New Tools for On-the-Fly Secure Computation

Sacha Servan-Schreiber

Thesis Defense

Advisor: Srini Devadas

Committee: Yael Tauman Kalai (MIT), Geoffroy Couteau (IRIF)

Part I: New practical tools and applications [SS'24], [CDDKSS'24]

Part I: New practical tools and applications [SS'24], [CDDKSS'24]

Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

This thesis: A toolbox for secure computation Part I: New practical tools and applications [SS'24], [CDDKSS'24]

Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

Part III: Expanding the frontier [BJSSS'25]

Part I: New practical tools and applications [SS'24], [CDDKSS'24]

Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

Part III: Expanding the frontier [BJSSS'25]

- Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]
- Part III: Expanding the frontier [BJSSS'25]

Overview of this talk

• **Background** on secure computation

Part I: New practical tools and applications [S²**2**4], [CDDK**S**²**2**4]

Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

Part III: Expanding the frontier [BJSSS'25]

- Background on secure computation
- **On-the-fly** secure computation

Part I: New practical tools and applications [SS'24], [CDDK**SS**'24]

Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

Part III: Expanding the frontier [BJSSS'25]

- Background on secure computation
- **On-the-fly** secure computation
- Current landscape

Part I: New practical tools and applications [SS'24], [CDDKSS'24]

Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

Part III: Expanding the frontier [BJSSS'25]

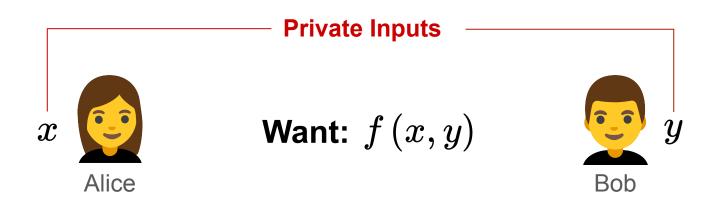
- Background on secure computation
- **On-the-fly** secure computation
- Current landscape
- New results

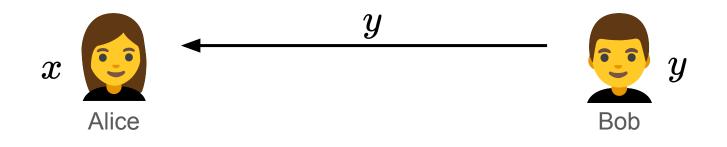
Part I: New practical tools and applications [SS'24], [CDDKSS'24]

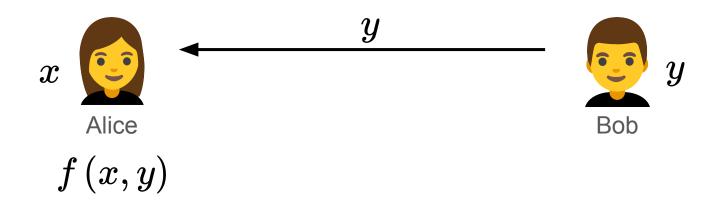
Part II: New theoretical tools and applications [CDHJSS'25], [BDSS'25]

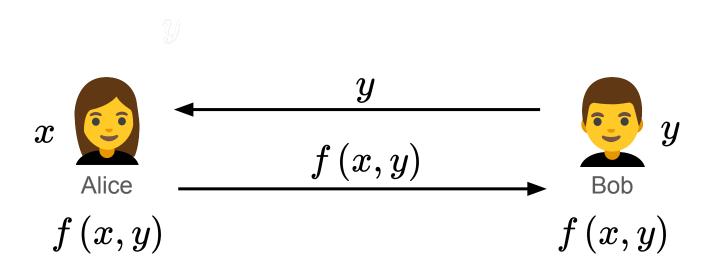
Part III: Expanding the frontier [BJSSS'25]

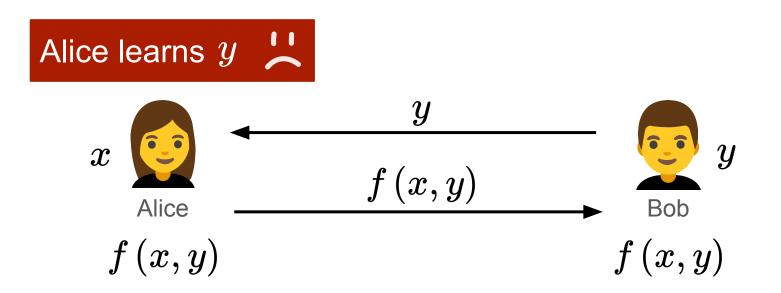
- Background on secure computation
- **On-the-fly** secure computation
- Current landscape
- New results
- Conclusion

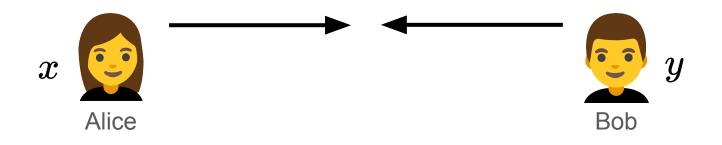


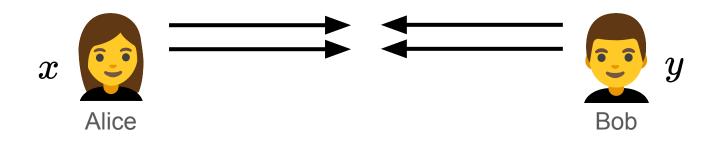


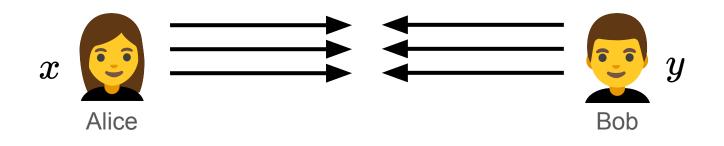


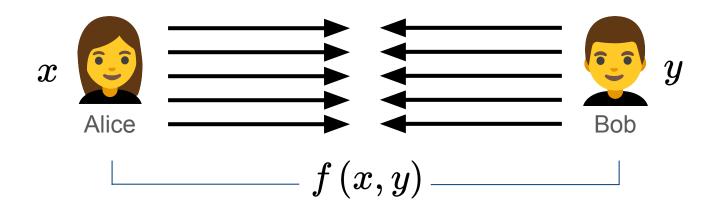


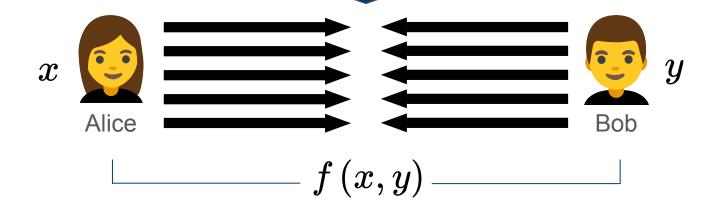


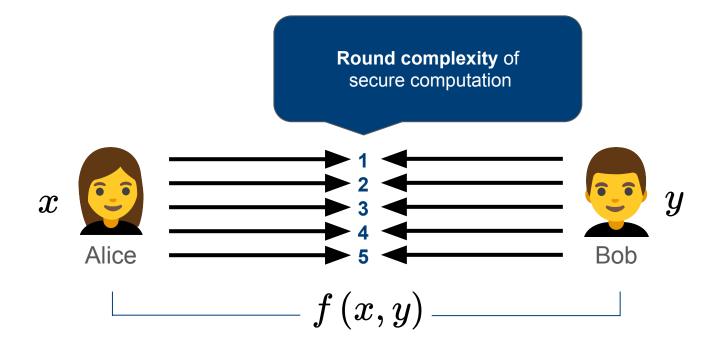


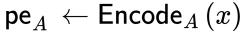


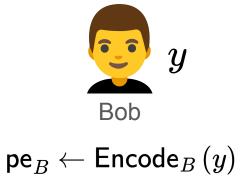


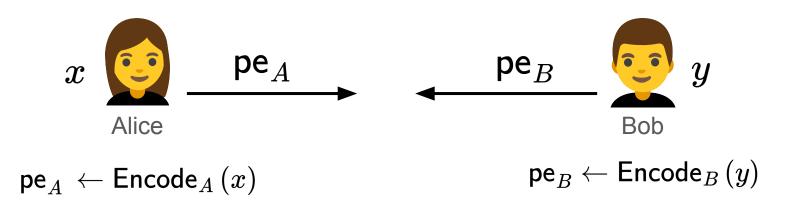


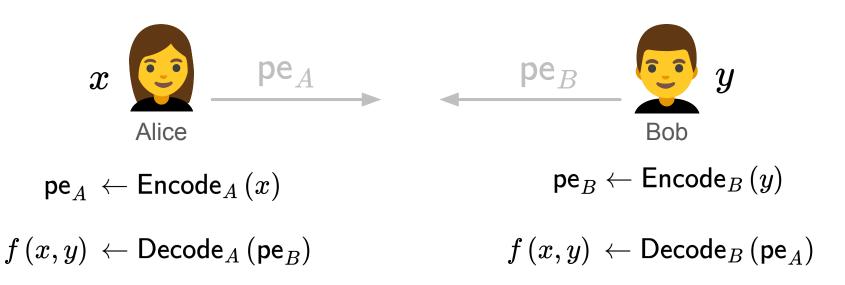












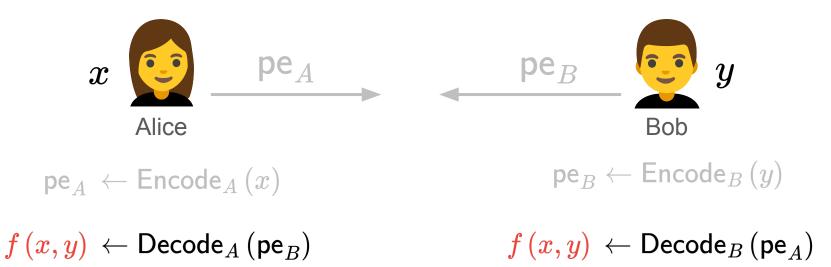
Impossible for arbitrary functions Two-round lower-bound for two party computation [HLP'11]

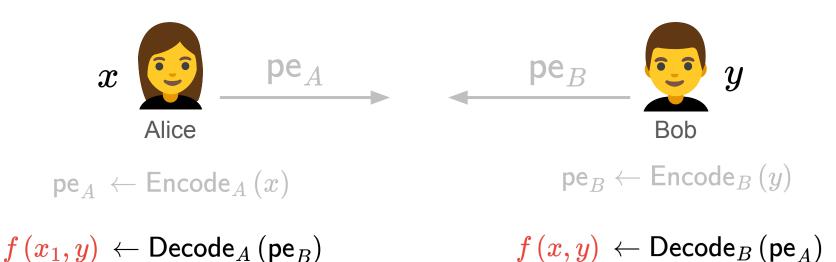
 $x \bigcirc \mathsf{pe}_A$ pe_B $\bigcirc y$

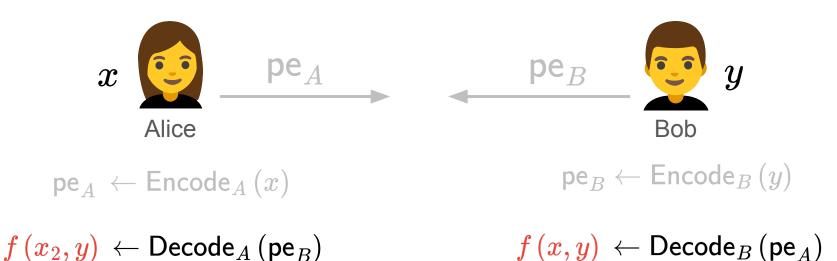
Alice Bob $pe_A \leftarrow Encode_A(x)$ $pe_B \leftarrow Encode_B(y)$

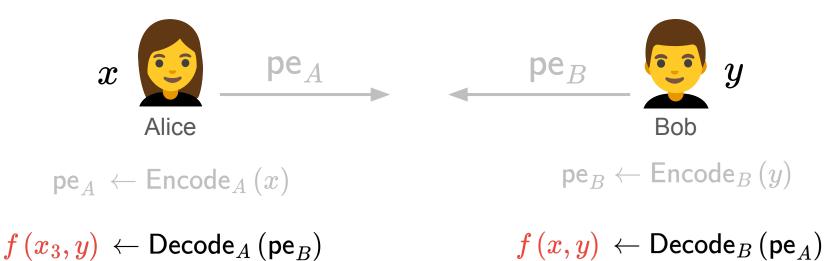
 $f(x,y) \leftarrow \mathsf{Decode}_A(\mathsf{pe}_B)$

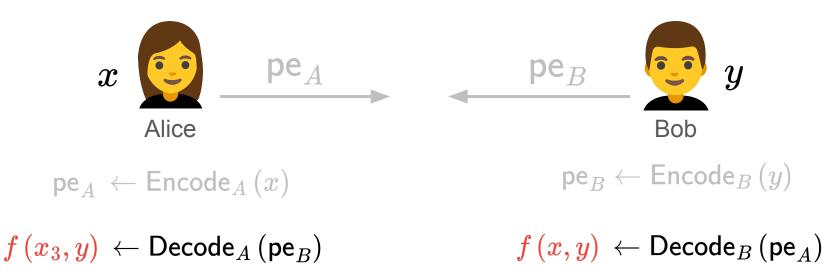
 $\boldsymbol{f}\left(\boldsymbol{x},\boldsymbol{y}\right) \leftarrow \mathsf{Decode}_{B}\left(\mathsf{pe}_{A}\right)$



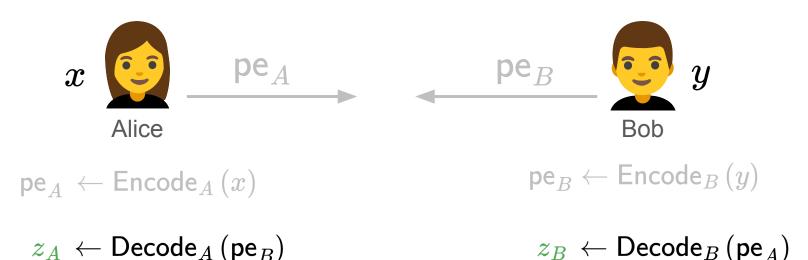


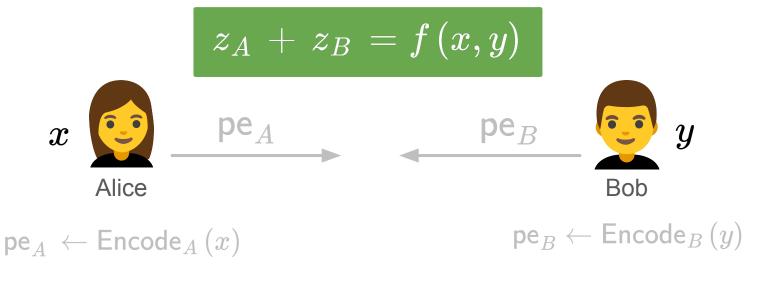






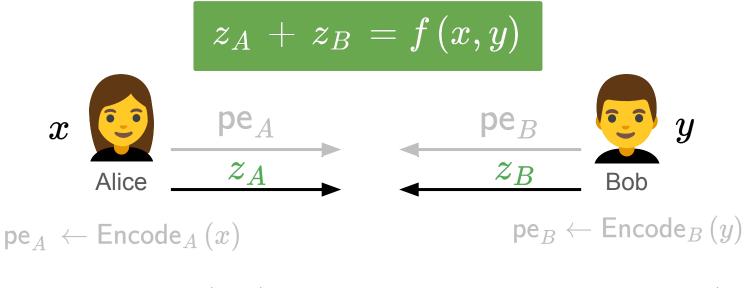
Attack: Alice learns more than just f(x, y)





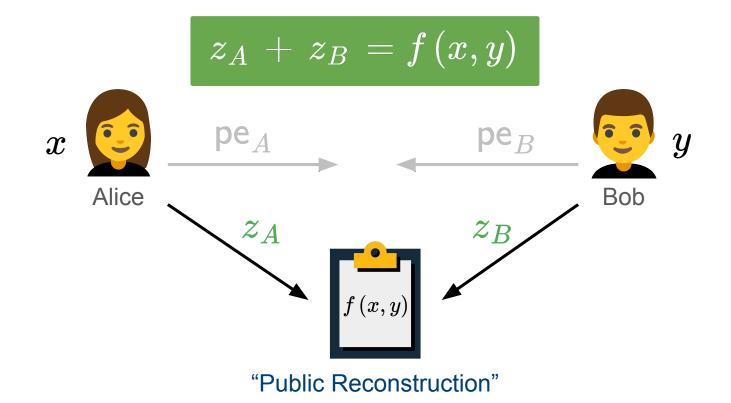
 $z_A \leftarrow \mathsf{Decode}_A(\mathsf{pe}_B)$

 $z_B \leftarrow \mathsf{Decode}_B(\mathsf{pe}_A)$



 $z_A \leftarrow \mathsf{Decode}_A(\mathsf{pe}_B)$

 $z_B \leftarrow \mathsf{Decode}_B(\mathsf{pe}_A)$



A history of secure computation

Garbled Circuits [Yao'86]

Garbled Circuits [Yao'86]

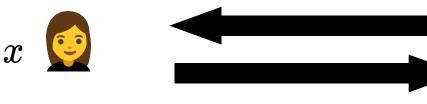
y

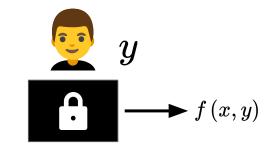
Garbled Circuits [Yao'86]

f(x,y)

y

Garbled Circuits [Yao'86]

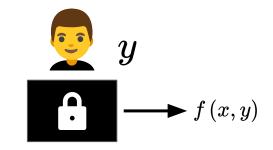




Pros:

- Two rounds (assuming two-round OT) ✓
- Requires minimal assumptions

Garbled Circuits [Yao'86]

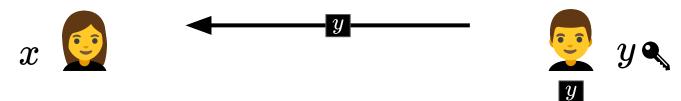


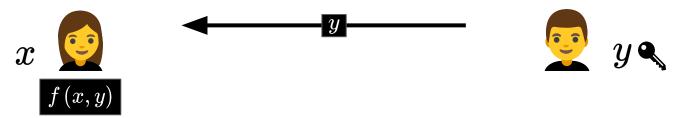
Pros:

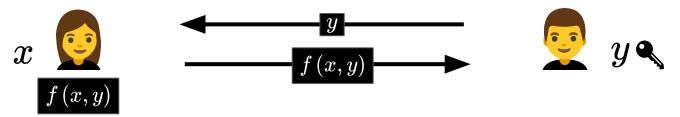
- Two rounds (assuming two-round OT) ✓
- Requires minimal assumptions

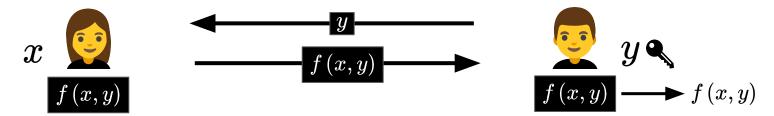
Cons:

- Linear communication in the circuit size
- No public reconstruction

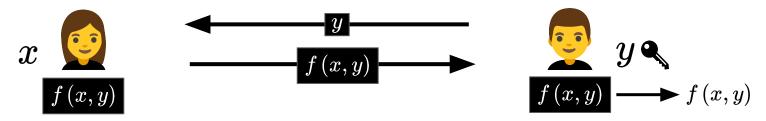








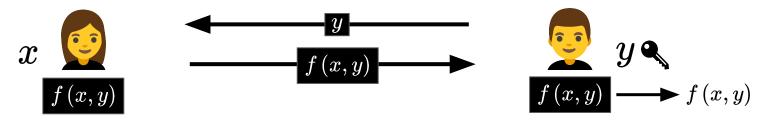
Fully Homomorphic Encryption [Gentry'09]



Pros:

- Two rounds ✓
- Sublinear communication in the circuit size \checkmark

Fully Homomorphic Encryption [Gentry'09]



Pros:

- Two rounds ✓
- Sublinear communication in the circuit size \checkmark

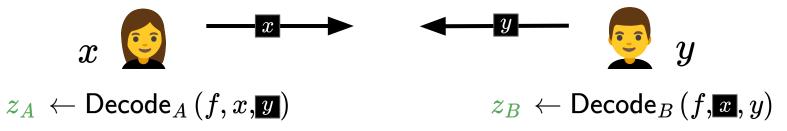
Cons:

• No public reconstruction

Spooky Encryption [DHRW'16]

Spooky Encryption [DHRW'16]

Spooky Encryption [DHRW'16]



Spooky Encryption [DHRW'16]

$$z_A \leftarrow \mathsf{Decode}_A\left(f, x, y
ight)$$

 $z_B \leftarrow \mathsf{Decode}_B\left(f, x, y
ight)$

Pros:

- Two rounds ✓
- Sublinear communication in the circuit size \checkmark
- Public reconstruction ✓

Spooky Encryption [DHRW'16]

$$z_A \, \leftarrow \mathsf{Decode}_A\left(f, x, y
ight)$$

 $z_B \leftarrow \mathsf{Decode}_B(f, x, y)$

Pros:

- Two rounds ✓
- Public reconstruction ✓

Cons:

• Only one approach is known

Spooky Encryption [DHRW'16]

$$z_A \, \leftarrow \mathsf{Decode}_A\left(f, x, y
ight)$$

 $z_B \leftarrow \mathsf{Decode}_B(f, x, y)$

Pros:

- Two rounds
- Public reconstruction ✓

Spooky encryption gives us one-the-fly secure computation!

Sacha

Geoffroy

Is spooky encryption necessary for on-the-flyness?

Geoffroy

Sacha

Good luck figuring that out!

Sacha

Geoffroy

Reason 1 (practice): Spooky encryption is a heavy hammer and unlikely to lead concretely efficient protocols.

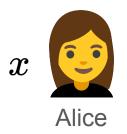
Reason 1 (practice): Spooky encryption is a heavy hammer and unlikely to lead concretely efficient protocols.

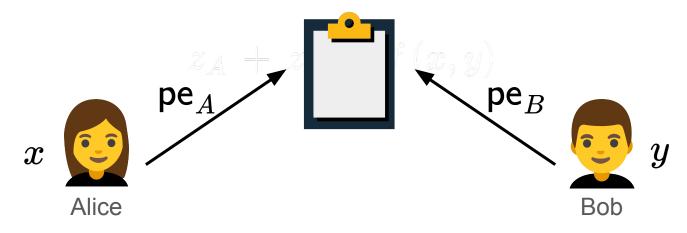
Reason 2 (diversity): Not having all our eggs in one basket (in terms of cryptographic assumptions) is important.

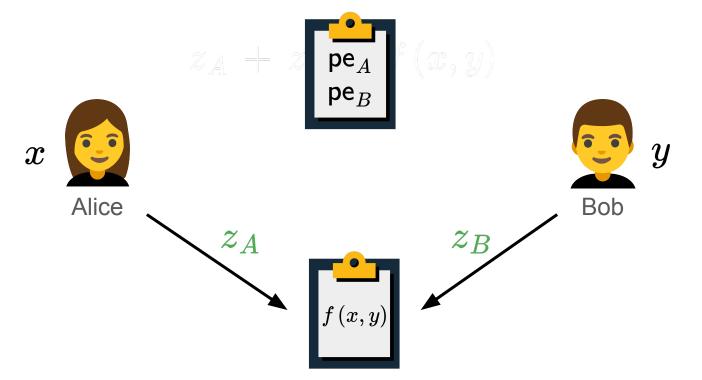
Reason 1 (practice): Spooky encryption is a heavy hammer and unlikely to lead concretely efficient protocols.

Reason 2 (diversity): Not having all our eggs in one basket (in terms of cryptographic assumptions) is important.

Reason 3 (theory): Finding alternative ways of building something unlocks new insights about the original approach and why it works.

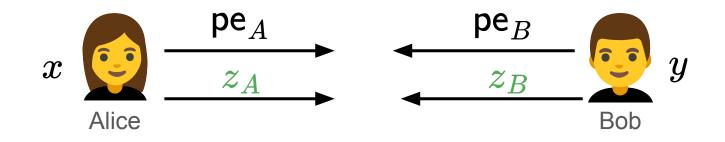






• Implies two-round secure computation

• Implies two-round secure computation

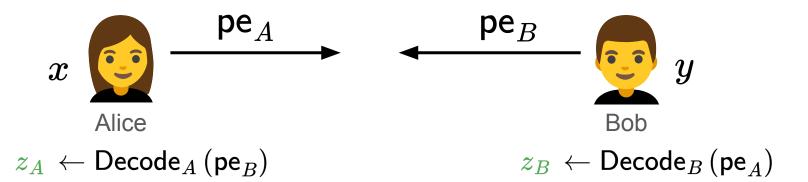


- Implies two-round secure computation
- Implies key agreement (and so it is black-box separable from OT [GKM+00])

- Implies two-round secure computation
- Implies key agreement (and so it is black-t

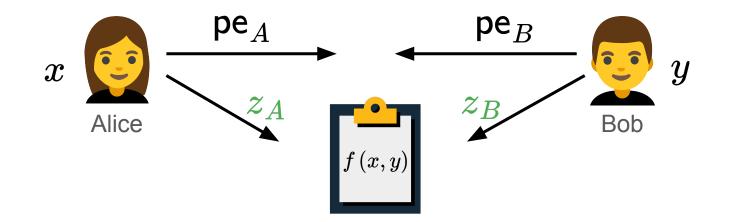
Alice and Bob get the same pseudorandom "share" i.e., key

$$z_A - z_B = 0 \cdot f(x,y) \implies z_A = z_B$$



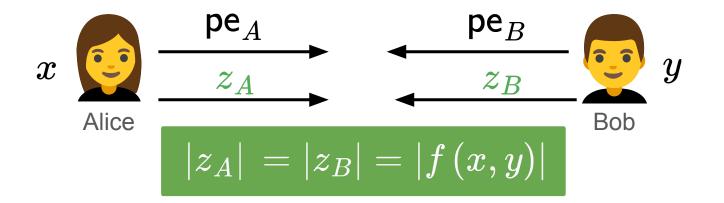
- Implies two-round secure computation
- Implies key agreement (and so it is black-box separable from OT [GKM+00])
- Public reconstruction: Alice and Bob can publicly disclose the output

- Implies two-round secure computation
- Implies key agreement (and so it is black-box separable from OT [GKM+00])
- Public reconstruction: Alice and Bob can publicly disclose the output



- Implies two-round secure computation
- Implies key agreement (and so it is black-box separable from OT [GKM+00])
- Public reconstruction: Alice and Bob can publicly disclose the output
- Optimal output size (same size as the function output)

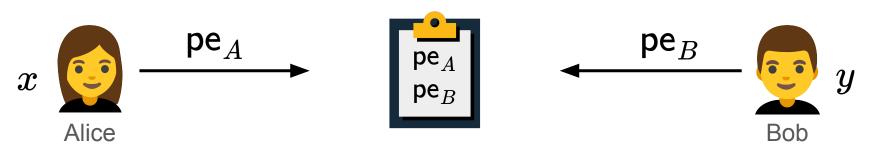
- Implies two-round secure computation
- Implies key agreement (and so it is black-box separable from OT [GKM+00])
- Public reconstruction: Alice and Bob can publicly disclose the output
- Optimal output size (same size as the function output)

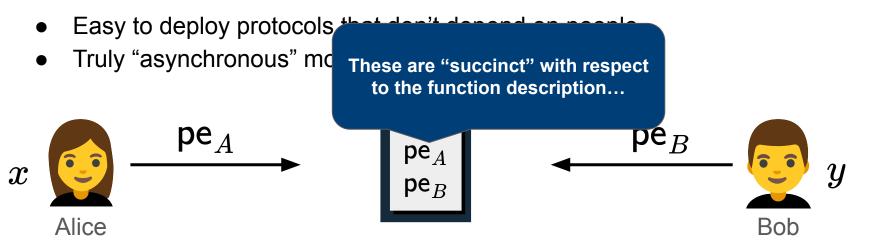


Sublinearity + Two-Rounds + Public Reconstruction

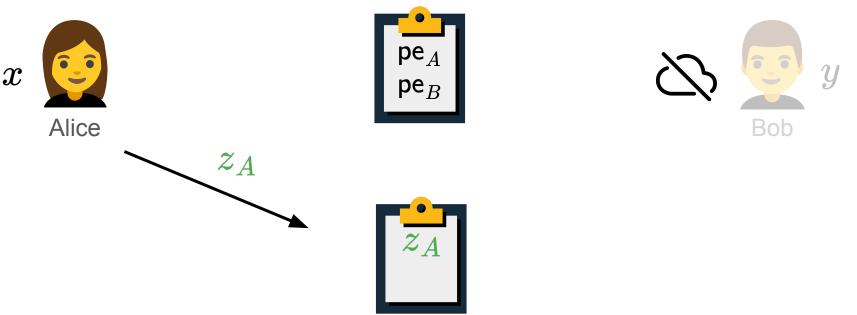
the gold standard?

- Easy to deploy protocols that don't depend on people
- Truly "asynchronous" model of communication



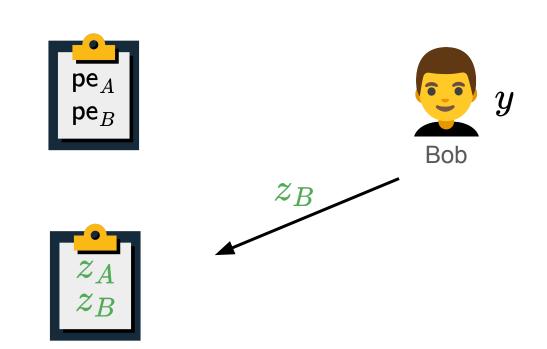


- Easy to deploy protocols that don't depend on people
- Truly "asynchronous" model of communication

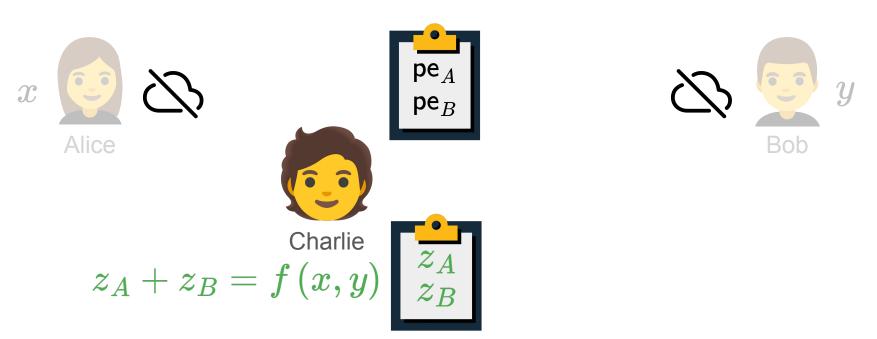


83

- Easy to deploy protocols that don't depend on people
- Truly "asynchronous" model of communication



- Easy to deploy protocols that don't depend on people
- Truly "asynchronous" model of communication



The current landscape

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

Can we build anything here?

All Functions from Spooky Encryption [DHRW16]

Can we build anything here?

What about here?

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

Can we build anything here?

Overview of thesis results

Contributions of this Thesis

Practice

Theory

Contributions of this Thesis

Constrained PRFs for Inner-Product Predicates [**SS**'24]

Practice

Theory

Contributions of this Thesis Constrained PRFs for Inner-Product Predicates **[SS**'24] QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup **Practice** [CDDK**SS**'24]

Theory

Contributions of this Thesis				
	Constrained PRFs for Inner-Product Pred [SS '24]	icates		
Practice	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDK SS '24]	Previously post-quantum constructions only known from Spooky Encryption		
Theory				

Contributions of this Thesis			
	Constrained PRFs for Inner-Product Predicates [SS'24]		
Practice	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDK SS '24]		
Theory	Multi-key Homomorphic Secret Sharing [CDHJ SS '25]		

Contributions of this Thesis				
	Constrained PRFs for Inner-Product Predicates [SS'24]			
Practice	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDKSS'24]			
Theory	Multi-key Homomorphic Secret Sharing [CDHJ SS '25]			
	Distributed Point Functions with a Non-Interactive Setup [BD SS '25]			

Contributions of this Thesis		
	Constrained PRFs for Inner-Product Predicates [SS'24]	
Practice	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDKSS'24]	
Theory	Multi-key Homomorphic Secret Sharing [CDHJ SS '25]	
	Distributed Point Functions with a Non-Interactive Setup [BD SS '25]	
	Simultaneous Message and Succinct (SMS) Secure Computation [BJ SS S'25]	

Contributions of this Thesis				
	Constrained PRFs for Inner-Product Predicates [SS'24]			
Practice	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDK SS '24]			
Theory	Multi-key Homomorphic Secret Sharing [CDHJ SS' 25] Distributed Point Functions with a Non-Interactive Setup			
	[BD SS '25] J Simultaneous Message and Succinct (SMS) Secure Computation [BJ SS S'25]			

Contributions of this Thesis				
	Constrained PRFs for Inner-Product Predicates [SS'24]			
Practice	QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDK SS '24]			
Theory	Multi-key Homomorphic Secret Sharing [CDHJ SS '25] Previously only known	_		
	Distributed Point Functions with a Non-Interactive Setup [BD SS '25]			
	Simultaneous Message and Succinct (SMS) Secure Computation [BJ SS S'25]	101		

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

Multi-Key Homomorphic Secret Sharing [CDHJSS'25] From DCR

Simultaneous-Message and Succinct (SMS) Secure Computation [BJSSS'25] From LWE or Indistinguishability Obfuscation

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

Multi-Key Homomorphic Secret Sharing [CDHJSS'25] From DCR

Simultaneous-Message and Succinct (SMS) Secure Computation [BJSSS'25] From LWE or Indistinguishability Obfuscation

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

Multi-Key Homomorphic Secret Sharing [CDHJSS'25] From DCR

Non-Interactive Distributed Point Functions [BDSS'25] From DCR, QR, DXDH, DDH in class groups Simultaneous-Message and Succinct (SMS) Secure Computation [BJSSS'25] From LWE or Indistinguishability Obfuscation

All Functions from Spooky Encryption [DHRW16]

From LWE or Indistinguishability Obfuscation

Multi-Key Homomorphic Secret Sharing [CDHJSS'25] From DCR

Non-Interactive Distributed Point Functions [BDSS'25] From DCR, QR, DXDH, DDH in class groups

Lightweight, Non-Interactive OT Extension [CDDKSS'24] From Post-Quantum Assumptions

This Talk

Constrained PRFs for Inner-Product Predicates [SS'24] QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDKSS'24]

Practice

Theory

Multi-key Homomorphic Secret Sharing [CDHJ**SS**'25]

> Distributed Point Functions with a Non-Interactive Setup [BD**SS**'25]

Simultaneous Message and Succinct (SMS) Secure Computation [BJ**SS**S'25]

This Talk

Constrained PRFs for Inner-Product Predicates [**SS**'24] QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDK**SS**'24]

Practice

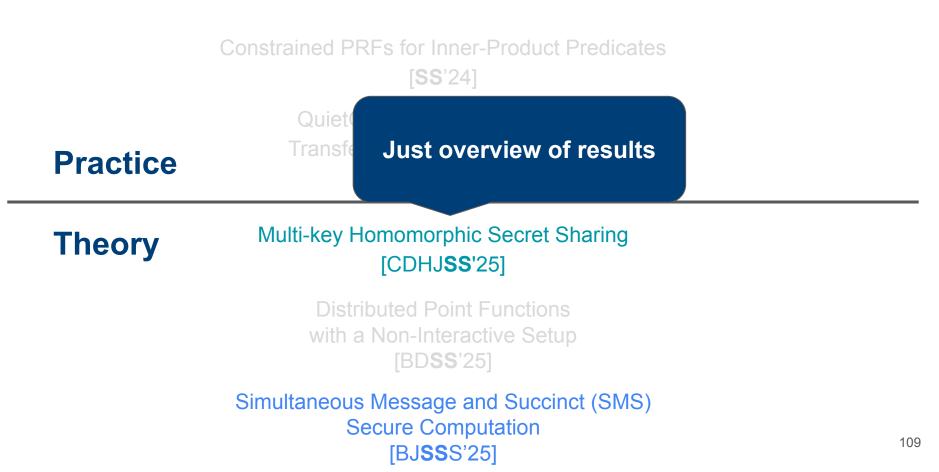
Theory

Multi-key Homomorphic Secret Sharing [CDHJ**SS**'25]

> Distributed Point Functions with a Non-Interactive Setup [BD**SS**'25]

Simultaneous Message and Succinct (SMS) Secure Computation [BJ**SS**S'25]

This Talk



This Talk

Constrained PRFs for Inner-Product Predicates [SS'24] QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup [CDDKSS'24]

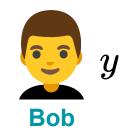
Practice

Multi-key Homomorphic Secret Sharing

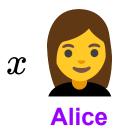
Joint work with

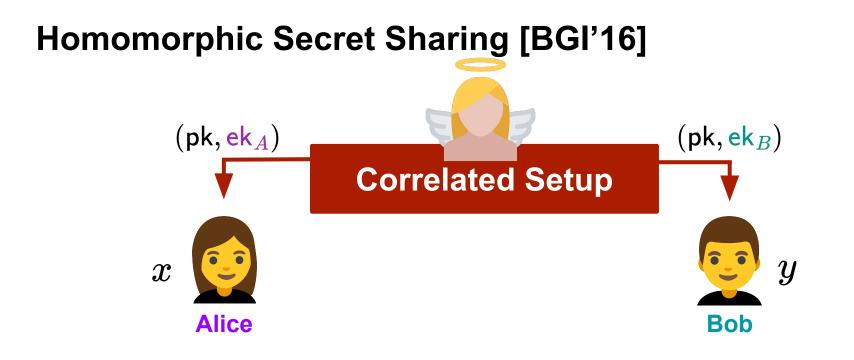
Geoffroy Couteau, Lali Devadas, Aditya Hegde, and Abhishek Jain

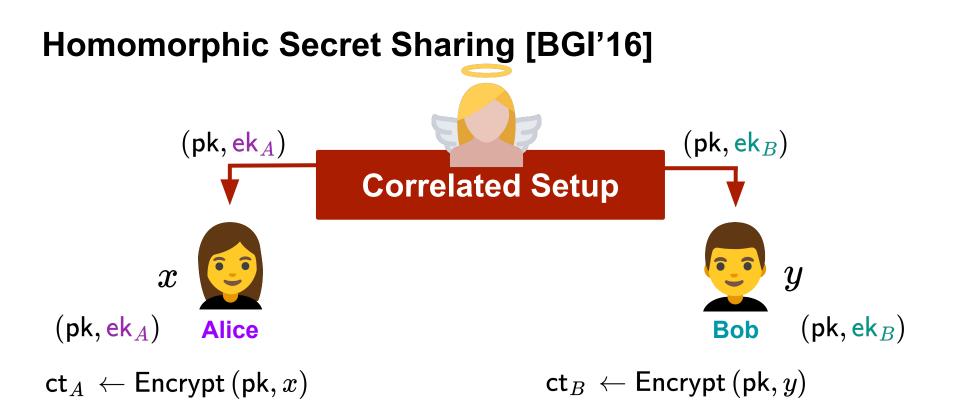
Homomorphic Secret Sharing [BGI'16]

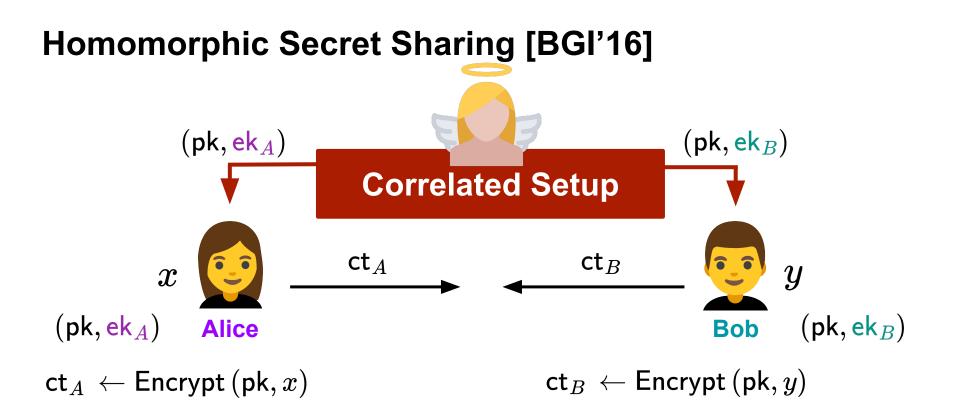


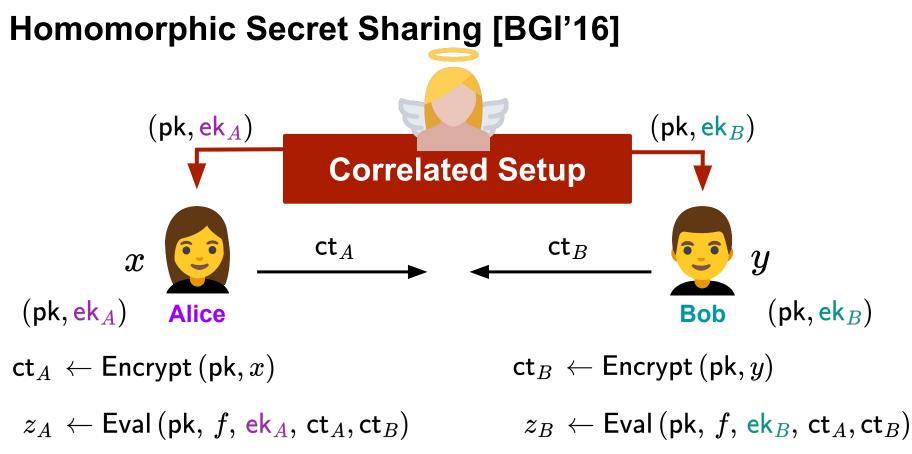
Homomorphic Secret Sharing [BGI'16]

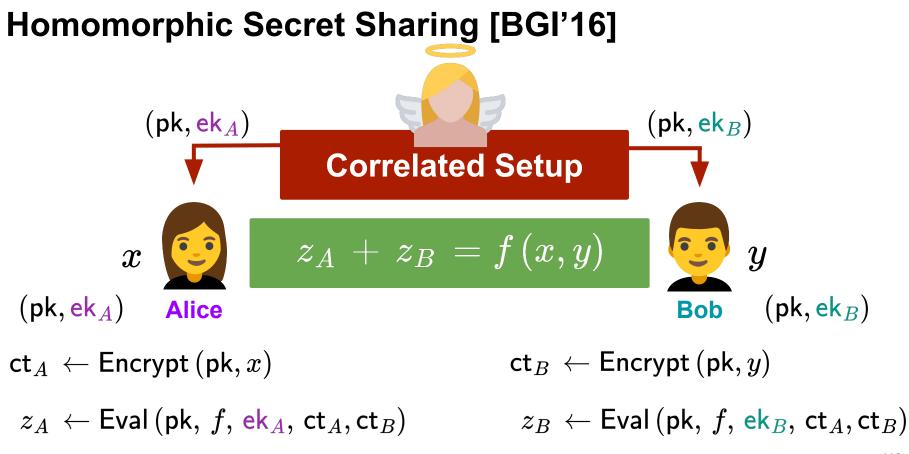








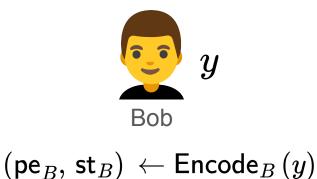


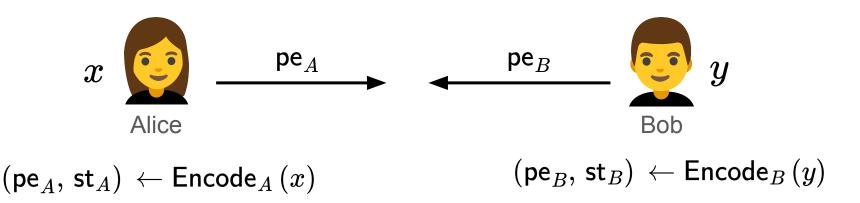


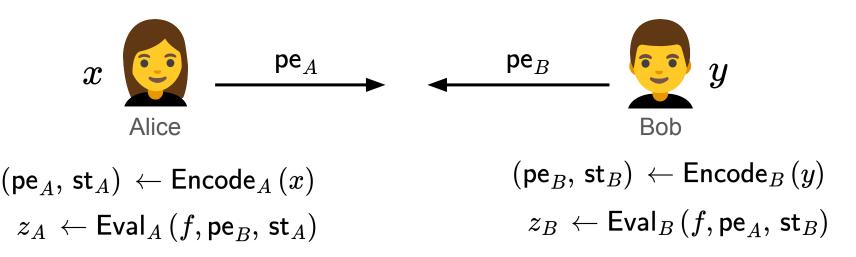
No Correlated Setup

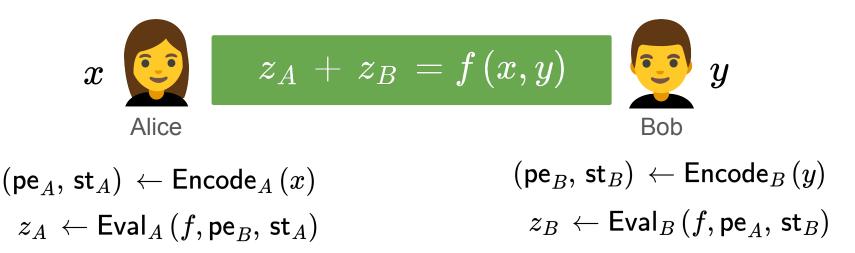
No Correlated Setup

 $(\mathsf{pe}_A, \mathsf{st}_A) \leftarrow \mathsf{Encode}_A(x)$









• First construction of multi-key HSS for **NC**¹ from the DCR assumption

- First construction of multi-key HSS for **NC**¹ from the DCR assumption
- Applications include:

- First construction of multi-key HSS for **NC**¹ from the DCR assumption
- Applications include:
 - First construction of sublinear, two-round secure computation from DCR

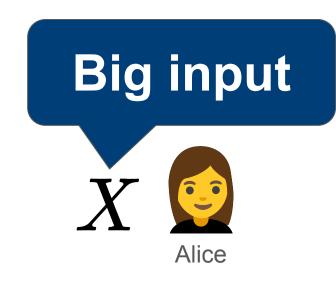
- First construction of multi-key HSS for **NC**¹ from the DCR assumption
- Applications include:
 - First construction of sublinear, two-round secure computation from DCR
 - Better communication in secure multi-party computation

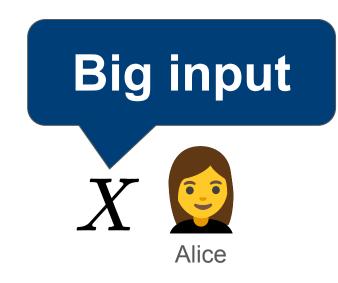
- First construction of multi-key HSS for **NC**¹ from the DCR assumption
- Applications include:
 - First construction of sublinear, two-round secure computation from DCR
 - Better communication in secure multi-party computation
 - Non-interactive attribute based key exchange in the standard model

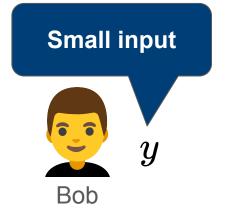
- First construction of multi-key HSS for **NC**¹ from the DCR assumption
- Applications include:
 - First construction of sublinear, two-round secure computation from DCR
 - Better communication in secure multi-party computation
 - Non-interactive attribute based key exchange in the standard model

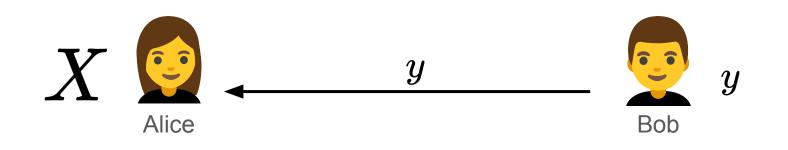
First construction of these applications without using spooky encryption

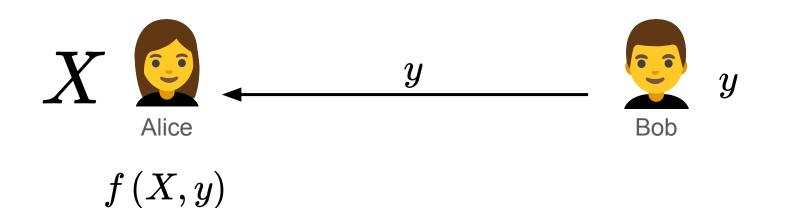
Can we go further?

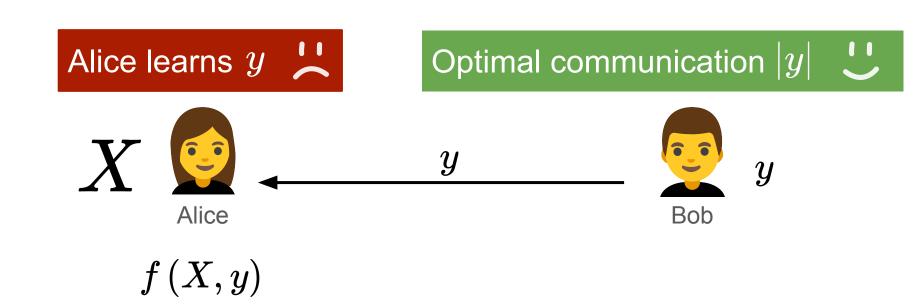




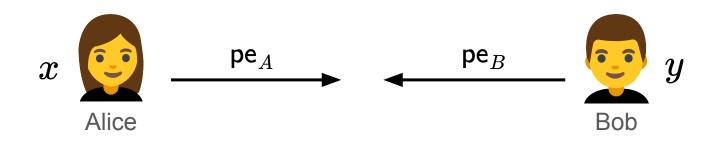




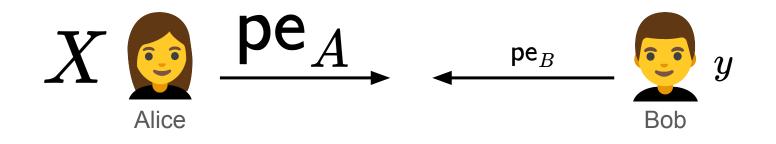




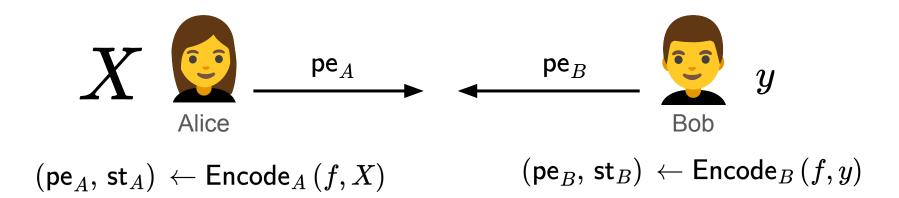
Use Multi-Key Homomorphic Secret Sharing?



Use Multi-Key Homomorphic Secret Sharing?

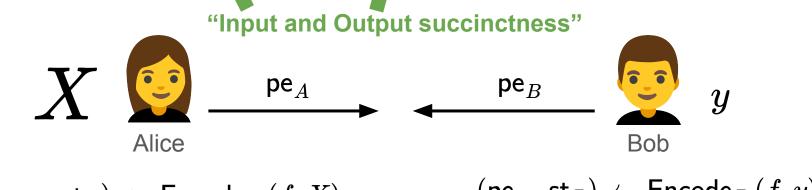


Can we get a "fully succinct" protocol? $|\mathsf{pe}_{\sigma}| \leq \; (|X|^{\epsilon} + |f(X,y)|^{\epsilon}) \; ext{ for all } \sigma \in \{A,B\}$



Can we get a "fully succinct" protocol?

$|\mathsf{pe}_{\sigma}| \leq (|X|^{\epsilon} + |f(X,y)|^{\epsilon}) ext{ for all } \sigma \in \{A,B\}$



 $(\mathsf{pe}_A, \mathsf{st}_A) \leftarrow \mathsf{Encode}_A(f, X)$

 $(\mathsf{pe}_B, \mathsf{st}_B) \leftarrow \mathsf{Encode}_B(f, y)$

Simultaneous-Message and Succinct (SMS) Secure Computation

Joint work with Elette Boyle, Abhishek Jain, and Akshay Srinivasan

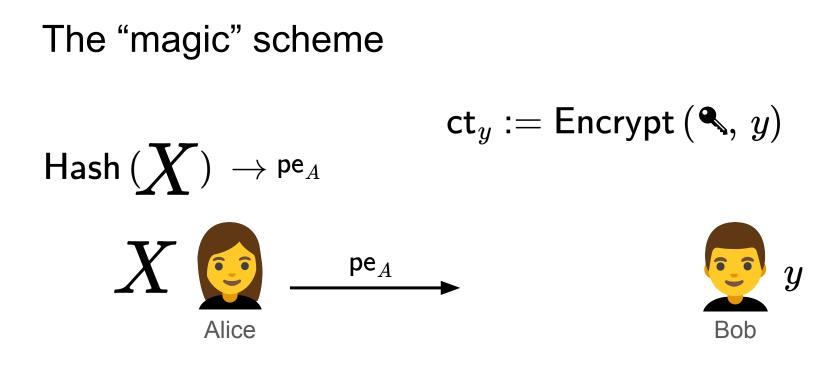
The "magic" scheme

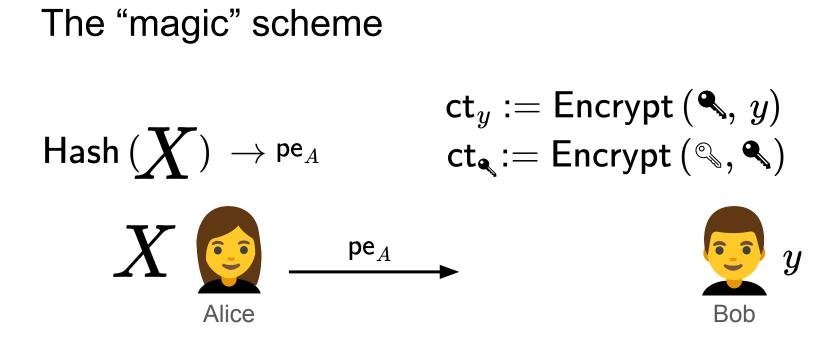
The "magic" scheme

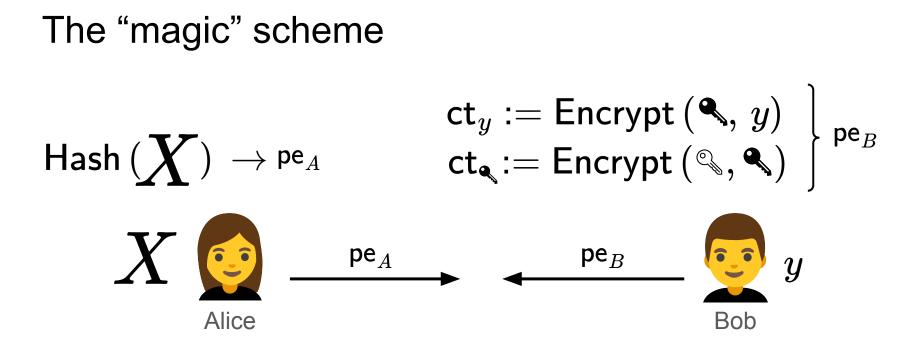
$\mathsf{Hash}(X) \to \mathsf{pe}_A$

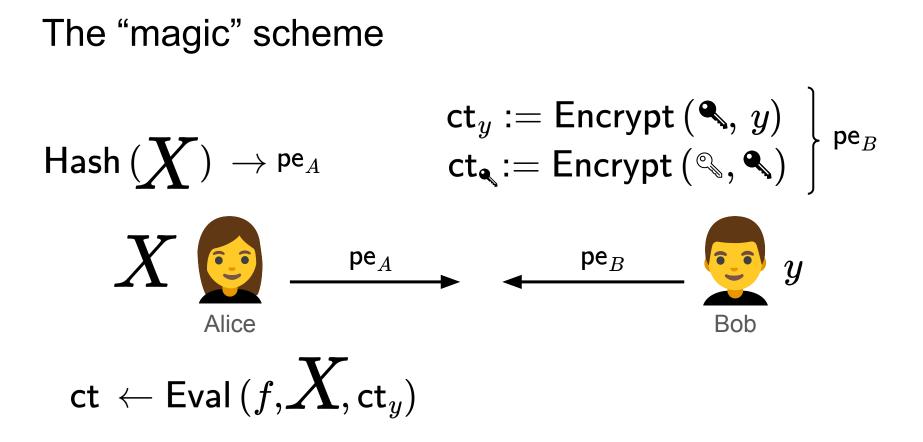
The "magic" scheme

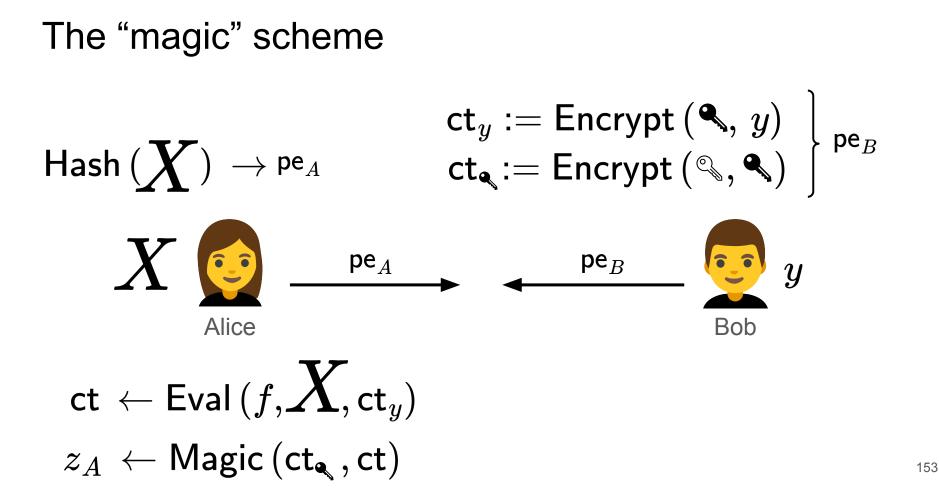
$$\mathsf{Hash}(X) o \mathsf{pe}_A$$
 $X o \mathsf{pe}_A$
 $Alice$

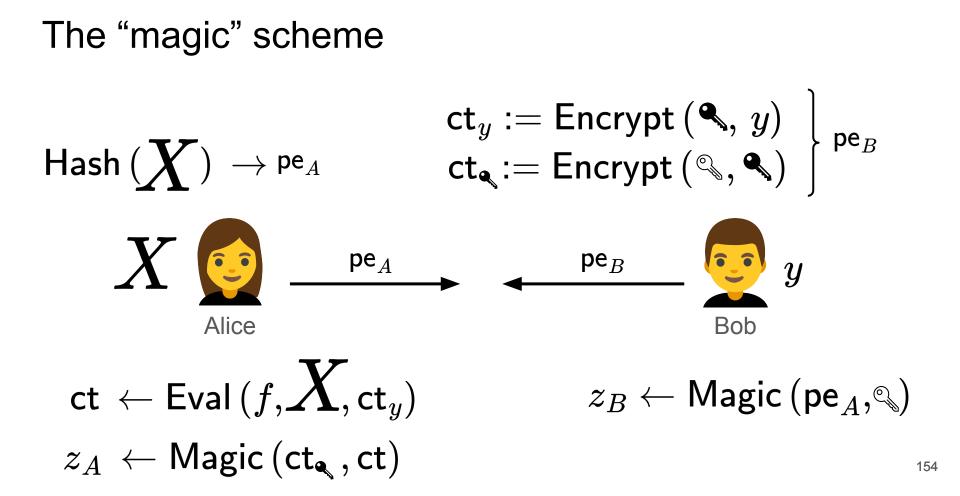












Preliminaries

Ingredient I: FHE from LWE with "nice" decryption

Ingredient I: FHE from LWE with "nice" decryption FHE.KeyGen (1^{λ}) : sk $\stackrel{R}{\leftarrow} (\mathbb{Z}_q^{n-1}, 1)$

Ingredient I: FHE from LWE with "nice" decryption FHE.KeyGen (1^{λ}) : sk $\stackrel{R}{\leftarrow} (\mathbb{Z}_q^{n-1}, 1)$ FHE.Encrypt (sk, x) : $\left(-\mathbf{a}, \langle \mathbf{a}, \mathbf{sk} \rangle + \frac{q}{p}x + \mathsf{noise}\right)$

Ingredient I: FHE from LWE with "nice" decryption $\mathsf{FHE}.\mathsf{KeyGen}\ (1^\lambda):\mathsf{sk}\ \xleftarrow{R}\ (\mathbb{Z}_a^{n-1},\ 1)$ FHE.Encrypt (sk, x) : $\left(-\mathbf{a}, \langle \mathbf{a}, \mathbf{sk} \rangle + \frac{q}{p}x + \text{noise}\right)$ FHE.Decrypt (sk, ct) : $\lceil \langle ct, sk \rangle \rceil_p$

Ingredient I: FHE from LWE with "nice" decryption FHE.KeyGen (1^{λ}) : sk $\stackrel{R}{\leftarrow} (\mathbb{Z}_q^{n-1}, 1)$ FHE.Encrypt (sk, x) : $\left(-a, \langle a, sk \rangle + \frac{q}{p}x + noise\right)$

 $\mathsf{FHE}.\mathsf{Decrypt}\,(\mathsf{sk},\,\mathsf{ct}):\,\lceil\langle\mathsf{ct},\mathsf{sk}\rangle\rfloor_p$

$$\langle \mathsf{ct},\mathsf{sk}
angle \,=\, rac{q}{p}x + \mathsf{noise}$$

Ingredient I: FHE from LWE with "nice" decryption FHE.KeyGen (1^{λ}) : sk $\stackrel{R}{\leftarrow} (\mathbb{Z}_q^{n-1}, 1)$ FHE.Encrypt (sk, x) : $\left(-a, \langle a, sk \rangle + \frac{q}{p}x + noise\right)$

 $\mathsf{FHE}.\mathsf{Decrypt}\,(\mathsf{sk},\,\mathsf{ct}):\,\lceil\langle\mathsf{ct},\mathsf{sk}\rangle\rfloor_p$

$$\langle \mathsf{ct},\mathsf{sk}
angle \,=\, rac{q}{p}x + \mathsf{noise}$$

"Near linear decryption"

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0, 1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

EvalCT (crs,
$$\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \to \mathbf{w}_C$$

Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where:

 $\mathbf{u}_{i} = \mathbf{s}^{\top} \mathbf{A}_{i} + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_{i} = \mathbf{s}^{\top} \mathbf{B}_{i} + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_{C} = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \left\langle C(\hat{a}), \hat{\mathbf{b}} \right\rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots,\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs, C) $\rightarrow \mathbf{A}_C$. Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$ Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \rightarrow \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit *C* and public input \hat{a} where:

 $\mathbf{u}_{i} = \mathbf{s}^{\top} \mathbf{A}_{i} + \hat{a} [i] \cdot \mathbf{G} + \text{noise, for all } i \in [\alpha]$ $\mathbf{v}_{i} = \mathbf{s}^{\top} \mathbf{B}_{i} + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise, for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_{C} = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \left\langle C(\hat{a}), \hat{\mathbf{b}} \right\rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots,\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0, 1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \rightarrow \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit *C* and public input \hat{a} where:

 $\mathbf{u}_{i} = \mathbf{s}^{\top} \mathbf{A}_{i} + \hat{a} [i] \cdot \mathbf{G} + \text{noise, for all } i \in [\alpha]$ $\mathbf{v}_{i} = \mathbf{s}^{\top} \mathbf{B}_{i} + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise, for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_{C} = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \left\langle C(\hat{a}), \hat{\mathbf{b}} \right\rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs} = (\mathbf{A}_1, \ldots, \mathbf{A}_{\alpha}, \mathbf{B}_1, \ldots \mathbf{B}_{\beta})$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \rightarrow \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where: $\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_C = \mathbf{s}^\top \left(\mathbf{A}_C + \left\langle C(\hat{a}), \hat{\mathbf{b}} \right\rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \to \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where: $\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_C = \mathbf{s}^\top \left(\mathbf{A}_C + \langle C(\hat{a}), \hat{\mathbf{b}} \rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots,\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \rightarrow \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where: $\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_C = \mathbf{s}^\top \left(\mathbf{A}_C + \langle C(\hat{a}), \hat{\mathbf{b}} \rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots,\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \to \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where:

$$\mathbf{u}_i = \mathbf{s} \cdot \mathbf{A}_i + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$$

 $\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$

Output: a ciphertext $\mathbf{w}_{C} = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \left\langle C(\hat{a}), \hat{\mathbf{b}} \right\rangle \cdot \mathbf{G} \right) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots,\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \to \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where: $\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \hat{a} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\alpha]$ $\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \hat{\mathbf{b}} [i] \cdot \mathbf{G} + \text{noise}, \text{ for all } i \in [\beta]$ Output: a ciphertext $\mathbf{w}_C = \mathbf{s}^\top (\mathbf{A}_C + \langle C(\hat{a}), \hat{\mathbf{b}} \rangle \cdot \mathbf{G}) + \text{noise}$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots,\mathbf{B}_eta)$

Building blocks from [GVW'15]:

• EvalPK (crs,
$$C$$
) $\rightarrow \mathbf{A}_C$.
Input: CRS and a circuit $C : \{0,1\}^{\alpha} \rightarrow \mathbb{Z}_q^{\beta}$
Output: a public matrix $\mathbf{A}_C \in \mathbb{Z}_q^{n \times k}$

• EvalCT (crs, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}, C, \hat{a}) \to \mathbf{w}_C$ Input: CRS, $\alpha + \beta$ ciphertexts, the circuit C and public input \hat{a} where:

$$egin{aligned} \mathbf{u}_i &= \mathbf{s}^{ op} \mathbf{A}_i + \hat{a} \left[i
ight] \cdot \mathbf{G} + ext{noise}, ext{ for all } i &\in \left[lpha
ight] \ \mathbf{v}_i &= \mathbf{s}^{ op} \mathbf{B}_i + \hat{\mathbf{b}} \left[i
ight] \cdot \mathbf{G} + ext{noise}, ext{ for all } i &\in \left[eta
ight] \end{aligned}$$
 $\mathbf{V}_i &= \mathbf{s}^{ op} \mathbf{B}_i + \hat{\mathbf{b}} \left[i
ight] \cdot \mathbf{G} + ext{noise}, ext{ for all } i &\in \left[eta
ight]$
 $\mathbf{Dutput:}$ a ciphertext $\mathbf{w}_C &= \mathbf{s}^{ op} \left(\mathbf{A}_C + \left\langle C\left(\hat{a}
ight), \, \hat{\mathbf{b}}
ight
angle \cdot \mathbf{G}
ight) + ext{noise}$

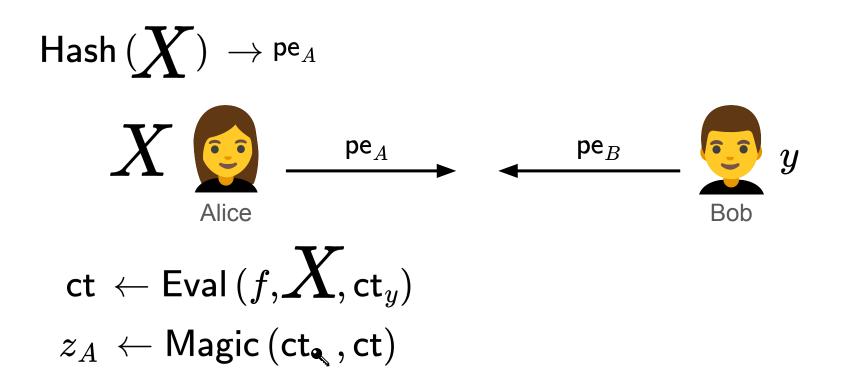
 $\mathsf{crs} = (\mathbf{A}_1, \ldots, \mathbf{A}_{\alpha}, \mathbf{B}_1, \ldots \mathbf{B}_{\beta})$

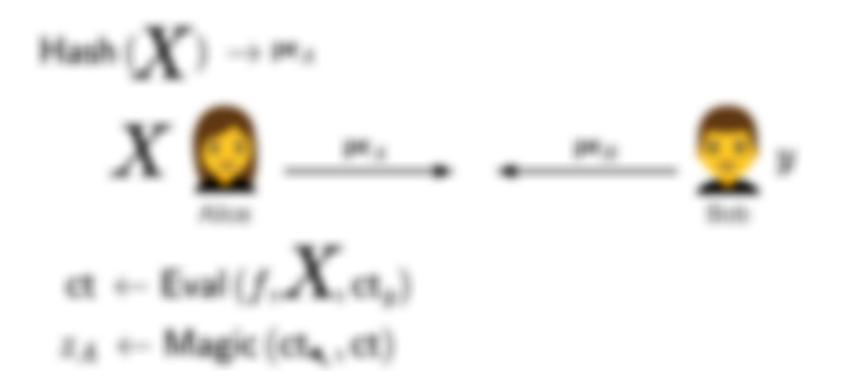
SMS Secure Computation

SMS Secure Computation Getting input succinctness

SMS Secure Computation Getting input succinctness

Output succinctness will come later





$\mathsf{EvalPK}(X) \to {}^{\mathsf{pe}_A}$

$\mathsf{ct} \leftarrow \mathsf{EvalCT}\left(f, X, \mathsf{ct}_y\right)$

 $f: \{0,1\}^{\mathsf{BIG}} imes \{0,1\}^{\mathsf{small}} o \{0,1\}$

Building SMS with Input Succinctness

 $f: \{0,1\}^{\mathsf{BIG}} \times \{0,1\}^{\mathsf{small}} \to \{0,1\}$ Building SMS with Input Succinctness

 $f: \{0,1\}^{\mathsf{BIG}} \, \times \{0,1\}^{\mathsf{small}} \, \rightarrow \{0,1\}$

Building SMS with Input Succinctness

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

X

 $f: \{0,1\}^{\mathsf{BIG}} \, \times \{0,1\}^{\mathsf{small}} \, \rightarrow \{0,1\}$

Building SMS with Input Succinctness

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

$$\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_\alpha,\,\mathbf{B}_1,\ldots\mathbf{B}_\beta)$$

X

 $f: \{0,1\}^{\mathsf{BIG}} \, \times \{0,1\}^{\mathsf{small}} \, \rightarrow \{0,1\}$

Building SMS with Input Succinctness

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

$$\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_\alpha,\,\mathbf{B}_1,\ldots\mathbf{B}_\beta)$$

X

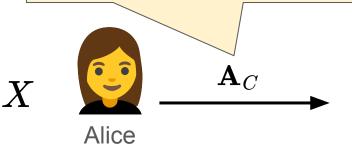
Alice

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $f: \{0,1\}^{\mathsf{BIG}} \times \{0,1\}^{\mathsf{small}} \to \{0,1\}$ Building SMS with Input Succinctness $|\mathbf{A}_C| \ = \ \mathsf{poly}\left(\mathsf{depth}\left(C
ight),\,\lambda
ight) \quad \mathsf{crs} \ = \ (\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$ "It's very small" \mathbf{A}_{C} XAlice Bob

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

Remark: EvalPK does not guarantee hiding of the circuit *C*, so \mathbf{A}_C may leak something about Alice's input. We resolve this using the transformation of Quach et al. [QWW'18].



 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

$$\left| {{f rs}}
ight| = \left({{f A}_1 ,\ldots ,{f A}_lpha ,{f B}_1 ,\ldots {f B}_eta }
ight)$$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$

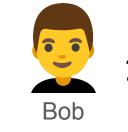
Bob

 $\mathsf{sk} \leftarrow \mathsf{FHE}. \mathsf{KeyGen} (1^{\lambda})$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$



$$\begin{array}{l} \mathsf{sk} \ \leftarrow \ \mathsf{FHE}. \ \mathsf{KeyGen} \left(1^{\lambda} \right) \\ \mathsf{ct} \ \leftarrow \ \mathsf{FHE}. \mathsf{Enc} \left(\mathsf{sk}, y \right) \end{array}$$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$

$$\mathsf{sk} \leftarrow \mathsf{FHE}. \mathsf{KeyGen} (1^{\lambda})$$

 $\mathsf{ct} \leftarrow \mathsf{FHE}.\mathsf{Enc} (\mathsf{sk}, y)$
 $\mathsf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_q^n$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$

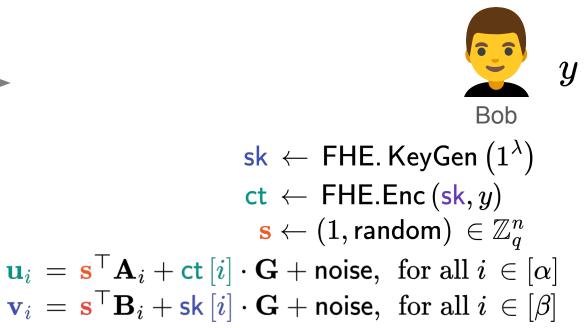
 $\mathbf{y} \\ \mathbf{sk} \leftarrow \mathsf{FHE}. \, \mathsf{KeyGen} \, (1^{\lambda}) \\ \mathsf{ct} \leftarrow \mathsf{FHE}. \mathsf{Enc} \, (\mathsf{sk}, y) \\ \mathbf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_q^n \end{cases}$

 $\mathbf{u}_i = \mathbf{s}^{ op} \mathbf{A}_i + \mathsf{ct}\left[i\right] \cdot \mathbf{G} + \mathsf{noise}, \, ext{ for all } i \in [lpha]$

C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 $\mathbf{A}_{C} \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$



C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

 \mathbf{A}_C

Nested encryption of y

$$\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$$

$$\mathbf{y}$$

$$\mathbf{sk} \leftarrow \mathsf{FHE}. \mathsf{KeyGen} (1^{\lambda})$$

$$\mathsf{ct} \leftarrow \mathsf{FHE}.\mathsf{Enc} (\mathsf{sk}, y)$$

$$\mathbf{s} \leftarrow (1, \mathsf{random}) \in \mathbb{Z}_q^n$$

$$\mathbf{u}_i = \mathbf{s}^\top \mathbf{A}_i + \mathsf{ct} [i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\alpha]$$

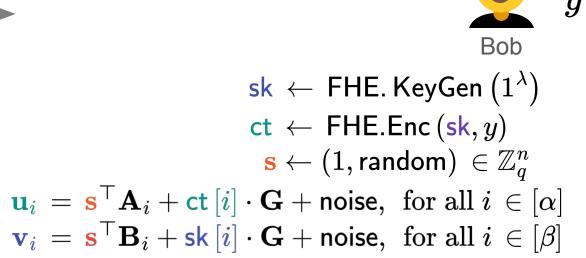
$$\mathbf{v}_i = \mathbf{s}^\top \mathbf{B}_i + \mathsf{sk} [i] \cdot \mathbf{G} + \mathsf{noise}, \text{ for all } i \in [\beta]$$

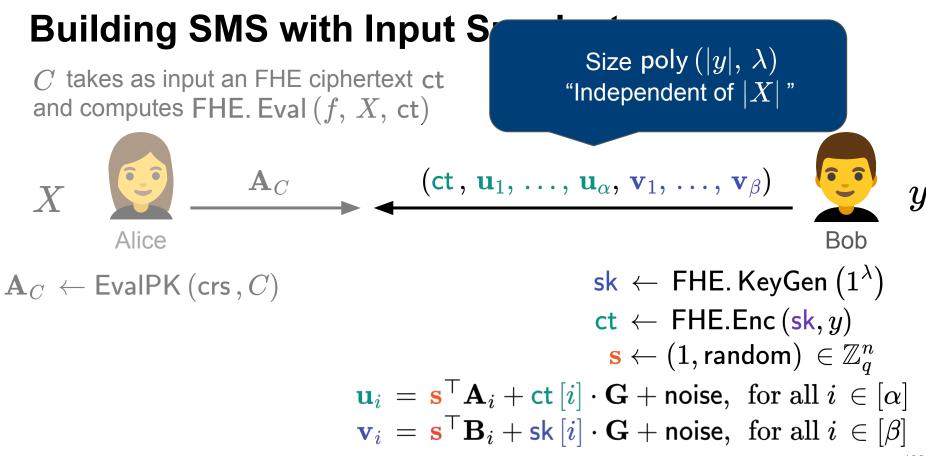
C takes as input an FHE ciphertext ct and computes FHE. Eval $(f,\,X,\,{\rm ct})$

Encryption of sk

$$\mathbf{A}_C \leftarrow \mathsf{EvalPK}\left(\mathsf{crs}\,,C\right)$$

 $\mathsf{crs}\,=\,(\mathbf{A}_1,\,\ldots,\mathbf{A}_lpha,\,\mathbf{B}_1,\ldots\mathbf{B}_eta)$





(ct, $\mathbf{u}_1, \ldots, \mathbf{u}_{\alpha}, \mathbf{v}_1, \ldots, \mathbf{v}_{\beta}$)

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

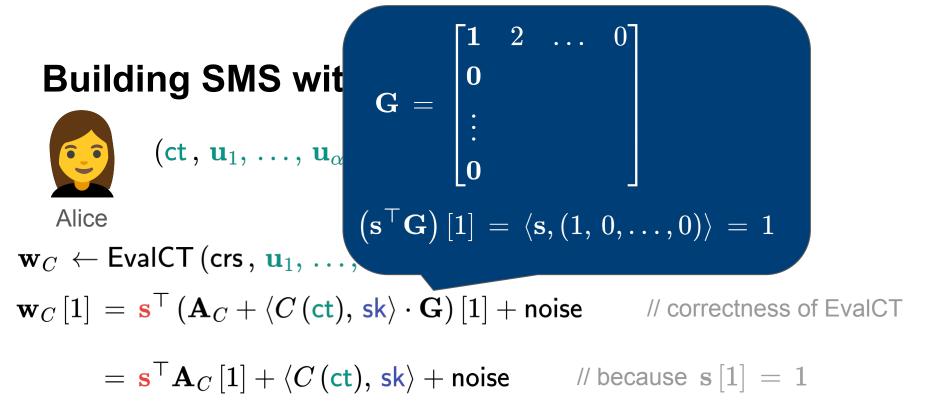
$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $= \mathbf{s}^{\top} \mathbf{A}_{C} [1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise} \qquad \textit{// because } \mathbf{s} [1] = 1$



$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise}$ // because $\mathbf{s}[1] = 1$

 $\mathbf{s}^{ op} \mathbf{A}_{C}[1] + \langle \mathsf{FHE}. \operatorname{\mathsf{Eval}}(f, (X, \operatorname{\mathsf{ct}})), \operatorname{\mathsf{sk}}
angle + \operatorname{\mathsf{noise}}(f, (X, \operatorname{\mathsf{ct}})), \operatorname{\mathsf{sk}} \rangle$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}[1] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G} \right) [1] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise}$ // because $\mathbf{s}[1] = 1$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle \mathsf{FHE}. \mathsf{Encrypt}(\mathsf{sk}, f(X, y)), \mathsf{sk} \rangle + \mathsf{noise}$ // correctness

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

Alice

 $\mathbf{w}_C \leftarrow \mathsf{EvalCT}\left(\mathsf{crs}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_\alpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_\beta,C,\,\mathsf{ct}\right)$

 $\mathbf{w}_{C}\left[1\right] = \mathbf{s}^{\top} \left(\mathbf{A}_{C} + \langle C(\mathsf{ct}), \mathsf{sk} \rangle \cdot \mathbf{G}\right) \left[1\right] + \mathsf{noise} \qquad // \text{ correctness of EvalCT}$

 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle C(\mathsf{ct}), \mathsf{sk} \rangle + \mathsf{noise}$ // because $\mathbf{s}[1] = 1$

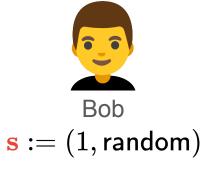
 $\mathbf{s}^{\top} \mathbf{A}_{C}[1] + \langle \mathsf{FHE}. \mathsf{Encrypt}(\mathsf{sk}, f(X, y)), \mathsf{sk} \rangle + \mathsf{noise}$ // correctness

 $f=\mathbf{s}^{ op}\mathbf{A}_{C}\left[1
ight]+rac{q}{p}f\left(X,y
ight)+$ noise $\,$ // near-linear decryption of FHE $_{_{201}}$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

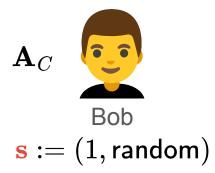
$$z_A := \mathbf{s}^ op \mathbf{A}_C\left[1
ight] + rac{q}{p}f\left(X,y
ight) + ext{noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$



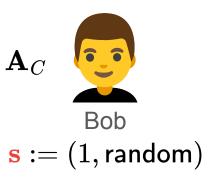
$$z_A := \mathbf{s}^{ op} \mathbf{A}_C \left[1
ight] + rac{q}{p} f \left(X, y
ight) + \, \mathsf{noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$



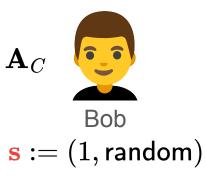
$$z_A := \mathbf{s}^ op \mathbf{A}_C\left[1
ight] + \, rac{q}{p} f\left(X,y
ight) \, + \, \mathsf{noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$



$$z_A := \mathbf{s}^{\top} \mathbf{A}_C \left[1 \right] + \frac{q}{p} f\left(X, y
ight) + \text{noise} \qquad z_B := -\left(\mathbf{s}^{\top} \mathbf{A}_C
ight) \left[1
ight]$$

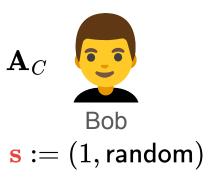
$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$



$$z_A := \mathbf{s}^{\top} \mathbf{A}_C [1] + \frac{q}{p} f(X, y) + \text{noise} \qquad z_B := -\left(\mathbf{s}^{\top} \mathbf{A}_C\right) [1]$$

$$z_A\,+\,z_B\,=rac{q}{p}f\left(X,y
ight)+{\sf noise}$$

$$(\mathsf{ct}\,,\,\mathbf{u}_1,\,\ldots,\,\mathbf{u}_lpha,\,\mathbf{v}_1,\,\ldots,\,\mathbf{v}_eta)$$

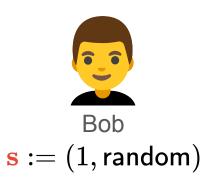


$$z_A := \lceil \mathbf{s}^{ op} \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + \mathsf{noise}
floor_p \qquad z_B := - \lceil \left(\mathbf{s}^{ op} \mathbf{A}_C
ight) \left[1
ight]
floor_p$$

Alice

Lemma (Rounding of Noisy Shares): Assuming LWE with *superpolynomial modulus-to-noise ratio*, rounding of two noisy shares results in additive shares.

$$z_A := \lceil \mathbf{s}^\top \mathbf{A}_C [1] + \frac{q}{p} f(X, y) + \mathsf{noise} \rfloor_p \qquad z_B := -\lceil \left(\mathbf{s}^\top \mathbf{A}_C \right) [1] \rfloor_p$$
$$= \mathbf{s}^\top \mathbf{A}_C [1] + f(X, y) \pmod{p} \qquad = -\left(\mathbf{s}^\top \mathbf{A}_C \right) [1] \pmod{p}$$



$$egin{aligned} & z_A := \lceil \mathbf{s}^ op \mathbf{A}_C \left[1
ight] + rac{q}{p} f\left(X, y
ight) + \mathsf{noise}
floor_p & z_B := - \left[\left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight]
floor_p \ & = - \left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight] + f\left(X, y
ight) \pmod{p} & = - \left(\mathbf{s}^ op \mathbf{A}_C
ight) \left[1
ight] \pmod{p} \end{aligned}$$

$$z_A\,+\,z_B\,=f\left(X,y
ight)$$

Long outputs?

Long outputs?

Too long to explain; Short answer: Use SMS for vector OLE [ARS'24]

Applications of SMS

Direct applications to

Direct applications to

1. First construction of trapdoor hashing beyond linear predicates

Direct applications to

- 1. First construction of trapdoor hashing beyond linear predicates
- 2. Generic compiler to correlation-intractable hash functions

Direct applications to

- 1. First construction of trapdoor hashing beyond linear predicates
- 2. Generic compiler to correlation-intractable hash functions
- 3. Generic compiler to rate-1 fully-homomorphic encryption

SMS Secure Computation

Direct applications to

- 1. First construction of trapdoor hashing beyond linear predicates
- 2. Generic compiler to correlation-intractable hash functions
- 3. Generic compiler to rate-1 fully-homomorphic encryption
- 4. Hubacek–Wichs [HW'15]-style succinct secure computation (from our iO-based construction of SMS)

Conclusion

• New constructions of succinct, two-round secure computation

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations
- New constructions non-interactive OT extension + implementations

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations
- New constructions non-interactive OT extension + implementations
- New theory connecting

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations
- New constructions non-interactive OT extension + implementations
- New theory connecting
 - Rate-1 FHE, succinct computation

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations
- New constructions non-interactive OT extension + implementations
- New theory connecting
 - Rate-1 FHE, succinct computation
 - Trapdoor and correlation-intractable hash functions

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations
- New constructions non-interactive OT extension + implementations
- New theory connecting
 - Rate-1 FHE, succinct computation
 - Trapdoor and correlation-intractable hash functions
 - Output-succinct secure computation

- New constructions of succinct, two-round secure computation
- New constructions of constrained PRFs + implementations
- New constructions non-interactive OT extension + implementations
- New theory connecting
 - Rate-1 FHE, succinct computation
 - Trapdoor and correlation-intractable hash functions
 - Output-succinct secure computation
- and more...

So Long, and Thanks for All the Fish!

— Douglas Adams

References

[Yao'86]: A. C. Yao. "How to Generate and Exchange Secrets."

[BM'89]: M. Bellare and S. Micali. "Non-Interactive Oblivious Transfer and Applications."

[GKM+'00]: Y. Gertner, S. Kannan, T. Malkin, O. Reingold, and M. Viswanathan. "The Relationship between Public Key Encryption and Oblivious Transfer."

[Gen'09]: C. Gentry. "Fully Homomorphic Encryption Using Ideal Lattices."

[HLP'11]: S. Halevi, Y. Lindell, and B. Pinkas. "Secure Computation on the Web: Computing without Simultaneous Interaction."

[BGG+'14]: D. Boneh, C. Gentry, S. Gorbunov, S. Halevi, V. Nikolaenko, G. Segev, V. Vaikuntanathan, and D. Vinayagamurthy. "Fully Key-Homomorphic Encryption, Arithmetic Circuit ABE, and Compact Garbled Circuits."

[GVW'15]: S. Gorbunov, V. Vaikuntanathan, and H. Wee. "Predicate Encryption for Circuits from LWE."

References

[HW'15]: P. Hubacek and D. Wichs. "On the Communication Complexity of Secure Function Evaluation with Long Output."

[BGI'16]: E. Boyle, N. Gilboa, and Y. Ishai. "Breaking the Circuit Size Barrier for Secure Computation Under DDH."

[DHRW'16]: D. Dodis, S. Halevi, R. D. Rothblum, and D. Wichs. "Spooky Encryption and Its Applications."

[QWW'18]: W. Quach, H. Wee, and D. Wichs. "Laconic Function Evaluation and Applications."

[OSY'21]: C. Orlandi, P. Scholl, and S. Yakoubov. "The Rise of Paillier: Homomorphic Secret Sharing and Public-Key Silent OT."

[CZ'22]: G. Couteau and M. Zarezadeh. "Non-Interactive Secure Computation of Inner-Product from LPN and LWE."

[ARS'24]: D. Abram, L. Roy, and P. Scholl. "Succinct Homomorphic Secret Sharing."

References

[BCMPR'24]: D. Bui, G. Couteau, P. Meyer, A. Passelègue, and M. Riahinia. "Fast Public-Key Silent OT and More from Constrained Naor-Reingold."

[CDDKSS'24]: G. Couteau, L. Devadas, S. Devadas, A. Koch, and S. Servan-Schreiber. "QuietOT: Lightweight Oblivious Transfer with a Public-Key Setup."

[SS'24]: S. Servan-Schreiber. "Constrained PRFs for Inner-Product Predicates from Weaker Assumptions."

[CDHJSS'25]: G. Couteau, L. Devadas, A. Hegde, A. Jain, and S. Servan-Schreiber. "Multi-Key Homomorphic Secret Sharing."

[BDSS'25]: E. Boyle, L. Devadas, and S. Servan-Schreiber. "Non-Interactive Distributed Point Functions."

[BJSSS'25]: E. Boyle, A. Jain, S. Servan-Schreiber, and A. Srinivasan. "Simultaneous-Message and Succinct Secure Computation."