets
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Broadcast Disruption

Server A Server B

+

Disrupted Broadcast

Malicious users can corrupt broadcasts =  . censorship  .   
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Definition: A Broadcast Channel
A channel is an allocated slot to which a message is written

- Multiple simultaneous broadcasts can be supported with multiple channels 
- A user can write to a channel without clobbering another message on another slot 

- Servers can’t tell which user is writing to which channel 

Broadcasters Subscribers

Channels



Existing Approaches for Preventing Disruption 

Riposte [CGBM15]

● Allocate Ω( # users ) channel slots 
● Clients pick one random channel to write to

○ Prevents collision with malicious writes w.h.p. 
● Additional non-colluding “audit” server required to prevent malicious clients

Blinder [APY20]

● Allocate Ω( # users ) channel slots 
● Clients pick one random channel to write to (like Riposte)
● Honest-majority MPC instead of audit server to prevent malicious clients
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Existing Approaches for Preventing Disruption 

Common Theme: # channels ≫ # users

⇒ more server work than DC-net

⇒ only efficient with small messages  

Can we do better? 

1. One channel per broadcaster?
2. Optimize for few broadcasters, many users? 



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )



● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )

Our approach 

ɑ2

Ok!
Key Channel

ɑ1

ɑ2

0

m



● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )

Our approach 

Denied!
Key Channel

ɑ1

ɑ2

ɑ2

m

0



● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )
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Our approach 

Key Channel

ɑ1

ɑ2

servers can’t tell what key 
was used (if any)

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )



Protocol



Outline

1. Supporting multiple channels
2. Blind message authentication 
3. Preventing de-anonymization attacks
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Multiple channels (almost) for free 

● Example scenario: 
○ 5 broadcasters, each wants to share a 1MB message 
○ If repeated in parallel then every user must upload 5 MB
○ Quickly saturates upload bandwidth 

● Want: each user only uploads ~1MB!
○ Servers must still extract 5 “real” messages
○ From many random-looking messages

● Must write to every channel for every message
○ Otherwise the servers learn who is broadcasting 
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Multiple channels (almost) for free 

● Valid writes
○ Point functions
○ Or all-0 messages

● Want to send short secret-shares of our write
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Distributed point function (DPF) [GI14]

Broadcast Cover

● Want: short representation
● Want: secret shares



Distributed point function (DPF) [GI14]

indistinguishable

Broadcast Cover
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Blind message authentication

● For DPF, want to check (each channel): “is 0 OR authorized”
○ must perform check on secret shares
○ minimize interaction
○ must allow 0 messages, but they should look the same
○ malicious server shouldn’t be able to impersonate malicious client



Blind message authentication

● For DPF, want to check (each channel): “is 0 OR authorized”
● MAC the message [CW79,WC81]

○ can check over secret shares
○ verify that tagger knows a secret
○ anybody can tag empty messages



Blind message authentication
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Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]

   t = ɑ ᐧ m

MAC tag

if m = 0, t = 0!
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Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares

ɑ ᐧ ⟦m⟧1 - ⟦t⟧1

ɑ ᐧ ⟦m⟧2 - ⟦t⟧2

+ = 0

secret shares of MAC tag

known to servers
(for now)



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares
● Multiple channels: inner product

(ɑ1, …, ɑL), (⟦m1⟧2, …, ⟦mL⟧2)    - ⟦t⟧2

+ =   0
(ɑ1, …, ɑL), (⟦m1⟧1,  …, ⟦mL⟧1)    - ⟦t⟧1⟨ ⟩ 
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Blind message authentication
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Problem: Client-server collusion
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Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares
● Multiple channels: inner product
● In the exponent: hide keys from servers!

● g
(ɑ1, …, ɑL), (⟦m1⟧2, …, ⟦mL⟧2)    - ⟦t⟧2

=   0
(ɑ1, …, ɑL), (⟦m1⟧1,  …, ⟦mL⟧1)    - ⟦t⟧1⟨ ⟩ 

⟨ ⟩ 
g

g



Client-server collusion

Server A Server B

ɑ
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Deanonymization Attack



Availability vs. Privacy

● In anonymous broadcast Availability ⇒ Privacy
○ Denying a client removes them from the anonymity set 

● Prior work: disruptive clients ignored
○ Can't have availability and privacy at the same time!
○ Makes Riposte / Spectrum susceptible to an “audit attack”
○ A malicious server can artificially shrink the anonymity set 



Recap: Request Audit
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Audit Attack
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Why this is challenging  

Can’t trust any client

● client could be attempting disruption  

Can’t trust any server

● “other” server could have caused the failure



BlameGame: Stopping the Audit Attack

Who’s cheating? Is it the client? Is it the server? 

Want: abort Spectrum if a server is malicious.
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BlameGame: Stopping the Audit Attack

Key idea: “commit” each server to its (private) audit input

In a nutshell:  

1. Clients send “backup” requests encrypted under other server’s public key 
2. If audit fails: swap backups, decrypt, and try again 
3. If backup fails: servers prove compliance
4. Blames malicious server or client  



Step 1: Do regular request audit
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Step 1: Do regular request audit
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Step 2: Do backup audit
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Step 2: Do backup audit
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Step 3: Prove innocence
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Step 3: Prove innocence
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Step 4: Assign blame 
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Malicious Client 
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Malicious Server
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3. Blame: Client or Server



BlameGame in practice 

● Now only one shot at de-anonymization before Spectrum is aborted
● Only invoked following a failed audit of a request (few in practice) 
● Backup request size independent of message length 
● Also applies to other anonymous broadcast protocols
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Implementation

● GitHub: znewman01/spectrum-impl (written in Rust)
○ Compare with prior work: Riposte, Express, Blinder

● Terraform templates and scripts for reproducing experiments
○ Including prior work

https://github.com/znewman01/spectrum-impl


Spectrum: really fast with one channel & BIG messages

(higher is better)
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Cost to upload a full-length documentary



Can parallelize each server



To share (anonymity set 10K)

Document Size (MB) Time Cost ($ USD)

PDF (e.g., ePrint for Spectrum) 1 10 s $ 0.01

Podcast (1 hr.) 50 8m 30s $ 0.19

Documentary (2 hr. @ 720p) 500 1h 24m $ 1.93



Thank You
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