
High-Bandwidth Anonymous Broadcast

Zachary Newman (zjn@mit.edu) & Sacha Servan-Schreiber (3s@mit.edu) 

Joint work with Srini Devadas (MIT)

Spectrum 

mailto:zjn@mit.edu
mailto:3s@mit.edu


Elevator Pitch 

Previous systems: anonymous Twitter. 

Us: anonymous Twitch.

Highlights:  

● 3–140x faster; overhead ~200 bytes compared to non-private broadcast
● Security against active attacks
● Share full-length documentary in 1.5 hours (w/ 10K users)



Whistleblowers expose corruption



But often at great cost



Broadcast

Can they publish anonymously?

?



Broadcast

Can they publish anonymously?



Broadcast

requires trust! 

Can they publish anonymously?



+
Broadcast

split the trust

Can they publish anonymously?



Can they publish anonymously?

+
Broadcast



Can they publish anonymously?

+
Broadcast

network
metadata



Can they publish anonymously?

+
Broadcast



Dining Cryptographer Nets
(DC-nets)



Simple XOR-based scheme (DC-net)

             Broadcaster

    



Simple XOR-based scheme (DC-net)

             Broadcaster

             Other clients



             to Server A

             to Server B

Simple XOR-based scheme (DC-net)

             Broadcaster

             Other clients



             to Server A

             to Server B

Simple XOR-based scheme (DC-net)

             Broadcaster

             Other clients



             to Server A

             to Server B

Simple XOR-based scheme (DC-net)

             Broadcaster

             Other clients



A toy protocol

Server A Server B

Broadcaster

+   = 



A toy protocol

Server A Server B

Broadcaster

+   = 



+   = 0

A toy protocol

Server A Server B

Broadcaster



+   = 0

A toy protocol

Server A Server B

Broadcaster



A toy protocol

Server A Server B



A toy protocol

Server A Server B

Aggregated 
Shares



A toy protocol

Server A Server B

+

Broadcast

Broadcast origin hidden 



Pros
● Fast: server XORs requests
● Metadata private: fully hides broadcast source
● High bandwidth: throughput matches client upload bandwidth 

Cons
● Not-scalable: only one broadcaster (unless repeated ⇒ extra bandwidth)
● Insecure: client can undetectably disrupt the broadcast

DC-Nets



+   = 

Broadcast Disruption

Server A Server B

Broadcaster

%$$#^&@@!



Broadcast Disruption

Server A Server B



Broadcast Disruption

Server A Server B

+

Disrupted Broadcast

%$$#^&@@!



Broadcast Disruption

Server A Server B

+

Disrupted Broadcast

Malicious users can corrupt broadcasts =  . censorship  .   

%$$#^&@@!



Definition: A Broadcast Channel
A channel is an allocated slot to which a message is written

- Multiple simultaneous broadcasts can be supported with multiple channels 
- A user can write to a channel without clobbering another message on another slot 

- Servers can’t tell which user is writing to which channel 

Broadcasters Subscribers

Channels



Existing Approaches for Preventing Disruption 

Riposte [CGBM15]

● Allocate Ω( # users ) channel slots 
● Clients pick one random channel to write to

○ Prevents collision with malicious writes w.h.p. 
● Additional non-colluding “audit” server required to prevent malicious clients

Blinder [APY20]

● Allocate Ω( # users ) channel slots 
● Clients pick one random channel to write to (like Riposte)
● Honest-majority MPC instead of audit server to prevent malicious clients



Existing Approaches for Preventing Disruption 

Common Theme: # channels ≫ # users

⇒ more server work than DC-net

⇒ only efficient with small messages  

Can we do better? 



Existing Approaches for Preventing Disruption 

Common Theme: # channels ≫ # users

⇒ more server work than DC-net

⇒ only efficient with small messages  

Can we do better? 

1. One channel per broadcaster?



Existing Approaches for Preventing Disruption 

Common Theme: # channels ≫ # users

⇒ more server work than DC-net

⇒ only efficient with small messages  

Can we do better? 

1. One channel per broadcaster?
2. Optimize for few broadcasters, many users? 



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster



Our approach 

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )



● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )

Our approach 

ɑ2

Ok!
Key Channel

ɑ1

ɑ2

0

m



● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )

Our approach 

Denied!
Key Channel

ɑ1

ɑ2

ɑ2

m

0



● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )

Our approach 

Key Channel

ɑ1

ɑ2

Ok!
0

0

no auth for “dummy” requests



Our approach 

Key Channel

ɑ1

ɑ2

servers can’t tell what key 
was used (if any)

● One channel per broadcaster ⇒ need authorized writes
○ Otherwise, malicious clients can disrupt the broadcast 

● Solution: Blind message authentication for access control
○ To write to a channel, must know its secret key
○ Servers do not know which client is the broadcaster
○ Server work: O( # channels ), instead of Ω( # users )



Protocol



Outline

1. Supporting multiple channels
2. Blind message authentication 
3. Preventing de-anonymization attacks



Multiple channels (almost) for free 

● Example scenario: 
○ 5 broadcasters, each wants to share a 1MB message 
○ If repeated in parallel then every user must upload 5 MB
○ Quickly saturates upload bandwidth 



Multiple channels (almost) for free 

● Example scenario: 
○ 5 broadcasters, each wants to share a 1MB message 
○ If repeated in parallel then every user must upload 5 MB
○ Quickly saturates upload bandwidth 

● Want: each user only uploads ~1MB!
○ Servers must still extract 5 “real” messages
○ From many random-looking messages



Multiple channels (almost) for free 

● Example scenario: 
○ 5 broadcasters, each wants to share a 1MB message 
○ If repeated in parallel then every user must upload 5 MB
○ Quickly saturates upload bandwidth 

● Want: each user only uploads ~1MB!
○ Servers must still extract 5 “real” messages
○ From many random-looking messages

● Must write to every channel for every message
○ Otherwise the servers learn who is broadcasting 



Multiple channels (almost) for free 

● Valid writes
○ Point functions

0

0

0

0

0

Broadcast



Multiple channels (almost) for free 

● Valid writes
○ Point functions
○ Or all-0 messages

0

0

0

0

0

0

0

0

0

0

0

Broadcast Cover0



Multiple channels (almost) for free 

● Valid writes
○ Point functions
○ Or all-0 messages

● Want to send short secret-shares of our write

0

0

0

0

0

0

0

0

0

0

0

Broadcast Cover0



Distributed point function (DPF) [GI14]

Broadcast Cover

● Want: short representation
● Want: secret shares



Distributed point function (DPF) [GI14]

indistinguishable

Broadcast Cover



Distributed point function (DPF) [GI14]

Compress and secret-share a point function

 =  +"Eval"

0

0

0

0

0

Server A Server B

Channel 
Slots



Distributed point function (DPF) [GI14]

Compress and secret-share a point function

 =  +"Eval"

commutative!

0

0

0

0

0

Server A Server B

Channel 
Slots



Distributed point function (DPF) [GI14]

Compress and secret-share a point function

 =  +"Eval"

commutative!

0

0

0

0

0

Server A Server B

Channel 
Slots



Blind message authentication

● For DPF, want to check (each channel): “is 0 OR authorized”
○ must perform check on secret shares
○ minimize interaction
○ must allow 0 messages, but they should look the same
○ malicious server shouldn’t be able to impersonate malicious client



Blind message authentication

● For DPF, want to check (each channel): “is 0 OR authorized”
● MAC the message [CW79,WC81]

○ can check over secret shares
○ verify that tagger knows a secret
○ anybody can tag empty messages



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]

   t = ɑ ᐧ m

MAC tag



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]

   t = ɑ ᐧ m

MAC tag

if m = 0, t = 0!



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares

ɑ ᐧ ⟦m⟧1

ɑ ᐧ ⟦m⟧2

+ = t = ɑ ᐧ mknown to servers
(for now)

MAC tag



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares

ɑ ᐧ ⟦m⟧1 - ⟦t⟧1

ɑ ᐧ ⟦m⟧2 - ⟦t⟧2

+ = 0

secret shares of MAC tag

known to servers
(for now)



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares
● Multiple channels: inner product

(ɑ1, …, ɑL), (⟦m1⟧2, …, ⟦mL⟧2)    - ⟦t⟧2

+ =   0
(ɑ1, …, ɑL), (⟦m1⟧1,  …, ⟦mL⟧1)    - ⟦t⟧1⟨ ⟩ 

⟨ ⟩ 



Blind message authentication

DPF

0

0

m

0

0

0

ɑ1

ɑ2

ɑ3

ɑ4

ɑ5

ɑ6

Channel 
Keys

m⋅ɑ3

Result of Inner 
Product

DPF

0

0

m

0

0

0

ɑ1

ɑ2

ɑ3

ɑ4

ɑ5

ɑ6

Channel 
Keys

Tag subtraction

tm⋅ɑ3 - = 0 0

Recover;
check value



Problem: Client-server collusion

Server A Server B

ɑ

(ɑ1, …, ɑL) (ɑ1, …, ɑL)



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares
● Multiple channels: inner product

(ɑ1, …, ɑL), (⟦m1⟧2, …, ⟦mL⟧2)    - ⟦t⟧2

+ =   0
(ɑ1, …, ɑL), (⟦m1⟧1,  …, ⟦mL⟧1)    - ⟦t⟧1⟨ ⟩ 

⟨ ⟩ 



Blind message authentication

● For DPF, want to check: “every channel is 0 OR client knows the secret”
● MAC the message [CW79,WC81]
● Can compute locally on additive secret-shares
● Multiple channels: inner product
● In the exponent: hide keys from servers!

● g
(ɑ1, …, ɑL), (⟦m1⟧2, …, ⟦mL⟧2)    - ⟦t⟧2

=   0
(ɑ1, …, ɑL), (⟦m1⟧1,  …, ⟦mL⟧1)    - ⟦t⟧1⟨ ⟩ 

⟨ ⟩ 
g

g



Client-server collusion

Server A Server B

ɑ

ɑ1                 ɑL(g   , …, g   ) ɑ1                 ɑL(g   , …, g   )



Deanonymization Attack



Availability vs. Privacy

● In anonymous broadcast Availability ⇒ Privacy
○ Denying a client removes them from the anonymity set 

● Prior work: disruptive clients ignored
○ Can't have availability and privacy at the same time!
○ Makes Riposte / Spectrum susceptible to an “audit attack”
○ A malicious server can artificially shrink the anonymity set 



Recap: Request Audit

Server A Server B

Request A Request B



Recap: Request Audit

Server A Server B

Message 
Auth

Ok!

Request A Request B



Audit Attack

Server A Server B

Message 
Auth

Request A Request B



Audit Attack

Server A Server B

Message 
Auth

Request A* Request B



Audit Attack

Server A Server B

Bad Request!

Message 
Auth

Request A* Request B



Audit Attack

Server A Server B

Bad Request!

Message 
Auth

Request A* Request B



Audit Attack

Server A Server B
+

Broadcast
0



Audit Attack

Server A Server B
+

Broadcast
0



Audit Attack

Server A Server B
+

Broadcast
0

= broadcaster



Why this is challenging  

Can’t trust any client

● client could be attempting disruption  

Can’t trust any server

● “other” server could have caused the failure



BlameGame: Stopping the Audit Attack

Who’s cheating? Is it the client? Is it the server? 

Want: abort Spectrum if a server is malicious.



BlameGame: Stopping the Audit Attack

Key idea: “commit” each server to its (private) audit input



BlameGame: Stopping the Audit Attack

Key idea: “commit” each server to its (private) audit input

In a nutshell:  

1. Clients send “backup” requests encrypted under other server’s public key 
2. If audit fails: swap backups, decrypt, and try again 
3. If backup fails: servers prove compliance
4. Blames malicious server or client  



Step 1: Do regular request audit

Server A Server B

Request A Request B



Step 1: Do regular request audit

Server A Server B

Request A

Backup A
(encrypted)

Request B

Backup B
(encrypted)



Step 1: Do regular request audit

Server A Server B

Audit

Request A* Request B

Backup A
(encrypted)

Backup B
(encrypted)



Step 1: Do regular request audit

Server A Server B

Bad Request!

Audit

Request A* Request B

Backup A
(encrypted)

Backup B
(encrypted)



Step 2: Do backup audit

Server A Server B

Backup A
(encrypted)

Backup B
(encrypted)



Step 2: Do backup audit

Server A Server B

Backup A
(encrypted)

Backup B
(encrypted)



Step 2: Do backup audit

Server A Server B

Backup B
(encrypted)

Backup A
(encrypted)



Step 2: Do backup audit

Server A Server B

Backup A Backup B
Bad Request!

Message 
Auth

Backup A* Backup B



Step 3: Prove innocence

Server A Server B

Backup A Backup B

Prove you’re not lying 



Step 3: Prove innocence

Server A Server B

Backup B

Here you go

Backup A



Step 4: Assign blame 

Server A Server B

Backup B

Backup A

1. Check Proof
2. Simulate Audit
3. Blame: Client or Server



Step 4: Assign blame 

Server A Server B

Backup B

Backup A

Server A
Server B

Audit

Backup A Backup B

1. Check Proof
2. Simulate Audit
3. Blame: Client or Server



Malicious Client 

Server A Server B

Backup A Backup B

Backup A

Bad cli
ent! C

ontin
ue.   

 

Server A
Server B

Audit

Bad!
Backup A Backup B

1. Check Proof
2. Simulate Audit
3. Blame: Client or Server



Malicious Server

Server A Server B

Backup A Backup B

Backup A

Bad server! Abort. 

Server A
Server B

Audit

Ok!
Backup A Backup B

1. Check Proof
2. Simulate Audit
3. Blame: Client or Server



BlameGame in practice 

● Now only one shot at de-anonymization before Spectrum is aborted
● Only invoked following a failed audit of a request (few in practice) 
● Backup request size independent of message length 
● Also applies to other anonymous broadcast protocols



BlameGame in practice 

● Now only one shot at de-anonymization before Spectrum is aborted
● Only invoked following a failed audit of a request (few in practice) 
● Backup request size independent of message length 
● Also applies to other anonymous broadcast protocols



Spectrum



Putting it all together

Broadcast

Cover Request

Generate Audit

Generate Audit

Check AuditBlame Game

Accumulate

Accumulate

Combine



Putting it all together

Broadcast

Cover Request

Generate Audit

Generate Audit

Check AuditBlame Game

Accumulate

Accumulate

Combine



Putting it all together

Broadcast

Cover Request

Generate Audit

Generate Audit

Check Audit

Accumulate

Accumulate

Combine



Putting it all together

Broadcast

Cover Request

Generate Audit

Generate Audit

Check Audit

Accumulate

Accumulate

Blame Game? Combine



Putting it all together

Broadcast

Cover Request

Generate Audit

Generate Audit

Check Audit

Accumulate

Accumulate

Combine



Putting it all together

Broadcast

Cover Request

Generate Audit

Generate Audit

Check Audit

Accumulate

Accumulate

Broadcast



Evaluation



Implementation

● GitHub: znewman01/spectrum-impl (written in Rust)
○ Compare with prior work: Riposte, Express, Blinder

● Terraform templates and scripts for reproducing experiments
○ Including prior work

https://github.com/znewman01/spectrum-impl


Spectrum: really fast with one channel & BIG messages

(higher is better)



Spectrum: still fast with many channels (10K users)
(h

ig
he

r i
s 

be
tte

r)



Cost to upload a full-length documentary



Can parallelize each server



To share (anonymity set 10K)

Document Size (MB) Time Cost ($ USD)

PDF (e.g., ePrint for Spectrum) 1 10 s $ 0.01

Podcast (1 hr.) 50 8m 30s $ 0.19

Documentary (2 hr. @ 720p) 500 1h 24m $ 1.93



Thank You

NSDI’22 (to appear)
ePrint: ia.cr/2021/325 

Zack Newman: zjn@mit.edu
Sacha Servan-Schreiber: 3s@mit.edu 

https://eprint.iacr.org/2021/325
mailto:zjn@mit.edu
mailto:3s@mit.edu

